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Collective bands in doubly-even Sn nuclei: Energy spectra and electromagnetic decay properties
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Starting from a simplified description, treating proton two-particle two-hole (2p-2h) excitations coupled with

spherical quadrupole vibrations in interaction with the low-lying quadrupole vibrational states in doubly-even'" '"Sn nuclei, we are able to account for the regular dJ = 2 band structure on top of excited J = 0+ states.

Energy spectra as well as E2 and EO decay properties are calculated and are extensively compared with recent
experimental data.

NUCLEAR STRUCTURE Proton 2p-2h-core coupling calculations, collective
bands in Sn; energy spectra, E2 and EO transitions.

I. INTRODUCTION

The structure of doubly-even Sn nuclei is gen-
erally described in terms of neutron excitations,
assuming an inert Z= 50,Pl = 50 core. In the BCS
approach, ' using neutron two-quasiparticle cal-
culations, the experimental data can be described
rather well.

Different modes of excitation can, however, be
distinguished in the neighboring In (Ref 2-5) and
Sb (Ref. 6-8) isotopes. In order to account for all
low-lying levels in these odd-mass nu'clei, one
has to introduce proton particle-hole excitations
through the Z = 50 closed proton core in order to
account for the observed band structure, built on
top of the J'=-,"and &' levels in In and Sb, re-
spectively. Starting from a vibrational picture,
the explicit treatment of 2h-1p (Ref. 5) and 2p-1h
(Ref. 7}configurations, coupled to quadrupole
vibrations of Sn nuclei, is necessary. Recently,
experimental evidence for the observation of ex-
cited J'= 0' states in doubly-even Sn (Refs. 9, 10}
and Cd (Ref. 11}nuclei became available. These
levels are strongly excited via the ('He, n) two-

proton transfer, "thus suggesting the importance
of proton two-particle two-hole (2p-2h) configura-
tions.

Therefore, we have constructed a simplified
model taking into account both pure quadrupole
vibrational excitations of doubly-even nuclei as
well as proton 2p-2h configurations coupled with
quadrupole vibrational excitations. The nuclear
Hamiltonian, the nuclear wave functions, the pa-
rameters used, and the approximations carried
out are discussed in Sec. I. In Sec. II, the energy
spectra for "' '"Sn are compared with experi-
ment, and also electromagnetic E2 and EO decay
properties are extensively discussed in view of
the recent experimental data.

II. PROTON TWO-PARTICLE TWO-HOLE
(2p-2h) EXCITATIONS

A. Hamiltonian and wave functions

A general Hamiltonian, describing an interacting
system of boson and fermion degrees of freedom,
can be written as

i/2
H= b„„b„„(K~„+~)+ c~ c — (P(u„(a(y„~P}[b,„+(-I)"b„,]c c~+~Q'U, q~c c~c6c„+y

oero

(2 1)

where the first and second term describe the un-
perturbed energy of the boson and fermion sys-
tems, respectively. Here S(d„denotes the ~-pole
phonon energy and c, the single-particle(-hole)
energy. 'The third term describes the interacting
boson-fermion Hamiltonian with („ as the coupling
strength (for its definition, see Refs. 12 and 14),
whereas the fourth term describes the residual

I

fermion interaction. Also, the Coulomb contribu-
tion for proton residual interactions is explicitly
included.

Having in mind a possible description of collec-
tive bands in even-even Sn nuclei, resulting from
the explicit interaction of proton 2p-2h excitations
through the Z = 50 closed proton shell with the
quadrupole vibrations of the underlying core nu-
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cleus, the nuclear wave function can be expanded
as

~&;JM&=pc'(NR& j)~NR; JM&

H'
i
k; IM) = (u(I, k)

i
k IM ),

with

(2.3)

~

k;IM)=g a'((h, h, )J„,NR;I)
~

(h, h )J„SNR;IM),

+ gd'((p, p, )J,[(h,h, )J„,NR]I;J)

x
~
(p,p~) J [(h,h~) jhS NR]1;JM),

(2.2}

where N(R) denotes the number (angular momen-
tum) of the quadrupole vibrational excitations (we

only consider X= 2) and p, , p~(h„h~) the proton par-
ticle(-hole) configurations, respectively i.e. ,
1g7/~, 2ds/~, 2d3/~, ~/~, 1$zx/a and g9/2
2p, &, ', 2p, &, ', lf, &,

'. Whenever summation in-
dices are not written below the summation symbol
[see Eq. (2.2)], we imply summation over quantum
numbers that occur in both the expansion coeffi-
cients (c', d') and the basis configurations

~

except the total angular momentum, also appear-
ing in the total wave function, at the left hand side
of the equal sign. The expansion coefficients
(c', d') are obtained by diagonalizing the nuclear
Hamiltonian (2.1) within the basis discussed above.
Already from Eq. (2.2}, one observes that parti-
cular states in doubly-even Sn nuclei will be des-
cribed mainly as pure quadrupole phonon excita-
tions ~NR; JM) (d' = 0), whereas other levels will
mainly contain proton 2p-2h-core coupled con-
figurations (c' = 0).

Instead of carrying out the full calculation im-
mediately, we proceed in different steps, in order
to obtain better insight in the final results.

(i) ln a first step, only a particular part of the
nuclear Hamiltonian is diagonalized (i.e. , the
Hamiltonian H', only containing the single-hole
energy, the collective quadrupole vibrations of
the Sn nuclei, the hole-core, and the hole-hole
residual interactions) in order to obtain a descrip-
tion of the Cd eigenstates. Thereby, we solve the
secular equation

build more complicated configurations by subse-
quently coupling with proton 2p configurations.
The lowest energy eigenvalue cu(0', 1) describes
the pairing gain in the proton 2h-Sn core system
due to the pure 2h pairing as well as due to the
residual 2h-core interaction. 'This energy value
can also be obtained from known experimental
proton separation energies" via the relation

(u(0+, 1)=8~(Z = 50) -S~ (Z =49), (2.5)

(ii) ln a second step, we couple the proton 2p
configurations with the eigenfunctions (2.4) and ob-
tain as a new basis the collective quadrupole vi-
brational configurations ~NR; JM) and the proton
2p-Cd coupled configurations

~ (p~p~)J&S Ik; JM&.
The wave function (2.2) can therefore be trans-
formed into the more transparent form

~f;JM&=g &'(NR; J) ~NR; JM)

+ Q l'((p, p, )J»lk& J)l(p~p~) J,SIk;JM) .

