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Pade phenomenology for NN scattering: 'S, phase shifts
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Recently developed Pade approximant techniques are applied to two sets of 'So NN scattering data. In the first, the
unconstrained 'S, np phase shifts of MacGregor et al. are used to generate a scattering function, F(k ') = kcot(8, ),
which is fitted with high precision. A six-parameter [3/2] Pade fit gives four terms of the effective range expansion;
the resulting Marchenko-type potential is expressible as the sum of a Yukawa one-pion-exchange potential and a
shorter range part, the repulsion peaking at the origin at near 4 GeV. In a second apphcation, Pade fits are made to
the scattering function of the Reid soft-core potential. The [3/2] approximant which fits F(k') through the wave

numbers consistent with the Lambert, Corbella, and Thome criterion, to k = 2.5 fm, leads to a potential with a
core height of 4.6X 10' GeV. In both [3/2] potentials the volume integrals are large and negative, and cannot be
made positive by adjoining more repulsive high energy phase shifts. By application to the Reid soft-core potential
the Fade formalism is shown to generate useful [L/L —1] Pade approximants with increasing L. The analytic
structure of F(k') beyond k = 224 fm ' is used in the construction of higher Pade approximants that (a) satisfy the
Lambert, Corbella, and Thome criterion and (b) might lead to saturation.

NUCLEAB BEACTIONS Pads approximants used to solve inverse scattering
problem for NN Sp phase shifts; effective range expansion and short range re-

pulsion computed.

I. INTRODUCTION

The NN interaction is currently being intensively
investigated, for the purpose of improving both
the empirical understanding and the theoretical
foundations" of strong interactions. At the same
time, the usefulness of realistic NN interactions
in computing nuclear structure is steadily grow-
ing as can be inferred, for example, in the un-
folding program of nuclear self-consistent field
(SCF) calculations. 3 A major effort is still re-
quired in the important process of translating
between experimental scattering and an NN inter-
action. For a part of this process a new approach
has been developed, 4 based upon new techniques
for applying Pads'approximants (PA).' The
approach, referred to as a "physical inverse
scattering method, "makes use of incompletely
known phase shifts to generate the scattering
function F(k') = k cot(8,}and a local potential. De-
tails of the testing of this method are given in a
previous paper, hereafter referred to as I4 In
the present application, nonrelativistic local
potentials are developed, based on high precision
fits of NN 'S, phase shifts, and effective range
expansions are carried out to four terms. A
further analysis is made of the nature of the
short-range NN repulsion.

We use our approach here to fit the unconstrained
'S, np phase shifts of MacGregor, Amdt, and
Wright (MAW},"even though newer data and phase

shifts have recently become available. ' The MAW

phase shifts have been so extensively used in the
decade of their existence that the body of references
to them provides some useful standards for evalu-
ation of the techniques presented. We emphasize
that we do not present a statistical analysis, but
rather we treat the MAW phase shifts as a given
function to be approximated. The objective of the
present paper is to show how the pade ansatz
provides a simple and useful approach to the
determination of NN potentials. A more complete
statistical analysis of newer, energy independent
phase shifts is also being undertaken, and will
lead to a class of potentials rather than one, with
similarities to the one we present here.

For a second application of the Pade scheme we
use the Reid soft core potential (RSC} (Ref. 8) to
generate NN 'So (isotriplet) phase shift data. Be-
cause the RSC is so strongly repulsive, yet is
distinguishable from an infinite hard core, it
provides a fertile ground for the study of the
short-range repulsion. It is known that momen-
tum contributions of NN potentials as high as
k = 6 fm-' can be important in computing phase
shifts at low energies. ' We find a dramatic kind
of converse of this result in having to employ
phase shifts beyond k=224 fm in an attempt to
recover an important property related to satura-
tion of the RSC, namely, a positive volume inte-
gral.

There are two specific issues we hope to address
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successfully by future applications of our preci-
sion Padd' techniques to develop a potential model.
On a fundamental level, one issue is the extent to
which the current understanding of meson theory
explains the NN scattering data. A more pheno-
menological issue is the detailed structure of the
interaction at short range where r ~ 1 fm and
strong repulsions are present. Local short-range
repulsions that have been investigated include
infinite hard cores, Yukawa cores, and supersoft
cores." Several questions of fundamental import
may hinge on the strength of the core, such as
the size of meson current effects in nuclei."

