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We extend the theory of nuclear matter to include a relativistic description of nucleon motion. In particular we

allow for negative energy components in the nucleon wave function. The amplitude for these components is

calculated using an extended version of the one-boson-exchange model of nuclear forces. We find that the inclusion

of negative energy states (pair currents) provides a strongly density dependent repulsive interaction. (If one limits

oneself to a description involving positive energy states only, this interaction appears as an eA'ective repulsive many-

body force. ) Our extended theory leads to major modification of the saturation properties of nuclear matter. For
example, a boson-exchange force which, in a standard calculation, leads to significant overbinding of nuclear matter

at much too high a saturation density yields, in our relativistic analysis, quite good agreement with the generally

accepted empirical values for the binding energy and density of nuclear matter. (This potential has strong tensor

coupling for the p meson and a weak tensor force. These features are favored at this time on the basis of other

theoretical considerations. ) We conclude that, contrary to current thought, nuclear matter should be treated as a
relativistic system.

NUCLEAR STRUCTURE Relativistic effects in the saturation properties of nu-
clear matter.

I. INTRODUCTION

Recently a good deal of effort has been expended
in attempting to understand the nucleon-nucleon
interaction on the basis of meson exchange pro-
cesses. 'The simplest theory is the one-boson-
exchange model of nuclear forces. ' More compli-
cated theories have also been considered. For ex-
ample, several researchers have considered a
much more detailed treatment of the two-pion-ex-
change contribution. ' Further, there is an exten-
sive body of work which is concerned with the role
of the 4 isobar in intermediate states in the study
of the NN system and nuclear matter. '

It is hoped that our increased knowledge of the
nature of the nucleon-nucleon interaction will
help us to understand the properties of finite nu-
clei and of nuclear matter. However, our under-
standing of these systems is still unsatisfactory. "
In particular, it is found that if one makes a graph
of the binding energy of nuclear matter (for var
ious forces) as a function of the Fermi momentum,
the results generally lie on a curve (the Coester
band) which does not pass through the region con-
taining the generally accepted empirical values. '
It is worth noting that forces with relatively small
tensor components lead to significant overbinding
of nuclear matter at much too large a saturation
density. ' These forces, however, are favored
at this time on the basis of other theoretical con-
siderations. ' For example, the force of Holinde
and Machleidte denoted as HM2 yields a binding
energy per particle of about 23 MeV at a saturation
point that corresponds to about tsoiee the empirical
density. However, this force has large tensor p

coupling which is considered to be correct at this
time. ' When compared to interactions with strong-
er tensor forces, HM2 yields an improved fit to
the forward proton production in deuteron photo-
disintegration. '

In general it does not appear possible to explain
the properties of nuclear matter or finite nuclei
using currently available theories. (Note that
while the consideration of three-body cluster
terms in the case of the Reid potential can yield a
reasonable result for the properties of nuclear
matter, ' the results for finite nuclei are still quite
unsatisfactory. ")

On the whole, relativistic effects have been con-
sidered to be small corrections and only a few
studies have been made dealing with such effects.
The studies that have been made have been con-
cerned more with kinematical effects rather than
dynamical features. In this work, however, we
will show that relativistic effects can be very
large. 'These effects are strongly density depen-
dent and make major modifications in the satura-
tion curve. In particular, for those forces that
saturate at too high a density, the modification of
the results due to relativistic effects can be quite
dramatic.