(2 6)

This wave function is obtained by solving the sec-
ular equation corresponding with the full Hamil-
tonian (2.1}as

N, k &d,5»,6», L(NR;(p,'p,')J,', I'k'; J)

L((p,p, )J„Ik;¹R'&J) [&., +c, + ~(I& k }]6«&,o.~

+K((p,p, )J &1k;(p,'p~&) J',I'k', J)

(2.7)

where the L- and K-matrix elements are defined
in Appendix A. Here, we also use the shorthand
notation {0]for all quantum numbers {p„p„j,l, k)I.
Since many (+200-300) proton 2p-Cd core-coupled
configurations constitute the second part of the
wave function (2.6), a still more transparent rep-
resentation for describing the nuclear wave func-
tion can be obtained. Diagonalizing within the
lower right part of the energy matrix (2.7) (defined
as the 3.'matrix}, containing only interactions
within the proton 2p-Cd core configurations, bands
with M= 2 spin sequence are obtained. The par-
ticular wave functions are obtained as

(2.4)

where &u(I, k) gives the energy spectrum (describ-
ing the Cd nuclei) and a' gives the expansion co-
efficients. Such calculations have been carried
out before in describing doubly-even Cd nuclei. ""
In these references, full details on the formalism
can be found. In our calculations, the wave func-
tions (2.4) only serve as an intermediate step to

~

rot(i); JM) =g r'((p, p, )J„Ik;j)
~
(p,p, )J,SIk;JM),

(2.8)

for i = 1,2, . . .N, where N is the dimension of the
2p-Cd core configuration space and rot stands for
rotational, due to the apparent similarities with
collective, rotational energy spectra for the low-
est bands (Fig. 1). One should, however, be
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cautious in interpreting the label i for classifying
energy eigenvalues, obtained from

X~ rot(i); JM) = E'(rot;Z)
~

rot(i); JM) . (2.9)

Only for the yrast sequence, i.e. , i = 1, does a
one-to-one correspondence between the value i
and the classification of eigenstates

~

rot(i); JM)
into a band exist. Here, a band is defined as a
set of levels, strongly connected via the E2 tran-
sition operator [10-30Weisskopf units (W.u.)].
In Fig. 1, one can see that the level with wave
function ~rot(2);0) and eigenvalue E'(rot;0) is
classified into the fourth band. Moreover, only
for the lowest few levels (is 5) are bands well
developed and separated. For all other levels,
the notation rot is just a convenient tool to class-
ify the eigenvalues within the 2p-Cd core coupled
subspace. In the following discussions (Secs. IIB
and III) we will use "rotational-like configuration,
excitation, . . ." for the excitations, corresponding
with the lowest bands obtained within the 2p-Cd
core coupled subspace.

Finally, the wave function of Eq. (2.6) becomes

~s;JM)= gc'(NR;J) ~NR;JM)

+ gs'[rot(j)]
~

rot( j);4M) . (2.10)

" Sn
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FIG. 1. For the particular nucleus can, we show the
unperturbed energies for the quadrupole vibrational con-
figurations N&Kw2 as well as the energies E» (rot; J)
obtained by solving Eq. (2.9) within the 2p-Cd core cou-
pled configuration space (see also Sec. IIB) for the
four lowest bands.

In this representation, the possible mixing of low-
lying quadrupole vibrations with other collective
degrees of freedom (rotational-like) is clearly ex-
pressed in terms of the amplitudes c' and s'.

~k;IM) =
) (Ig, /, )„'SNR;IM}5„ (2.11)

which only holds approximately"'" (the rank
number k is simply related with the number of
quadrupole phonons N) Calculatin. g for a limited

B. Parameters and approximations

In the calculations carried out for the '" "'Sn
nuclei, where most evidence for rotational-like
collective bands exists, the following parameters
have been used.

(i) For the nucleon-nucleon interaction V z„~, we
used a surface delta interaction (SDI) force with
strength fixed at G= 25/A MeV."

(ii) For the Coulomb interaction, only the direct
term is considered, which becomes for the dia-
gonal proton p-h configurations almost state in-
dependent and equal to -0.25 MeV. The nondia-
gonal term is generally smal). ." The importance
of the attractive Coulomb interaction for proton
2p-2h excitations was already pointed out earlier
by Flynn and Kunz, since the nuclear residual
p-h matrix elements give only small contribu-
tions (-0.1 MeV to 0.1 MeV).

(iii) The hole-Sn core and particle&d core
coupling strengths $, have been obtained via a
harmonic approximation' from known B(E2;2;- 0;)
values in Sn and Cd, respectively. " They are
given in Table I, as well as the quadrupole phonon
energy II&@„ taken as the excitation energy E,(2;)
of the first excited J'= 2' state.

(iv) Unperturbed values for the lowest proton
2p-2h excitations, i.e. , 2[a~ (c,« for"'Sn}

], are taken from proton separation ener-
r9/a '

gies as S~(Z = 50) -S~ (Z = 51). The relative single-
particle (-hole) energies, obtained from a recent
study of odd-mass In nuclei, ""are also used here
(see Table I}.

(v) The lowest eigenvalue ~(0', 1), describing
the binding energy of Cd with respect to the un-
perturbed proton 2h-Sn core system, was obtained
from experimental proton separation energies
[Eq. (2.5)] (see also Table I).

In order to carry out the calculations discussed
above, approximations can eventually be per-
formed. Thereby, numerical efforts are simpli-
fied without loss of the general physics content.