There is also a question as to the mechanisms
by which nuclear saturation occurs in a nonrela-
tivistic framework with a realistic two-body NN
interaction. The short-range repulsion is clearly
of importance, "and could be crucial in satisfying
inequalities necessarily required of two-body
potentials for saturation, as given by Calogero
and Simonov (CS)P""Volume integrals of NN S,
potentials are a useful index of the repulsive
strength. In some of the CS inequalities satisfied
by a saturating local two-body potential" the
volume integral of the NN singlet even potential
occurs additively in expressions that must be
positive. The RSC NN 'S, potential, employed in
calculations that show saturation, "has a volume
integral of 685 MeV fm'. A possible shortcoming
of some of our approximating potentials is that
their volume integrals are negative. We discuss
and partly implement modifications for obtaining
positive volume integrals.

The supersoft core in the 'S, np interaction (SSC}
developed by Sprung and Srivastava" has some
particularly desirable features. With a repulsive
core height near 90 MeV, the SSC can, unlike
most of the other local interactions previously
derived from NN scattering data, be used in
Hartree-Fock calculations of nuclear structure. '
The SSC was simply constructed starting with the
ansatz of a rational S matrix and ending with an
analytical form derived using the Marchenko in-
verse scattering method. The SSC has had high
credibility because it is based on an excellent fit
of the 40 MAW phase shifts (y' = 12.2 for the 'S,
np state}, improved still further (to y.'=3.9 for 20
phase shifts) when an one-pion exchange potential
(OPEP) Yukawa tail is grafted on for the purpose
of consistency with meson theory.

The SSC volume integral is -864 MeVfm', which
contributes to the saturation inequalities with the
wrong sign." If the SSC is made to be repulsive
at the origin by extending the repulsive peak to
the origin at constant height, there is only a small
change of the volume integral. If a complete NN
local potential contained the SSC, a larger burden

of the repulsion needed for saturation mould be
placed on the triplet odd potential than with the
Reid potential, for example. "

The present results comprise a refinement of
previous phenomenological fits of phase shifts by
a potential, and in particular, of Sprung and
Srivastava' s work. We apply the Pade ansatz
directly to the scattering function F(k') = k cot( 6)
by writing F(k') =P~(k')/Qgk') —= [L/M] in the
notation of Baker, ' where the numerator and
denominator polynomials are of degrees L = 3 and
M = 2, respectively, for the excellent fits me
obtain. A g -minimization algorithm MINIRAT
introduced earlier' quickly leads, generally in
just a few iterations, to an optimal PA. Exten-
sive testing of the entire method has shown that
in every example the Padd' interpolative accuracy
is excellent, and that the effective range expan-
sion, obtained analytically from the PA, gives
reliable values through the first four terms.
Examples previously tested, all possessing some
characteristics of the S, np interaction, include
the hard core, square mell, hard core square well,
and the hard core Yukawa.

Another refinement we present here is an ana-
lysis showing that upon solution of the Marchenko
equation" our resulting local potential, V~,
plausibly contains the significant effects of an
OPEP Yukawa tail, Vopqp . If we write VsR
=

Vexed Voppp, then VsR has a smaller intrinsic
range, which is more characteristic of heavy
meson exchange. Also, in view of the excellent
fit already achieved, grafting a Yukawa tail onto

V, could not be expected to lead to a significant
improvement.

II. MAWnp SppHASE SHIFTS

The 40 phase shifts of the unconstrained MAW
solution ape at energy points between E» = 1 MeV
and E» = 460 MeV. We employ a nonrelativistic
potential model which is not strictly consistent,
physically, with fitting phase shifts at intermediate
energies. ' The procedure adopted in this paper
is to transform relativistically from E» to Ec~
before doing the nonrelativistic phase shift calcu-
lation. This in effect fixes the definition of E~
for our RSC fits at ultrahigh wave numbers.

Our best y,
' (for 40 phase shifts), X'=0.0786,

produces errors on the order of 0.01' at low en-
ergies and 0.1 at higher energies. Only two
iterations were required to achieve this fit, by
which the first four parameters in the effective
range expansion are reliably determined. If we
write

1
k cot(60) = -—+ irP2 —Pro'k~+ Qrosks

a
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then we find

a = -23.664+ 0.002 fm,

/0 2 5048 + 0 0006 fm,

P = 0.0178+0.0004,

Q = 0.0109% 0.0003,

tions res
where the errors quoted a thre e maximum varia-
sons resulting from varying y' b 20%

