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Isoscalar dipole resonance: Form factor and energy weighted sum rule
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A collective formalism first proposed by Deal to describe isoscalar dipole excitations in electron scattering is
extended to include excitations of these modes by hadron scattering. Distorted-wave Born approximation
calculations are performed using this collective isoscalar L = 1 form factor to describe the excitation of the 1,
T = O state at E, = 7.12 MeV (1#iw character) in '°O and a newly proposed candidate for the isoscalar giant dipole
resonance (3fiw character) at E, = 21.3 MeV in *®Pb excited in inelastic @ scattering. A good description of the
cross sections of the 17, 7.12 MeV state in %O and the E, = 21.3 MeV bump in 2**Pb is obtained in this model
exhausting 4.2% and 130% of the energy-weighted sum rule, respectively.

energy weighted sum rule. Excitation in hadron scattering.
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I. INTRODUCTION

Isoscalar dipole excitations have already been
observed in many self-conjugate nuclei at low
excitation energies by inelastic electron™? and
hadron®- scattering. The relatively strong exci-
tation of these isoscalar dipole states in inelastic
electron® and hadron® scattering could be well
understood in terms of plane wave Born approxi-
mation (PWBA) and distorted wave Born approxi-
mation (DWBA) calculations, respectively, using
a microscopic form factor derived from 14w shell
model wave functions and corrected for center of
mass (c.m.) motion, This would correspond to
the 17w (low-energy) isoscalar dipole resonance
(LEDR), the strength of which should be frag-
mented over a small number of states for these
light nuclei.

Recently, evidence was found® for strong exci-
tation of isoscalar dipole states in *°Ca at higher
excitation energies (E,~13-17 MeV) at E =104
MeV. In addition, from an analysis of the for-
ward-backward asymmetry observed in «, decay
of the giant resonance (GR) in light nuclei it was
conjectured’ that an appreciable percentage of the
isoscalar dipole sum rule could already be ex-
hausted in the region of the giant quadrupole reso-
nance in the sd-shell nuclei. For these nuclei,
most of the 37w high energy isoscalar dipole reso-
nance (HEDR) strength would be at higher excita-
tion energies and would probably be spread over
a wide energy region, similar to other giant reso-
nances in this mass region. For heavier nuclei,
it is expected that the HEDR strength is more con-
centrated in a narrow excitation region, and also
that it could be rather strongly excited” in inelas-
tic a scattering. Evidence for a possible excita-
tion of the HEDR in ?®*Pb at E ~ 21 MeV has re-
cently been found® from an inelastic a-scattering
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experiment on 2°°Pb at E =172 MeV.

Although in principle one can perform DWBA
calculations, using microscopic form factors, to
describe these isoscalar dipole excitations, in
practice these are difficult to perform, first, be-
cause for many nuclei such microscopic wave func-
tions do not exist, and second, because if suchwave
functions do exist they most often are not properly
corrected for the spurious c.m. motion. In view
of this, and to facilitate future DWBA analysis of
isoscalar dipole excitations, it is desirable to de-
scribe these excitations in terms of a collective
model. In this way a collective form factor is ob-
tained by deriving an energy weighted sum rule
(EWSR) for these excitations. Such a formulation
has been attempted by Deal,® where a collective
form factor in g space for the excitation of these
isoscalar dipole resonances in inelastic electron
scattering has been obtained and successfully ap-
plied to the excitation of the lowest lying 1-, T=0
states in *C, !°0, and *°Ca. Unfortunately, in
obtaining® the transition density in » space, an
error occurred.

In this paper the transition density for the ex-
citation of the isoscalar dipole resonance in in-
elastic electron and hadron scattering will be de-
rived along lines similar to the formulation of
Deal, but with a slightly different approach.
Moreover, the EWSR for the isoscalar dipole
excitations will be obtained. This collective for-
mulation will be applied in DWBA calculations to
describe the J"=1", T =0 state at 7.12 MeV in
10 (Refs. 3 and 7), which is supposedly a frag-
ment of the LEDR, and the newly reported® possi-
ble candidate for the 37w HEDR in 2%Pb,

II. SUM RULES AND COUPLING POTENTIALS

In inelastic electron scattering and also in in-
elastic hadron scattering in PWBA, assuming'® a
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5 interaction, the isoscalar multipole spin-inde-
pendent transition operator can be written

oM (g)= i DY, ”i ’
(q) Z;](qr) (%)

where 7 are the coordinates in the c.m. system
(t;=%, - R). Whereas for A= 2 in the limit of ¢~0
the first order terms in the expansion of 0'» sur-
vive and are proportional to the electric spin-
independent transition operators Ex=2; » *Y,(7),
this is not the case for A=0 and A=1, which re-
quire a special treatment. For x=0 the first
term in the expansion is a constant which cannot

induce any transitions from the ground state to
_
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excited states; the leading transition operator
is due to the second term in the expansion in (g7).