(i) In the first term of (A4), when calculating the
contribution of H, „,we have the possibility of
approximating the Cd eigenstates ~k;IM} in terms
of pure quadrupole collective vibrational excita-
tions. Thereby, we impose the relation
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TABLE I. The parameters used in the present calculation (in Mev). Phonon energy keg&,

coupling strength $z, single-hole (g„, defined as positive values, relative to the least bound

1g9/~ single-hole level), and single-particle energies (e&, relative to either the 1gY/z or 2ds/&
orbital). Also, the lowest unperturbed proton 2p-2h energy 2(6y —Eb) and the binding energy
in the 2h-Sn core coupled system co(0', 1) (see also Sec. IIB) are given.

112 114 116 118

Ro~ (Sn)

hco~ (Cd)

$g (Sn)

h& (Cd)

2pi/2

~2@3/ p

i~S/a

g

+5/2

&3/ Z

1.250

0.657

2.3

5.9

0.8

1.4
2.1

0.2

2.6

2.95

2.10

8.93 ~ 0.08

2.19 + 0.01

1.300

0.617

2.0

6.7

0.7

1.3
2.1

0.2

2.6

2.95

2.10

9.99+0.04

2.39+0.01

1.290

0.558

2.0

7.5

0.6

1.3
2.0

0.5

2.6

2.95

2.10

9.72 + 0.05

2.47 + 0.02

1.225

0.514

2.0

8.5

0.6

1.3
2.0

0.75

2.6

2.95

2.10

9.76+0.04

2.46 + 0.02

number of E matrix elements the full contribution
of H, „„,one finds matrix elements which are on
the average 10-30k larger compared with calcula. —

tions imposing the constraint of only considering
(ig, &,)„'proton 2h configurations. In these calcula-
tions, we used the parameters $, and h &, as referred
to the Sn nuclei, since ~NR; JM) denotes the harmonic
quadrupole vibrations of these nuclei. In the light
of the results obtained above, we can replace the
2p-Cd core calculation by a macroscopic calcula-
tion, approximating the ~k;IM) Cd eigenstates to

pure harmonic quadrupole vibrations. Thereby we
take the parameters $, and h&, immediately from
the Cd nuclei. 'This replacement can be carried
out since the strength of the matrix element is
determined by the product )P&u„which is not
much different in going from Sn to Cd nuclei (in
going from Sn to Cd, 8, is lowered by a factor of
2 to 3, whereas $, grows by a factor of 3 to 4;
see also Table I). Finally, in the actual calcula-
tions, use was made of this simplifed K matrix
element, which becomes

K= ((pp, )J„NR;JMi V„+H, „„i(p,'p,')J,', N'R', JM)c~

+ ((p,p~) J (Ig9( )0, ;J M
i
V ~+ Vc,„,

~
(p,'p~) J'(Ig9(~)0, ', J'M')5~ ~.5~ ~, , (2.12)

where the index Cd means reference for all collec-
tive quantities to the Cd nucleus.

(ii) In calculating the L matrix elements how

ever, the approximation of taking into account
only (Ig», )o. ~ proton 2h configurations in the ex-
pansion of Cd eigenstates

i
k;IM) turns out not to

be valid. Considering the most important proton
2h contributions only [i.e. , pair configurations
(k)~ ., '], the L matrix element (A2) becomes

L= — a'( h, ',NR. R) p '0 V„h '0
(2.13)

I

where the summation index h goes over 1g,/„
2P, &„2p,&„and 1f»,. Explicit calculation for
the lowest quadrupole phonon states INR; JM)
were carried out. 'The results are independent of
the particular quantum numbers p (using an SDI
interaction) and are presented in Table II. Here
one can see in detail that with growing angular
momentum R the average coupling strength be-
tween the collective quadrupole vibrations in Sn
and the 2p-Cd core coupled configurations is low-
ering. One also observes that the noricollective
states ~k;IM) in Cd (i.e. , J';=0;,8;,8;,„
10», „... ) couple only weakly with the quadru-
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TABLE II. Calculated I. matrix elements, according to Eq. (2.13). The numbers are ex-
pressed in units of ((p)2; 0~ VQ (1gq~2); 0).

0+
1

Q+i

p+i

0'
2

Q+
2

p+
2

p+
3

0+
3

Q+
3

Q+
4

Q+
4

Q+
4

2'i
2'i
2'i
2+

2

2'
2

2'
2

2'
3

2'
3

0, 0

2, 0

3, 0

0, 0

2, 0

0, 0

2, 0

3, 0

0, 0

2, 0

3, 0

1j 2

2 j 2

3.2

1.2

3j 2

g, k) (N jR) &(P)0', fk; Rj VgNR)

+ 1.10

+ 0.28

+ 0.10

-0.25

-0.10

+ 0.62

-0.85

+ 0.08

+ 0.08

+ 0.04

+ 0.50

-Q.gp

-0.15

+ 0.20

+ 0.65

+ 0.05

+ 0.50

-0.45

g, k)

2'
3

2'
4

2'
4

2'
4

2'
5

2'
5

4+i

4+i

4+
2

4+
2

4+
3

4+
3

4+
4

6'i
6'

2

8+
4

105

126

(N, R)

3 2

1,2

2 j 2

3 j 2

2 j 2

2, 4

3, 4

2, 4

2, 4

3, 4

2, 4

3, 6

3, 6

4, 8

5, 10

6, 12

((p)0', Ik; RlvgNR)

+ 0.12

-0.17

-0.50

+ 0.05

+ 0.12

-0.30

0.20

-0.65

-0.65

-0.15

-0.20

+ 0.40

-0.10

-0.05

-0.15

-0.50

+ 0.30

+ 0.30

+ 0.20

pole vibrational states ~NR; JM) of Sn. Therefore,
and since we have in mind a description of strongly
collective bands in doubly-even Sn nuclei, we have
neglected such noncollective states in our calcula-
tions (as we also neglected the explicit introduc-
tion of neutron 2qp configurations). Finally, in
the actual calculations, we used L matrix ele-
ments as calculated in Eq. (2.13).