[ ] Pade'approximant reproduces the first
L+M+ 1 term
a roxim
I M 1 erms of a Taylor series ' '3/ '

pp ant can be expected to contain inf
tion about ~~ ~j

con m informa-
u ~~x& through terms of order O' . How-

ever, as the errors above show e
lent determination of [3/2 b

ow, even an excel-
y mmxmszmg y2

pr uces uncertainties in lower orders of k'.
Now we respresent our final numerical results"

In terms of x=k'
and Q =1+ b

x=, we write P, =a + a x+ x3= 0 j. a2 + as

Q, = + b,x+ b,x'. Then for our best fit, a =

0.0422584 fm ~ a = 1.30742 ffm, a~=1.33051 fm

a3 = 0.102 903 fm', b = 1.301 65 f
844 fm4

1 m, and 5,=0.485
m . The kernel of the Marchenk

depends u
c e o equation

p s upon the S matrix S through the three
poles of 8-1 in the upper half k lanep ~ po

resi ues are easily computed from F(x)

S run an
and are listed in Table I th thwi ose found by

prung and Srivastava and those for the Marchenko-
Padd'potential for the RSC d Iscussed in the next
section. The poles in the lower half lap ne, which

s own I Table I, vary considerabl

responsible for the difference '
1 d'nces, mcludmg signs

between the residues of R f 10 eo e . and those of the
present Marchenko-MAW potential. Then m . e potentials

sen work bear the greatest similar't
to each other e

1 rl y

The
, even though they fit differe t data.

Marchenko potential V whi h

e '
en

c results from
es i is shown in Fig. 1, together with V

Vppsp(p') = 10,463(e ")/(0 Vp') fo th OP
e Reid soft core potential is al

with a Pad@-'
vs a so shown together

a add-'Marchenko approximant which is
discussed in the next s

has
section. Figure 2 shows the

p se shifts given by our Ma h nkarc e o potential

r [fm)

FIG. 1. V
IIKD ), VsR(———), RSC(——-—

archenko approximant to the RSC (—————)

through intermediate energies. Thes
c y what is given by our [3/2] Pads' fit of

F(x), and reflect the strong short-ra

E ~400 are '
in . s seen in Fig. 2, our phase shifts at

intermediate between those of th

SSC and the RSC.
seo e

The core height is V,„(0)= 3.889,„9 = ~ G V
s i. Within a 20 percent variation of X', we

find a 5 percent variation of V,~(0). Another
interesting characteristic of V is it

, w sc is 2.35 fm, as compared with 3.01
fm for V and 1.9
these numbers iillustrates what is more difficult
to see graphicall na
an OPEP tail from

p ica y, namely, that subtractin ffg 0

ran e effe
from V,~ removes much of th

g ct. The relatively larger ta'1 of V&

o e long

and the harder core of V m„mainly account for the
' ference in the intrinsic ranges.
The present analysis relies hea 1eave y upon our

TABLE I. S-matrix lepo es in the upper half plane and theiran eir residues for three potentials.

Poles and Residues
(fm-') Ref. 10 Present Marchenko-MAW Marchenko-Reid

pole
residue
pole
residue
pole
residue

0.878 8i
1.591i
1.5659 +0.8i

-0.097 39 —0.5736i
-1.5659 +0.8i

0.097 39 —0.5736i

0.611 66i
0.427 2i
1.1529+1.2054i
1.5374 —1.2910i

-1.1529+1.2054i
-1.5374 —1.2910i

0.624 365i
0.477 601$
1.152 14+1.521 98t
2.575 60 —3.043 88i

-1.152 14+1.521 98t
-2.575 60 —3.073 88i
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FIG. 2. Phase shifts to intermediate energies predict-
ed by V~ ( ). For V,~, 6p(E) reaches a shallow
minimum of -30' beyond 2 GeV. Also shown are the
SSC (———) and the RSC (———).

TABLE II. Phase shifts of Vexp, VsR, and VppEp show-
ing effect of a cutoff setting the potential to 0 for r ~R.

Experimental (Ref. 6)

Phase shifts in degrees
1 MeV 10 MeV 30 MeV
62.43 61.23 50.73

ability to calculate phase shifts, Pad@'approxi-
mants, poles, and residue with precision.
An important self-consistency check is to use V„p
to recompute the experimental phase shifts. We
use the Noumerov algorithm for integrating the
Schrodinger equation, which tests to a precision
of better than 10 ' for phase shifts. Using the
MAW standard errors, - we obtain a X' of 10 '

when
we compare the phase shifts of V,~ with those
produced by the Pade fit to the experimental data.