For A=1, the leading term for g— 0 is propor-
tional to the c.m. coordinate and should vanish if
evaluated with translationally invariant wave func-
tions. In this case the leading order transition
operator is due to the second term in the expan-
sion in (g»), but here the correct treatment (sub-
traction) of the c.m. motion is still of vital im-
portance. This is treated in more detail in the
Appendix; here we give the final results.

For A=1 and g,— 0, the general c.m. adjusted
sum rule for multipole A [Eq. A11)] leads to the
isoscalar dipole sum rule in g space:

where e=(4/E,+5/E ) h?/3mA; F}(q) and P!} are defined in the Appendix, and F,,(q) is the isoscalar

elastic form factor.

A similar formula has been obtained by Deal [Eq. (15) of Ref. 9].

The corresponding sum rule in » space which can be obtained from Eq. (1) by a Fourier transform is

dr

d2

. 2 R
T (B, = EQP oty ()= —m[Srz 4 | 10p- 3(72)—+e( v 4%)];,0(7)1’2(7), @)

where p, and p{!’ are the ground state and A=1 the
transition densities, respectively. The sign of the
third term in Eq. (2) differs from that reported by
Deal® and was also wrongly reported in Ref. 7.

In the limit of g~ 0, Eq. (1) leads to the static
isoscalar dipole energy weighted sum rule:

Y (E,-EJPY]= 32 (11<r4> B(,2)2_106(7?)).

@)

If the isoscalar dipole energy weighted sum rule is
exhausted by one state, then the transition density
of this state can be expressed as

p<1>(y)=_R{3/% [372%+ 107—%(1’2)—;—1;
+e< dd2+4 )]po(r) 4)
where
3122272;122/(11(74)—?(72)2-106(?’2)), (5)

and B, is the collective coupling parameter for the
isoscalar dipole resonance and R is the half-den-
sity radius of the Fermi mass distribution.

In all the above equations €, which depends in-
versely on A, is very small compared to (»2),
and for all practical purposes the terms depending
on € could be dropped in the above equations for
A= 20,

I

In a semimicroscopic treatment of inelastic
hadron scattering, one can, in principle, fold the
projectile-nucleon interaction with the transition
density of Eq. (4) to obtain the real form factor
of isoscalar dipole excitations, which could then
be used in DWBA calculations. However, in such
a procedure there is no recipe to construct the
imaginary form factor. In this paper we adopt
another approach by assuming that both the real
and imaginary parts of the optical model potential
deform in the same way as the ground state den-
sity; in this way we obtain the transition potential
form factor

2d 5 2
AU:-Rfj_g [3 & 1107 - ${Cr0e} 2

d? d
+e< ar 2+4d >]V(V)

[372 d, 107 - {(rﬂ,}%

+e< pa 2+4d>]W(r) 6)

Here B; and B; are the coupling parameters for
the real and imaginary parts of the transition po-
tential. These can be related with the prescrip-
tion that the deformation lengths for the real and
imaginary potentials are equal: B;R =B;R;
(72)g and (72), are the mean square radii of the
real and imaginary parts of the optical potential.
These are taken in this manner to preserve the

8,
RYV3

-1



23 ISOSCALAR DIPOLE RESONANCE:

correct c.m. adjustment for the real and imagi-
nary form factors separately, which is rather es-
sential in these calculations. For a Woods-Saxon
shape potential

(r2>=-§—R2[l+g-(1r%>2], (7

where a is the diffuseness parameter.

Moreover, in Eq. (5), (v2) and (»*) are calcu-
lated from the real part of the optical model po-
tential to give the value of B, which corresponds
to 100% of the exhaustion of the isoscalar dipole
EWSR [Eq. (3)].

III. APPLICATIONS: DWBA ANALYSIS

The transition density in Eq. (6) has a node and
satisfies the condition

f pip ridr=0.
[

Equivalently this condition states that in the limit
of momentum transfer g— 0, the PWBA matrix
element should converge rapidly to zero (propor-
tional to ¢°). In the DWBA, the distortion of the
waves would alter the dependence of the isoscalar
transition form factor from being «j,(qr), and it
is of interest to investigate the behavior of the
DWBA transition matrix element for small ¢q. In
Fig. 1 we show two calculations: the PWBA cal-
culations (dashed lines) and the DWBA calculations
(solid lines) performed with the program DWUCKM
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FIG. 1. DWBA (solid lines) and PWBA (dashed lines)
calculations for a hypothetical 1" state at E,=0.0 using
the collective form factor described in the text. The
PWBA calculations converge rapidly to zero as the
momentum transfer ¢ =0 (6, — 0°).
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for the reaction *O(a, a’)*%0 at E , =104 MeV for
a hypothetical L =1 transition at E,=0 MeV. For
0. .. =0°, this essentially ensures that g=0. 1t is
shown in Fig. 1 that the differential cross section
indeed converges quickly to zeroas 6, —~0°. In
the DWBA calculation (E,=0), the cross section
for 6, . — 0° does not fall off to zero as rapidly as
inthe PWBA approximation, but at0°it still vanishes.
In a realistic situation E,#0, and hence the mo-
mentum transfer ¢ is different from zero at 0°.