Before entering into the results of these calcu-
lations for "' '"Sn, we first show the influence
of the different terms of the Hamiltonian of Eq.
(2.1) in a detailed way, on the J'= 0' levels for
"'Sn (see Figs. 2 and 3). In Fig. 2, for the lowest
four 0'= 0' levels, the energy eigenvalues from
the diagonalization described in Eq. (2.9) are
shown as a function of the particle-Cd core coup-
ling strength $, . In the first column of levels, the
unperturbed value OE,„=—(c~,+ a~, —2&~ &,}+&u(0', 1)

is given. In the next two columns (still for $,=0),
the contribution of, respectively, the diagonal and
nondiagonal pairing and particle-hole contributions
(nuclear+ Coulomb) to the K matrix element are
drawn [see also Eqs. (2.12) and (A2)]. Here, one
can see the importance of the particle-Cd core
interaction in lowering the relevant states
~rot(i);JM) near the unperturbed one-, two-, and
three-quadrupole phonon states of the Sn core it-
self (dashed horizontal lines). In Fig. 3, the L
matrix elements are incorporated, leading to
final spectra, to be discussed in Sec. III. The
main character of a particular level in Fig. 3 can
be easily followed as a function of the coupling
strength. The coupling strength )„as obtained
from B(E2;2;—0;}in the case of "'Sn('"Cd), be-
comes (,=7.5. From these figures, one can see
in a clear way how specific correlations among the
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&0.0

116S~

J "-O' LEVELS

proton 2p-2h pairs build up, via interaction with
the underlying core quadrupole vibrations, and
can create low-lying (E,= 2.0 MeV) J'= 0' levels.

III. RESULTS FOR ~ ~~eSn

A. Energy spectra

c9
lK
UJz
UJ

X
O

C3X
LLj

0.0—

For the most documented case, "'Sn, we show
in Fig. 4 the calculated level schemes, obtained
for two slightly different $, values and also show
the experimental data of the Amsterdam
group. "'"" In the experimental level scheme
of "'Sn, as well as for the other doubly-even Sn
nuclei, we only show part of the total level
scheme" since one cannot expect, by this simple
model, to explain also all the explicit neutron

I L I L I, l L I

0 2 4 6 8 10

FIG. 2. The variation of the lowest four J~=O+ levels
in Sn tsee Eq. (2.9)] as a function of the 2p-Cd core
coupling strength g~ (with the L matrix elements set
equal to zero). The first column shows the unperturbed
proton 2p-2h energies LhL~b (see Sec. IIB). In the next
two columns (still for (~ =0), contributions of the diag-
onal and nondiagonal pairing and particle-hole interac-
tions, respectively, to the K matrix element are drawn

[Eq. (2.12)] . The unperturbed, pure quadrupole vibra-
tional configurations in Sn are shown as dashed lines.
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FIG. 3. Same as Fig. 2, but including the L matrix
elements of Eq. (2.13). Moreover, the main character
of a particular level is indicated by the structure of the
line (full line: 2p-Cd configuration; dashed line: quad-
rupole vibration in Sn) to guide the eye.

FIG. 4. Comparison of experimental (Refs. 27-30) and
calculated [(I) and (II) correspond with (~ =7.5 and 8.0,
respectively] level schemes for 6Sn. The thick lines
indicate levels which contain most of the 2p-Cd core
coupled configuration space. Experimentally, only part
of the levels are drawn (neglect of explicit neutron 2qp
levels; see Ref. 30).
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2qp degrees of freedom. Moreover, for the theo-
retical results, only the lowest bands are shown.
More complete results (energies, wave function,
etc.) can be obtained on request from the authors.
As can be seen, the experimentally observed ro-
tational-like band is well described starting from
the proton 2p-Cd core configurations, interacting
by means of the strong residual particle-Cd core
coupling as well as through mixing with the under-
lying (idealized) quadrupole vibrational excitations
of the Sn core. The wave functions corresponding
to the lowest J'= 0', 2', 4' and 6' levels (for $,
= 7.5} are given in Table III. Here, we use the ex-
pansion of the wave function as explained in Eq.
(2.10) since within this particular representation,
the smallest number of configurations is needed to
express most of the total wave function. Inspec-
ting these wave functions, it becomes clear that
one cannot talk of coexistence between two modes
of motion —vibrational and rotational-like —but that
rather strong mixing for the J,'= OQ 3 2Q 3 4] Q

levels results. For these particular levels, it is
difficult to make a clear-cut difference judging
on their most important amplitude. Later on, in
calculating the E2 and EO decay properties, pe-
culiar experimental data will show up that ask for
such important admixtures in the wave functions,
corresponding with both the J', = 0; and 0, levels.

One can therefore, in the light of the present cal-
culations and the recent experimental data" "
on '"Sn, conclude that a more complicated situa-
tion than just coexistence of vibrational, neutron
2qp, and rotational-like degrees of freedom
exists.

In Fig. 5 we show the results obtained for""""Sn, respectively. Again, the experimen-
tal data result from the extensive work of the
Amsterdam group. "" In these figures, besides
the full diagonalization, we show the unperturbed
energies corresponding to harmonic quadrupole
vibrations and the energy spectrum of the lowest
band within the 2p-Cd core coupled states [see
Eqs. (2.8) and (2.9)]. In both the experimental
and theoretical results, we indicate with a thick
line the levels which contain most of the proton
2p-Cd core configuration space. As already point-
ed out before, especially for the J',. =0, 3 2 3,
and 4» levels, this separation is not always very
clear cut. Also, one observes that in most Sn
nuclei, three (four in "~Sn) low-lying J'= 4' levels
result, which probably can be classified as ad-
mixtures of neutron 2qp, vibrational, and proton
2p-Cd core coupled configurations. Due to the
very schematic structure of our model space,
oversimplifications are introduced such that de-
tailed comparison for all low spin (J' &4'} states

TABLE III. Wave functions for the J &= Of p 3 4 2f g 3g 4f g 3 and 6& ~ levels in "Sn for a
coupling strength of $o= 7.5. The wave function is expressed in the representation given by
Eq. (2.10).