V,„p has heavily damped tail oscillations occuring
for y &2 fm, which is also true to a lesser extent
of Vs„. These are artifacts of our specific Pade
fit. We do not consider them a serious problem,
even though such oscillations are not predicted by
meson theory, for three reasons. First, the effects
upon the phase shifts of cutting off the tail are
small for V». Second, long range effects of a
one pion exchange potential appear to be well
approximated in our phase shift fits and hence in

V,~ . Table II compares phase shifts at various
low energies (Eab) for different cutoffs which set

the potentials V,~, Vs„, and our VppEp to zero
y ~ B. There is a clear distinction, especially at
the lower energies, between the longer range
behavior of V, and of Vs„, from which the long
range effects of one pion exchange have been sub-
tracted. Finally, we note that tail oscillations
are not an inevitable consequence of the method,
and a statistical analysis along the lines mention-
ed in the Introduction might result in some excel-
lent fits without thes'e oscillations. Although
oscillating terms in the potential are always
associated with poles of S off the imaginary k axis,
such poles do not necessarily cause oscillations
that extend into the tail region, as seen in our
next example, which is the RSC.

Regarding saturation, the volume integral is
-825 MeVfm', only 5 percent closer to a positive
value than given by the SSC.

III REID NN &SO POTENTIAL (RSC)

We solve the Schrodinger equation with the RSC
to generate phase shifts and F(k'). Data are
evaluated at the energies used by MAW, and also
at higher energies. Higher energy data are used
to determine whether the strongly repulsive RSC
can lead to a [3/2] or a higher order PaddMar'-
chenko potential with a volume integral of the
same positive sign as for the RSC. We continue
to use X' minimization, which gives essentially
the same Pad@'approximants at least-squares
fitting, 4 and we set the standard errors at 4 de-
grees at the higher energies.

There is a constraint upon our fits to F(k') if
we use them to derive finite potentials. Lambert,
Corbella, and Thomd' (LCT) have shown" that if
no two-body bound states occur, the condition
5(0)-5(~) = 0 is both necessary and sufficient for
the solubility of the Marchenko equation. The
highest energy for which a [3/2] approximant which
minimizes X is soluble is E» =540 MeV. Fitting
higher energy data forces the [3/2] scattering
function F(k') to become more repulsive and to
give 5(0)-5(~) = v.

As seen in Table IG, the volume integral of the
resulting [3/2] Pads'-Marchenko potential is still
negative, contrasted with the positive value for

Potential
Vexp

VsR

VEEP

R (fm)

5
2.3

5
2.3

5
2.3

62.430 61.223
61.546 61.203
53.064 59.946
19.061 37.332
19.380 37.337
21.066 39.389
5.908 12.300
5.268 12.071
2.895 8.131

50.704
50.583
50.577
36.865
36.915
37.974
13.191
13.101
11.182

Potential
Volume integral Core height

(MeV fm ) (MeV)

RSC
Ref. 10
[3/2) Marchenko-MA W
[3/2] Marchenko-Reid

685
-864
-825
-615

91
3.89 x10'
4.6 x107

TABLE III. Volume integrals and core heights of vari-
ous NN Sp potentials.
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FIG. 3. The RSC scattering fction +(k~) versus k,
on a logarithmic plot. Zeros are at k =5.3 and 224 fm '.
Vertical asymptotes delineating the four sectors are at
k=1.6, 14.0, 71, and 580 fm '. Estimated numerical
precision of phase shifts at highest energies is better
than 1 degree.

the RSC. This is clear evidence that finite NN S,
[3/2] potentials can not be constructed with positive
volume integrals. Our potential is shown in Fig.
1. We have determined that it has no tail oscilla-
tions, unlike our Marchenko-MAW potential.

Baker has conjectured that the positive sign of
the volume integral might be used as a constraint
on Pade'fits to F(k')." To accomplish this there
are two options. One possible procedure, which
has been tested in other problems, "is to obtain a
more strongly repulsive [3/2] fit by going to higher
energies and to introduce an infinite hard core via
the hard core inverse scattering method presented
in Ref. 4. Another option, as yet not fully tested,
is to seek [L/L 1] fits-with L&3 that are soluble
and to obtain V(r) from the Marchenko equation.
We have carried out the first part of this second
procedure, starting with a numerical computation
of E(k'). The needed sectors of the RSC scattering
function are shown in Fig. 3 on a logarithmic plot,
and examples of [3/2], [4/3], and [5/4] fits are
plotted as phase shifts in Fig. 4. The sector
structure in Fig. 3 suggests a simple pole be-
havior that would be well approximated by a ration-
al function. All four sectors shown are needed
to obtain 5(0)-5(~)=0 for solubility of the Mar-
chenko equation. So closely is E(k') reproduced
by the [5/4] fit that their curves in Fig. 4 are
indistinguishable through 10 fm-'.