Since our calculations are novel we should ex-
plain our point of view in some detail. We will
only consider potentials in which the nucleon-nu-
cleon interaction is derived from some version of
the boson-exchange model since coordinate space
potentials do not lend themselves to a relativistic
treatment. Let us consider the simplest kind of
meson exchange interaction, the so-called one-bo-
son-exchange model, for simplicity. In this case
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the nucleon-nucleon interaction is obtained from
the solution of a relativistic two-body problem. '
For example, one may start from a Bethe-Sal-
peter equation,

M =K+ KG~M,

where G~ is a Feynman propagator for the inter-
mediate state nucleons. One can rewrite this
equation as two equations,

M =U+ UgM,

U =K+ K(Gs -g}U .
(1.2)

M =U+ Ug"M, (1.4)

where we have put g=g ' as a reminder that both
intermediate state particles are represented by

Here g is a propagator that has the same right-
hand cut as Gz. The propagator g contains a delta
function which reduces the four-dimensional equa-
tion to a three-dimensional equation. ' Usually g
contains projection operators A, (k} which project
onto the space of positive energy spinors. There
are many possible choices for g; however, for
each choice made one can determine a relativistic
quasipotential U. Various quasipotentials have
been determined by fitting the two-nucleon scatter-
ing data using the one-boson exchange model of
nuclear forces. ' We will investigate the properties
of nuclear matter using several of these quasipo-
tentia, ls.

We now write Eq. (1.2) as

positive-energy spinors. " For the study of the
two-nucleon scattering amplitude we may write
Eq. (1.4) as

M 4 +++ U ++++ U ++++g++M++++

where

(ps„qs, iM""
i
p's,', q's,')

=- &s'")(p)u '")(q)~~~u'"'(p')u'")(q')) (1.8}

etc. Equation (1.5) has been studied extensively
and the quasipotential U"" has been parametrized
in terms of coupling constants, masses, and form
factors for various exchanged mesons"' (w, p, (d,

o, ~, n, 4, . . .).
Application of the one-boson-exchange interac-

tion in the study of nuclear matter requires some
further analysis. For example, one replaces g"
by g", where g" is taken to include dispersive ef-
fects and Pauli principle restrictions. Thus one
considers the solution of the equation

i()(i

M++++ ~ U+++++ U++++g+++M++++ (1.7)

where M is the effective interaction in the medium
(usually called the reaction matrix). In Eq. (1.7)
we have neglected medium effects on the kernel
U'"'. Once one has obtained the solution of Eq.
(1.'I) one may calculate the binding energy of the
system. For example, one may write for the po-
tential energy

(),=-: F f" "' -(ii"'()i).-"'(i)~M((-)', .)~."'()i)."'(i))
(2 )' (2 )'E(p) E(q)

(1.8)

„.&p, q '~G( I+&;)~p, q ')&. (I 9)

In going from Eq. (1.8) to Eq. (1.9) we have intro-
duced a somewhat more familiar notation for the
reaction matrix of the Bethe-Brueckner theory of
nuclear matter. " (Note that we are suppressing
explicit reference to the isospin quantum num-
bers. ) In Eq. (1.9) the inclusion of the energy
argument in the reaction matrix is a reminder
that this quantity is calculated self-consistently.
Correspondingly the s value for the evaluation of
M is given by s'= (p'+ q')' —(q+ p)'. The relation-
ship between p' and e& is p'=gn+ a&, etc.

For further reference it is useful to indicate
the calculation of Eq. (1.8} in a diagrammatic
fashion. (See Fig. 1.) In Fig. 1(a) the small cir-
cles denote vertex functions. This diagram is cal-
culated with the massive systems of A, A -1, or
A-2particles kepton the mass shells. (Some further
details concerning the use of such vertex functions

I

for finite systems are given in Refs. 12 and 13.)
We are now in a position to consider in more detail

the nature of the approximation being used when
one writes Eq. (1.8). Basically one is using wave
functions for the particles in the Fermi sea that
are plane waves multiplied by positive energy
Dirac spinors. We recall [with reference to Fig.
1(a) and Ref. 12] that the product of the vertex
function and the nucleon propagator is proportional
to the matrix element of the nucleon field operator
taken between two many-particle states. For ex-
ample, let the nuclear matter state of A particles
(more precisely, baryon number equal to A) with
total momentum zero be denoted as ~5). Fnrther,
consider the state with baryon number (A -1) of
momentum -p and spin projection -s:

~
-p, -s).