~ Of) = 0.94
~ 00;0) + 0.25 ~rot(1);0) —0.07

~
rot(2);0)

)
0&') = 0.17 ( 00;0) —0.61 [ 20;0) —0.74 ) rot(1);0)

I03) =-0.15
I
00 0) —0.68 I20;0) —0.13 I30 0)+ 0.61 Irot(1);0)+ 0.08 Irot(2) ~ 0)

104&= 0 11 I20;0& —0.81130;0&—O 12I rot(1);0) —0.201rot(2);0)

I
2f)= 0.89112'2) —0.02

I 2292) + 0-02
I 3292) —0 38

I rot(2) 2) —0 12
I rot(2) 2)

)2&)=-0.20[12;2)—0.65[22;2)+ 0.05[32;2) —0.60]rot(1);2)+ 0.36[rot(2);2)

+ 0.09
I rot(3);2)

) 23 )=-0.30
( 12;2)+ 0.53 ( 22;2) + 0.13

~
32;2) —0.69

~
rot(1);2) —0.29

) rot(2 );2)

~

2') =-0.08(12;2)—0.38)22; 2)+ 0.15[32;2)+0.06)rot(1);2) —0.84(rot(2);2)

(4f) -0.63(24;4=) + 0.03 [34;4)—0.75 )rot(1);4) + 0.17 [rot(2);4)

[ 4f)=-0.67 (24;4) —0.06
( 34;4) + 0.65 [ rot(1);4) + 0.29 [ rot(2);4)

]43)= -0.28 [24;4) + 0.16 ]34;4)+ 0.08 [rot(1);4) —0.91 [rot(2);4)

I 6f)= -0.05
I 36l6)+ 0.99 Irot(1);6)

I 6f) = -0 37 I 36'6) + 0.03
I rot(1);6) —0.93

I rot(2);6)

I 63)=-0.63 I 36;6)+0 30 I rot(1);6)
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FIG. 5. Comparison of experimental (Refs. 27-30) and calculated level schemes for (a) 2Sn, (b) 4Sn, and (c) Sn.
Thick lines indicate levels containing most of the 2p-Cd core coupled configuration space. Besides the full diagonali-
zation [Eq. (2.7)], we also show the unperturbed energies corresponding with harmonic quadrupole vibrations and with
the lowest band E (rot; J) [see Eq. (2.9)] with in the 2p-Cd core coupled configuration space.

is not possible; however, the main feature studied
here —the description of collective rotational-like
bands —seems quite possible.

B. E2 and EO decay properties

Extra tests on the structure of the wave func-
tions, as obtained here, can be carried out by
calculating electromagnetic decay properties.
Since extensive studies on E2 and EO decay have
been carried out recently, "~' we will concentrate

on these particular interesting decay modes.
The standard E2 transition operator, containing

both single-particle [5R(E2)„]and collective vi-
brational contributions [3R(E2)»], has been used
throughout. '" As the proton effective charge, we
use e~ '= 1.5e and the experimental B(E2;2;—0;)
values for Sn and Cd nuclei determine the collec-
tive transition strength. Working in the basis of
Eq. (2.6), one gets as the reduced E2 matrix ele-
ment

(J~IIsg(E2)IIJ, ) = Q c'(ÃIt; J, )c'(N'8';Jg)(N'It'Ilsg(E2)„„IIX&)
%&s ~y+i

l'((p p )J,Ik;J ) l ((p p )I, I'k'; J~g~ J,(-1}'
{O~eOp j

c7 tj/ I
&& I

2
(-1)"&(p'p.'P,'IIsg(E2)..II (pipaP. )hx 5aa

i jl

+ (-1)sD(p,'p,', p,p„J,)[(1+5„y,}(1+5,;,;}]''(I k II&E2)„g,ilIk) ~, (&.1)
S
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Here, D(ab, cd, J) is a notation for 6 bM
—(-l)~ o+ ~& ~ 6~ 6„. Furthermore, the single-
particle reduced Z2 matrix element is calculated
between normalized, antisymmetrized 2p states
and we use the notation (O, , O~} for summation
over all quantum numbers occuring in the expan-
sion coefficients l and l~. In line with approxi-
mation (i), discussed in Sec. II, to simplify the
states l k; IM) in Cd by harmonic quadrupole vi-
brational excitations, one can now approximate
the collective E 2 matrix elements (I'k'll K(E2)„sl( Ik)
as being defined with respect to Cd core matrix
elements. The latter assumption is very plausible
since the proton 2h system [for Sn and Cd, where
the pairing energy b.„,& &bra, (Sn)] interferes in
such a way with the collective E2 transition rate
in the Sn nucleus to induce coherence. " For '"Cd,
with an experimental reduced E2 transition pro-
bability B(E2; 2~+- 0~+) = 10.6 +0.1 e'b'x 10 ' (Ref.
23), the explicit calculation yields 9.8 e'b'x 10 '
although the B(E2; 2;—0;) value for "'Sn only
amounts to 4.3 +0.1 e'b'x10 '.

The EO operator reads """
1.0— 'Jn(EO)=Q e,r, '+kg ~a„(',

f g
(3.2)

0.0 0 0
where the collective contribution with respect to
quadruople vibrations, can be rewritten as

FIG. 5 (Continuedj.

(3.3)sr((EO) u kk&u /'(2C ) g [b, „b, „+b, „b, „+(-1)"b, „b, „+(-1)"b,', „'.,~l,

Here, we use the estimate for k = (3/4r) &«0' (Ref 37)
Moreover, the parameter )I&a,/(2C, ) is related, within a harmonic quadrupole vibrator model, with the

value B(E2; 2;—p+)p' The necessary collective matrix elements are easily calculated as

(yR isg(EO) „lNR) = (N+$)kS(o/C, ,
' (3.4)

(NR (sg(EO) u ~N 2, R) =g (NRllbtmllN-I, R')(N- I,R'llbtllN-2, R)(-l) ' (I/[2(2R+1)]}(kg~,/C, ) .
R

(3 6)