Although reasonable [4/3) fits can be made to
data at higher wave numbers than shown on Fig.
4, all our [4/3] fits yield 5(0)-5(~)= w and hence
do not give a soluble Marchenko equation. In
practice it is not possible to go into the fourth
sector in Fig. 3 and obtain a good [4/3]. Even
attempts at [4/3] fits in the third sector cause
large increases of X,'.

Table IV compares the various fits in terms of
X' per data point and the first four effective range

0
a

-90
0 I 2 3 4 5 6 7 8 9 IO

I (fm ')

FIG. 4. Phase shifts of the RSC ( ), and its ap-
proximants [5/4] ( ), [4/3] (———), and [3/2]
(———)

IV. DISCUSSION

We find the Pad@'ansatz provides a facile de-
scription of NN 'S, scattering. Both the MAW and
the RSC scattering functions are well fitted by
[3/2] Pade'approximants over the experimentally
accessible energy range, while there appears to
be good convergence of [5/4] approximants to the
RSC beyond 0=224 fm-'.

An analysis of the RSC has led us to conclude
that it is not possible to construct a finite [3/2]
Pad@'-Marchenko potential with a positive volume
integral that accurately describes the 'S, state.
However, if the [3/2] approximant is constrained
to be so repulsive that 5(0)-5(~)= v, a hard core
inverse scattering theory4'" can be applied, lead-
ing to a saturation-supporting hard core. Also,
within the class of fits to the RSC that satisfy
5(0)-5(~)= 0, excellent [I-/I--l ] approximants are
found, such as our [5/4] fit, that are far more
strongly repulsive than any [3/2] fits.

As for the hard core repulsion, 4 so for the RSC:
Both scattering functions have an alternating
structure of singularities (known to be simple
poles for the hard core) and zeros in k' that is
ideally suited for Pade approximants valid over a

parameters. Our standard values of effective
range parameters are obtained by minimizing X'

for just a few low energy points and then checking
interpolational accuracy. ' We judge the 6-point
[3/2] fit to be best, with quoted errors marking
the spread of these parameters when various fits,
using 4 to 10 points, are made.

Our [5/4) clearly is far more repulsive than the
[3/2]. Besides being a candidate for a Marchenko
potential with a positive volume integral; the [5/4]
fits the entire range of 100 points, approximating
singularities and zeros well, and also the scatter-
ing length, effective range, and shape parameter.
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TABLE IV. Comparison of various Pade approximants to RSC scattering function.

Highest
k fitted

Approximant (fm- i)

No. of
phase
shifts
fitted

x
data
point

Value
of

6(o) —6 (}
a

(fm)
rp

(fm)

Ref. 8
[3/2~.
[3/2)
[4/3l
[5/4]

0.269
2.47
2.71

457.0

6
44
50

100

2.7 x10 ~

0.097
0.033
0.19

-17.1
-17.145+0.003
-17.090
-17.102
-17.073

2.80
2.803+ 0.003
2.763
2.771
2.751

0.020
0.026+ 0.002
0.0064
0.0095
0.0025

0.019+0.003
0.0057
0.0067
0.0047

Our [3/2],t is the standard fit for the purpose of obtaining the effective range parameters.

finite range of wave numbers, the precise asym-
ptotic behavior being relatively unimportant.

Within the range of statistically acceptable 'So
scattering functions for experimentally derived
phase shifts there may well be solutions with
hard core repulsions. But the imprint of the hard
core in the energy range Ezb & 460 MeV is unmis-
takable. Hard core [3/2] fits satisfy 5(Q)-5(~) = w,

'
while our lowest g' fits to MAW lead unequivocally
to a strong but finite repulsion and a negative
volume integral.

In a larger range of energies up to E~ & 560
MeV, the [3/2] approximant no longer distinguishes
between a Yukawa core and an infinite hard core.
Our analysis of the RSC shows how it might be
possible, through insertion of poles and zeros of
E(k') above the experimentally accessible region,

to construct stronger finite repulsions using [L/
L-l] fits to the data with L & 3.
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