In this case the cross section for an L =1 transi-
tion would be finite at 6, , =0°.

We have performed DWBA calculations using
the collective form factor [Eq. (7)] for the L=1
transition to the 7.12 MeV, 17(7 =0) state in '°0
for the available experimental data at E =75 MeV
(Ref. 7) and at E , =104 MeV (Ref. 12). The op-
tical model parameters'? used were the same for
both energies and are listed in Table I. Here we
assumed SRy = B;R,. The results of the calcula-
tions are shown in Fig. 2 and they are seen to fit
the data at both energies rather well. Both fits
were obtained with the same coupling parameter
Br =0.045 corresponding to an energy weighted
sum rule of ~4.2%. This is about half the value
obtained by Deal® from the analysis of the electron
scattering data to the same state. Such a discrep-
ancy between B(E)) values obtained from inelastic
electron and hadron scattering is well known® 1
for light nuclei, and has been observed for various
multipolarities A.

As another test of this collective model for the
excitation of isoscalar dipole states, we have per-
formed DWBA calculations for the newly proposed
candidate of the HEDR in 2®Pb at E,=21.3 MeV,
observed?® in inelastic « scattering at E ,=172
MeV. The optical potential used in this calcula-
tion was obtained’® from optical model analysis of
elastic a scattering at E ,=139 MeV and is listed
in Table I. Here again BzR;=B;R, was assumed.
The results of the calculations with the collective
L =1 form factor are shown in Fig. 3 (solid
curve). They are seen to give a good fit to the
data. The coupling parameter needed to fit the
absolute cross section is Bz =0.036, corresponding
to 130% of the EWSR. This is in agreement with
the result obtained in Ref. 8 with a different tran-
sition density. We have also performed a DWBA
calculation for L =3 with the usual collective form
factor for L= 2; namely RdU,/dr. This is shown
as dashed line in Fig. 3. Except for two points
around 10°, the L =3 curve gives a reasonable fit
to the data. The largest difference between L=1
and L = 3 predictions is in the region of around 4°,
where the L =1 DWBA curve goes through a local
minimum while the L =3 curve goes through a
local maximum. While an L =1 assignment for
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TABLE I. Parameters of the optical model potentials of Woods-Saxon form used in the

DWBA analysis; R=7A1/3,

|4 7R agr 7y ar 7
Nucleus (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) Ref.
Ble} — 88.64 1.457 0.693 -14.37  1.917 0.395 1.3 12
208pp, -155, 1.282 0.677 -23.26  1.478 0.733 1.4 13

the structure at E,=21.3 MeV is rather tempting,
it would certainly be of great importance to mea-
sure inelastic cross sections in the region of 4°,
which would make a definite assignment possible.
Historically, this reminds one of the situation'* s
of the monopole resonance in ?®Pb where a definite
assignment of the L =0 character could only be at-
tained!® from a forward angles measurement,

IV. CONCLUSION

In this paper we have derived the energy
weighted sum rule and the collective form factor
for the excitation of isoscalar dipole resonances.
This form factor was used in DWBA calculations
for the 17, 7.12 MeV state in '°0 and the newly
proposed HEDR in 2®Pb. In both cases the fits to
the data were rather good, with the percentages
of the isoscalar dipole EWSR exhausted by the
7.12 MeV level in '°0O to be 4.2% and the 21.3 MeV
bump in 2%Pb to be 130%. It is further suggested
that a definite assignment of L =1 to the 21.3 MeV
structure in 2%Pb depends strongly on the mea-
surement of the forward angles.

This work has been performed as part of the
research program of the Stichting voor Funda-
menteel Onderzoek der Materie (FOM) with finan-
cial support from the Nederlandse Organisatie
voor Zuiver-Wetenschappelijk Onderzoek.
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FIG. 2. Results of DWBA calculations using the collec-
tive form factor (see text) are drawn (solid curves) to
fit the data from '*0(a, o’)!%0 at E, =175 MeV (Ref. 7)
and E,=104 MeV (Ref. 12).