Here, ( ~ ~ ~ llbtll ~ ~ ~ ) denotes boson reduced matrix elements which are related to quadrupole boson coeffi-
cients of fractional parentage (cfp's)." They have been calculated, using the method of Sau et al. ,"
but applied for bosons. The final result for the total EO matrix element [using the exPression (2.6) for
the nuclear wave functions with the restriction of only (1g,I,),, 2h configurations] becomes

p llsg(EO)llew, ) = Q c'(NR; J,)c'(N'R'; J~)(N'R'llmt(EO)„„llNR) 6N~'bye
NvRy NyR

+ Z I'((p,p.V„Ik;~&)1'((p&p.'I,', I'k'' ~~)(2Ii + )
{Ops Oy)

x ((JJ, )-'[(p,'llsg(EO). ,ll pg -(Ig„jlsg(E0).,ll lg. I2)]
x (1~ 6 )6, 6, 6 . 6 ~ 6;,+ (R f, )-'(N"R" lion(EO)„„llN"'R~)

(3.6)
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X, (——B(EO) 0~™Oy)/B(E2) 0, 2;) . (3.8}

For a harmonic quadrupole vibrator, taking J;
=0, as the first excited 0, , two phonon state, one
easily obtains for the ratio

X~~ —P (3.9)

This X, , value, also called the spherical vibrator
value, will be mainly used as a reference value in
discussing theEOproperties of excited J'= 0'
levels in doubly-even Sn nuclei. First of all, in
discussing the results, we give in Table IV for
the l.ow-lying levels on '"Sn and for two different
$, values, calculated B(E2) values and compare
with the recent experimental data of Backlin
et al." The resulting values are given in W.u.
As already discussed in Sec. III A, a unique loca-
tion of the vibrational, neutron 2qp, and rotational-
like features of the experimental spectrum is
very difficult. Therefore we will mainly concen-
trate, in the discussion, on the J'= 0' and 2'
levels in "' '"Sn. For the J"=0+ levels, the value
of B(E2;0;-2;}is only 0.5 W.u. , which is in strik-
ing contrast to the corresponding Z2 transition
from the J,'. = 0; level [B(E2;0;- 2;) = 17 W.u.].
By inspecting the J,'. =0» and 2, wave functions
of Table II, this can qualitatively be under-
stood as an interference effect between the
vibrational and rotational-like E2 transition
amplitudes. Since ~02) and ~0s) are orthogonal
combinations of mainly two configurations, i.e.,
~20;0} and (rot(1);0}, both decaying to the one-
quadrupole phonon Jz = 2; level (mainly ~12; 2)
with an admixture of -0.4

~
rot(1); 2)), these

experimental facts can easily be understood.
Exactly the same argument will. apply in explain-
ing the particular strong 0, 0, and weak 0,
-0, EO decay rates.

The E'2 decay of the J, =2; level, which probably
is the experimental level containing most of the
rotational-like configurations, is generally well
described. Both the 2', -0; and 2', —0; E2 transi-
tion probabilities are large, ""a fact that is well
described theoretically but cannot easily be under-
stood relying on vibrational and neutron 2qp de-
grees of freedom only. In the decay of the J,'=2;

In expression (3.6), the quadrupole vibrational
states always refer to the Sn-core nucleus, be-
cause we explicitly expanded the ~h; IM) Cd core
states into its proton 2h-Sn core components
[see Eq. (2.4)], only taking into account (Ig, &,),+ '
configurations. In further discussing the B(EO)
rates, two quantities are very often used to enable
easy comparison with the experimental data '

p'= B(EO—)/e'R, ' (R, is the nuclear radius},
(3.7)

TABLE IV. Comparison of calculated [g) and QI)
correspond with a coupling strength f2= 7.5 and 8.0,
respectively' and very recent experimental B(E2) val-
ues in 8Sn (Ref. 32).

B{E2) (W.u.)
Theory

Experiment~

2f Of

22 Of

—02

03

23 0('

02

03

~ 2f

-22
02 2f

03 2f

4f -2f.
-22

23

42 2;
-22
-23

4+

~ 15.1

0.03

7.1

8.9

26.8

0.014

23.7

13.1

7.0

14.7

46.5

0.67

6.6

12.5

13

27.4

7.0

17.3

15.4

15.7

0.12

18

12.2

23

0.0007

15.7

4.1

18.1

7.9

65.8

0.99

16.1

11.3
0.3

24.5

15.8

11.3

13

0.06

26

32

0.05

0.7

&2

&3

17

0.5

23

60

&2

&0.003

017

&0.3

~ Reference 32.

level, some large deviations between theory and
experiment occur, which are probably due to a
too strong mixing of both the vibrational and rota, -
tional-like J"= 2+ configurations.

In order to locate the J =4+ level, which con-
tains the largest fraction of the rotational-like
configurations, again difficulties arise because
of large mixing. Experimentally, both the J,' = 4+,

and 4+, levels are strongly connected with the

~f 22 leve l, however, only the J,' = 4; level decays
very weakly towards the Jf = 2+, level, a fact that
cannot be reproduced theoretically. This again
points towards a somewhat too strong mixing of
the vibrational and rotational-like configurations.
Moreover, three J' = 4+ levels occur in the rele-
vant region of mixing" "and thus the neglect of
neutron 2qp configurations as well as the simplifi-
cations of only considering ~h;Itif) Cd eigenstates
that resemble quadrupole vibrational excitations
will definitely influence calculations in the model
space as used here.

In Figs. 6-8 we also show the systematic behav-
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ior of E2 reduced transition probabilities (in units
of e b'x10 '} for the J,' = P,', and 2+» levels" '
in doubly-even "' "'Sn. The systematic interfer-
ence effects for producing large B(E2;& - 2;)
and small B(E2;03-2;) is well described theoreti-
cally, although a detailed inspection still shows
discrepancies of a factor of 3 (Fig. 8). For the
weak transitions, B(E2; 2; P,') is better described
than the B(E2;2; - P,') values (Fig. I). For the
strong reduced transition probabilities (Fig. 8},
the 23 Pg transition is we 11 described but the
2; - 2," is calculated too fast (probably due to too
strong mixing between the unperturbed, low-lying
J' = 2+ configurations}.

Concentrating now in some detail on the peculiar
EO decay from the excited J,"= 0+» levels (see
Figs. 9 and 10), the dominant EO transition rate
results from the 03 - 0; transition. As also dis-
cussed by Backlin et al, "~ strong mixing of
two states with different deformation is needed
to explain these peculiar strong g0 transitions.

1.0-

l W.g.

0,)

o

2'3 0', ~

X
Cl

ID

CV
UJ

fG
0.0(—

4,

I I

114 lls
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112
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mls &20

FIG. 7. Same as Fig. 6 but forB(E2;2g 3 Of).
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3 1

Support for this interpretation also comes from a
recent measurement of the ratio B(E2; 2; - 0;)j
B(E2;2; 0,")=1.3+0.5 (Ref. 32) in "'Sn. (Theory
gives for this ratio 1.25 and O. V for $, = 7.5 and
8.0, respectively. } From this number, one was
able to deduce that = 55% of the rotational-like
configuration should be contained in the J = O',j 3
level and 45% in the J, =P; level, which is in very
good agreement with the calculated wave functions
of Table II. Thus the arguments of strong mixing,
outlined above and discussed at some length in
Ref. 31, become confirmed by our more detailed
calculations. Theoretically, one cannot fully des-
cribe the neutron number dependence of B(EO) (p')
values so well. [The theoretical B(EO; 0," 0,')

Q5—

r
1W.U.

'o»=

2, 0,
2 2}

2' 2'
3 1

X

Ql I I I I I

112 llew 116 118 120 122

MASS NUMBER (A)
FIG. 6. Comparison of theoretical and experimental

(Refs. 32, 34) 8 {E2;0+~ 3 Q+) values as a function of the
atomic mass number in doubly-even Sn nuclei (112~A
~120). The mperimenta1 points are connected with a

full line (to guide the eye) if possible, whereas the theo-
retical points are connected with dashed lines. The
Weisskopf E2 unit (1 W.u.) is also shown for comparison
(light dashed line).

0.1
lls 118 l20

MASS NUMBER (A)

FIG. S. Same as Fig. 6, but for B (E2; 2j+ g) and
B(E2; sg+ 3

—sj).
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is also large in '" "'Sn whereas, experimentally,
from "'Sn on, much lower values are obtained. ]
(See Fig. 9.) Concerning the X values, we note a
clustering of both &» and X, , around the spheri-
cal vibrator value of 0.013 (Ps„'). The experimen-
tal value for &» is much larger than the spherical
vibrator value which is also shown by the calcula-
tion (Fig. 10). Even the mass dependence is rather
well described in this particular case.

IV. CONCLUSION

10=

1.0 =

LLI
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o 01=
LLj

CO

II

X
0.01 =

I

Q ~Q
3 2

Q ~Q
0' 0+ o

2 1
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VIII
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—.)0

~ 5 C)

C4
JD

1 o
UJ

0.5

X

0.5—
—0.)

M Spher.
vibr. - 0.05value

In this study, we have tried to point out the im-
portance of proton 2p-2h excitations through the
Z= 50 closed proton shell, in order to describe
the recently observed, strong collective bands
in doubly-even "' "'Sn nuclei. Within a simple
model, containing proton 2p-2h excitations inter-
acting with quadrupole vibrational excitations of
the underlying Sn core, we were able to show how
one can generate rotational-like bands with spin
6J= 2 sequence. Although for the lower spin mern-
bers rather mixed wave functions occur, the very
regular energy spacings reminiscent of rotational
bands still exist. Moreover, E2 and EO transition

112
t l I

l)6 118 120
MASS NUMBER lA)

I

122

FIG. 10. The theoretical and experimental ref. 32)
X3 2, X2 ~, and X3 f values. Experimental points are
connected with full lines to guide the eye and theoretical
points with a dashed line. Also the spherical vibrator
value for X[=P2; see also Eq. (3.9)] is indicated with a
light full line.

probabilities were calculated and extensively com-
pared with the recent experimental data. When
concentrating on the lower J' = 0' and 2+ levels,
some very peculiar features [large ratio of B(E2;
0;-2;)/B(E2; 0;-2;) and strong B(SO; 0+, -0,')
transition rate) could be explained via constructive
and destructive interference of the two basic con-
figurations contained in the model space: quadru-
pole vibrational and 2p-Cd core coupled rotational-
like excitations. In the detailed comparison be-
tween experiment and theory, substantial devia-
tions still occur.

This is probably due to the explicit neglect of
neutron 2qp configurations and the restriction of
Cd eigenstates (k; IM) to only pure quadrupole
vibrational states, deleting all the noncollective
ones. Also, in the particular cases of J"= 2; 3,
4+», too strong mixing of vibrational and rotation-
al-like configurations occurs. Besides these
shortcomings, we can summarize that the main
features of doubly-even Sn nuclei could find a
simple explanation.

0.1—
Q05-

—.0.01
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FIG. 9. The theoretical and experimental (Ref. 32)
B (EO) (and p ) values as a function of atomic mass num-
ber for doubly-even Sn nuclei $12 &A & 120). Theoret-
ical points are connected with a dashed line. The spher-
ical vibrator value is also shown fight full line).
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APPENDIX

The I, matrix element, as used in the secular Eq. (2. 'l), defined as

L((pgp2)Zp, I&; N'R';7) —= ((p~p, )Jp, I&; JM)H(NR'; JM),

becomes in explicit form

I =- Z (-1) p'"' (I/R)a ((hp, )Zh, NR;I)(p, p„'ZpMp~Vpp~hp„'7+p) 5~ ~ 5„„5„„..
(o)

j 2 & & 1 2& p p pp 1 2& p dj J NN gR

Here, the summation indices (pg„h „J~,N, R) are denoted in shorthand notation as IO).
The K matrix element, defined as

&((P~P,)lp, Ik; (P', P', )Jp, I'&'; J)= ((P,P,)Jp, I&; JM III I(pgp') Jp, I'O'; JM),

becomes in explicit form

& = ((p,p,)J'p, I&;JM l&pp +II~',om l(p', p2)Jp, I'&; ZM)

+ 2 a ((h,h2)Jh, NR; I}a ((h',h', )Zh, N'R';I'}I'! I(28+ 1)
fo, o'),8

(A1)

(A2)

(A3)

x ((p,p, )&p (hp, Vhi 43lf I &,h+ Vcog l(p', p2)s', (h',h29~ j ~3'} Jh R I Jhz'I'
&~N ~&Rz~-

J Jp ~ J Jp
(A4}

ln Eqs. (A2) and (A4), we use the notation V, V 1, for the residual nuclear particle&particle and particle-
hole interactions, respectively, whereas H „describes the particle-quadrupole core interaction term
[third term of the Hamiltonianff of Eq. (2.1}].