FIG. 3. Results of DWBA calculations using the L=1
collective form factor (solid lines) and the L =3 collec-
tive form factor (dashed lines) are drawn to fit the data
to the proposed candidate of the HEDR observed (Ref.
8) in inelastic o scattering from *®Ppb at E, =172 MeV.
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APPENDIX

In this appendix an expression for the isoscalar
dipole transition density will be derived. This
derivation is based upon a generalization of the
method used for other transition multipoles (x> 2).
For completeness we briefly summarize the main
steps:

(i) Define the form factor operator

F@)=7 T exp(-id-F,). (A1)

(ii) Assume that F(4G) commutes with the poten-
tial energy part of the Hamiltonian to derive the
operator equation

[[F({h) H], F*((h)] A (h qu(Elz —?h) , (A2)

(iii) Take the expectation value of Eq. (A2) with
respect to the nuclear ground state with J=0 and
insert a complete set of intermediate states on
the left hand side.

(iv) Integrate both sides of the resulting equation
over [d(cos6)Y(6), where 6 is the angle between
q, to q;, to project out a definite multipolarity x.

(v) Take the long wavelength limit for g,—~ 0.

The result can be expressed as

S~ BP0 = (- g g () Fula,

dq
(A3)

where F, (q) is the elastic form factor, and the
multipole form factor

FO@=3 2 iar) () (a4)

has been expanded in terms of (gr)™:

A
Fm(")=(2>\f1)! 72
1 A+2

. S L3} .o
s nen Lt

(A5)
J

where

Z(E Eo)F”)(qx)Fm(‘Iz)*‘ n? 492 [()\+1)F""”(q1)}7‘

2mA 2x+1

n? 9.9,

=2mA 41@x+1) <0| Z A+ D (@7:)inn(@r:) + Maoi (4073500 (g27)
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QM =13 rivi#) (A6a)
i
and
PM =13 vV, (A6b)
i

(vi) With the assumption that one single state »
exhausts all the multipole strength, Eq. (A3) leads
to the well known result

A-1

(@)~ (L .
FR@~0*(og) Fal@, 1252 (A7)

The monopole (A =0) and dipole (A=1) cases re-
quire a more careful treatment. For the case of
A=0, the leading transition operator (for g—0) is
P(® rather than @, and Eq. (A3) is to be re-
placed by
(B, -EQF (P g lr@.  (a8)
n 0 no On 8m1T dq el *

The case of A=1 is more complicated, since the
leading order contribution 23, j,(¢7,)Y,(#;,)~ qR,
i.e., is proportional to the center of mass coor-
dinate and therefore would give a completely
spurious contribution if used with wave functions
that are not translation invariant,

A correct treatment requires the use of the
transition operator defined in terms of intrinsic
coordinates ;=7 - R,

F(&)=;i z:e"a""i = ¢ RF(@). (A9)

The equivalent expression of Eq. (A2) for F(q) can
easily be obtained

([F@,H], F*@&,)]

:?:1 4, - G[F@, - Q) - F(@)F(G,)]. (A10)

Again taking the expectation value of (A10) with
respect to a J=0 ground state, and making a
multipole decomposition, yields

:';‘\)'1)((12) +AF), 1((IL)F (qz)]

o>. (A1)

For x=1 and g,~ 0 the leading order transition operator is P ™

- - h? dl d
Y (E,-E)FP (9P = ~16m7 <3q

+
dqqdq " dq

VPl + g 0|40 FiR0) - SPFIR(@)]0).

(A12)

Although the second term on the right-hand side of Eq. (A12) might appear to be a 1/A correction, the
monopole contribution ( P F(®) in fact goes like A since there is a diagonal contribution
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(0| POF®|0y=1 2<o\ri2!o><olﬁ<0>(q)|o>+§;<o\i>:,g)ﬁ,,o(q)|o>, (A13)
i n¥#¥0

and one can write

d\ =
5—+ 3(r?)g+teq®—
st s great L)), (a14)
where the coefficient of the correction term ¢ can be estimated by applying the sum rules Eq. (A3) (for
A=2) and Eq. (A8) (for A=0) and assuming that all the isoscalar quadrupole and monopole strengths are
exhausted by the respective quadrupole and monopole giant resonances (see Ref. 9). In this case we obtain

4 5\ n?
=—4+—}) —
€ (Ez ) 3mA’ (A15)
where E, and E, are the excitation energies of the giant quadrupole and monopole resonances, respec-
tively.
The (once-integrated) isoscalar dipole sum rule in » space is obtained by Fourier transforming Eq. (A14):

( dd 74 dd)] Po(MY (7, (A16)

I d1d . d
2B B R @P L =g (3

Z(E —Eg)PLpth) = - f [3 2 d+101'—-5-(72>

where p,(r) is the ground state distribution and p}’ is the isoscalar dipole transition density. Note that
Eq. (A16) agrees with the result of Ref. 9 except for a crucial (-) sign for the third term which ensures

that [ pit)(v)r3dr=0, as is required by translational invariance.
The static energy weighted sum rule is obtained from Eq. (Al4) in the limit of g— 0:

S (B, -ENBYP=

- v ) - 10e(r?)). (A17)
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