W. F.Van Gunsteren, Ph. D. thesis, Vrije Universiteit,
Amsterdam, 1976 (unpublished).

2W. F. Van Gunsteren, E. Boeker, and K. Allaart, Z.
Phys. 267, 87 (1974).

W. Dietrich, A. Backlin, C. O. Lannergard, and I. Rag-
narsson, Nucl. Phys. A253, 429 (1975).

4K. Heyde, M. Waroquier, P. Van Isacker, and H. Vincx,
Nucl. Phys. A292, 237 (1977).

5K. Heyde, M. Waroquier, and R. A. Meyer, Phys. Rev.
C 17, 219 (1978).

6A. K. Gaigalas, R. E. Shroy, G. Schertz, and D. B.
Fossan, Phys. Rev. Lett. 35, 555 (1977).

~J. Bron, W. H. A. Hesselink, H. Bedet, H. Verheul,
and G. Vanden Berghe, Nucl. Phys. A279, 365 (1977).

P. Van Isacker, M. Waroquier, H. Vincx, and K. Heyde,
Nucl. Phys. A292, 125 (1977).

SJ. Bron, W. H. A. Hesselink, L. K. Peker, A. Von
Poelgeest, J. Uitzinger, H. Verheul, and J. Zalmstra,
J. Phys. Soc. Jpn. Suppl. 44, 513 (1978).
J.Bron, Ph.D. thesis, Vrije Universiteit, Amsterdam,
1978 (unpublished).

"R.A. Meyer and L. Peker, Z. Phys. A 283, 379 (1977).
H. W. Fielding, R. E. Anderson, C. D. Zafiratos,
D. A. Lind, F. E. Cecil, H. H. Wieman, and W. P. Al-
ford, Nucl. Phys. A281, 389 (1977).

SK. Heyde and P. J. Brussaard, Nucl. Phys. A104, 81
(1967).
V. Paar, Nucl. Phys. A211, 29 (1973).
G. Alaga, Nuclear Structure and Nuclear Reactions,
edited by M. Jean and R. A. Ricci (Academi, c, New
York, 1969), p. 28.

~~G. Alaga, F. Krmpotic, and V. Lopac, Phys. Lett.
248, 537 (1967).

G. Alaga, V. Paar, andV. Lopac, Phys. Lett. 43B,
459 (1973).

~ V. Paar and R. A. Neyer, J. Phys. B 5, L75 (1979).
~GA. H. Wapstra and K. Bos, At. Data Nucl. Data Tables

19, 177 (1977).
L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys.
35, 853 (1963).

+A. E. L. Dieperink, H. P. Leenhouts, and P. J.Brus-
saard, Nucl. Phys. A116, 556 (1968).

22E. R. Flynn and P. D. Kunz, Phys. Lett. 688, 40
(1977).
C. K. Ross and R. K. Bhaduri, Nucl. Phys. A196, 369
(1972).

MK. Heyde, M. Waroquier, and P. Van Isacker, Phys.
Rev. C 22, 1267 (1980).

2 S. M. Abecasis, O. Givitarese, and F. Krmpotic,
Phys. Rev. C 9, 39 (1973).

+J.Van Maldeghem, Lic. thesis, State University of
Gent, 1980 (unpublished).
J.Bron, W. H. A. Hesselink, A. Von Poelgeest, J.J.
A. Zalmstra, M. J. Uitzinger, H. Verheul, K. Heyde,
M. Waroquier, H. Vincx, and P. Van Isacker, Nucl.
Phys. A318, 335 (1979).
A. Van Poelgeest, Ph.D. thesis, Vrije Universiteit,
Amsterdam, 1979 (unpublished).
W. H. A. Hesselink (private communication).
A. Van Poelgeest, J.Bron, W. H. A. Hesselink, K. Al-
laart, J.J.A. Zalmstra, M. J. Uitzinger, and H. Ver-
heul, Nucl. Phys. A346, 70 (1980).
J. Kantele, R. Julin, M. Luontama, A. Passoja,
T. Pockolainen, A. Backlin, and N. G. Jonson, Z.
Phys. A 289, 157 (1979).

32A. Backlin, N. G. Jonsson, R. Julin, J. Kantele,



G. WENES et ul.

M. Luontama, A. Passoja, and T. Pockolainen, Nucl.
Phys. A351, 490 (1981).
R. Julin, Ph.D. thesis, University of Jyvaskyla, 1979
(unpublished)
N. G. Jonson, Ph.D. thesis, University of Uppsala,
1979 (unpublished).
A. Bohr and B.Mottelson, Nuclear ggructure (Benja-
min, New York, 1969), Vol. I, p. 379.
V. Paar, in Proceedings of the Fifteenth International
Summer Meeting on Nuclear Physics and Nuclear

$tructure, edited by A. H. Kukoc pnstitute '%. Kidric, "
Belgrade, 1972), p. 234.

+A. Bohr and B.Mottelson, Nuclear 8tructure (Benja-
min, New York, 1975), Vol. Q, pp. 174, 358, 552.

+A. S. Reiner, Nucl. Phys. 27, 115 (1961).
Here, we use the relations 5~2/(2C2) = P2 =B (E2; 0~+

-q+)/[ 3/(4~) Zea, '] '.
B.F. Bayman and A. Lande, Nucl. Phys. 77, 1 (1966).

+J. Sau, K. Heyde, and M. Waroquier, Nucl. Phys.
A298, 93 (1978).