'The matrix element of the nucleon field operator
taken between these states may be written as'
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m '~~'
(-P-a~~(0)~&)= 2„,&, E - ls.(p) "'(P)+(-I}'"'h(p)~' '(-P}] (1.10)

m [s(p)u"'(p) + (-I}'"'b(p)u "'(p)],

(o)

n n

where see have restricted p to be along the z axis
and where we have defined w"'(p) =—u' "(-p). (We
normalize such that a'+ h'= 1.) Now it is clear that
the approximation being used to obtain Eq. (1.8)
from the evaluation of Fig. 1(a) is given by setting
a(p) = 1 and b(p) = 0. It can be seen that this is not
a consistent approximation.

Let us define the amplitude Q,(p):

4.(p)= (-p, -a ~~(0})&&(2 }"' (1.12)

e
[u,(p)u"'(p)+ (-1)"' 'b(p)w"'(p)].

iE(P),
(1.13)

This amplitude satisfies the Dirac equation

[r u-~-Z(P)]0 (p)=0. (1.14)

Here Z(p) is the self-energy operator. [More pre-
cisely, Z(p) is the difference of the nucleon self-
energy in the medium and in the vacuum. This quan-
tity is zero if the density of the nuclear matter is
zero. ] Now as long as Z(p)4 0, the speci-
fication a(p)=1 and b(p)=0 does not yield a solu-
tion of Eq. (1.14}.

In this work we investigate the consequences for
the theory of nuclear matter which follow from a
detailed calculation of the solution of Eq. (1.14).
As see soil/ see, the inclusion of the negative ener-
gy states in Eqs. (1.1Z) and (1.13) leads to major
modifications in the calculated ProPerties of nu-
clear matter. These effects may be considered as
arising from the use of a self-consistent wave
function in a relativistic Bethe-Brueckner theory.
(We recall that there is no self-consistency con-
sideration for the wave function in the nonrela-
tivistic theory of nuclear matter. ) The reader
desiring a, detailed derivation of the relativistic
model used in this work is invited to read the
paper immediately preceding this one in this jour-
nal.

II. CALCULATION OF THE NUCLEON SELF-ENERGY
OPERATOR

+ ~ ~ ~

(b)

FIG. 1. (a) Schematic representation of the potential
energy calculation by means of a Feynman diagram.
Here the small circles are vertex functions and the sin-
gle l.ines represent Feynman propagators for off-mass-
shell nucleons. Further, M„=M(1 —P&2) is an antisym-
metrized two-nucleon scattering amplitude modified for
Pauli principle and dispersive effects. (See Ref. 13 for
a discussion of the use of such diagrams in Hartree-
Fock theory. Reference 12 contains some discussion of
vertex functions, propagators, and wave functions in a
relativistic theory of finite nuclei. ) (b) Goldstone dia-
grams representing the direct and exchange contribu-
tions to the potential energy. Here the heavy lines de-
note a self-consistent relativistic wave function and the
wavy line denotes the reaction matrix. If one limits
oneself to an expansion of the wave functions using only
positive energy spinors (light lines), one obtains the
standard expression for the potential energy. [See Eqs.
g.8) and (1.9).]

Since we have made an expansion of the wave func-
tion in terms of the spinors u"'(p) and ut"'(p)
[Eq. (1.13)], it is useful to determine the matrix
elements of the self-energy operator in the same
basis. Again restricting p to be along the z axis,
we define'4

Z;;.(P)= &„.u"'(p)Z(p)u"'(p) = "(p)
(2.1)

Z,;,(P)=5„,w"'(p)Z(P)u"'(p)=5„, (-I)' ' 'Z-'(P),

(2.2)

Z;. (P}=~.. u "'(P)Z(P}~" '(P)= f.. (-1)"' 'Z' (f ),
(2.3)

Z...(P) 5„.w"'(P)Z(P)w" '(P) = 5„,Z (P) .
(2.4)

One can show that Z„(p)= Z;,(p) and that Z„
= -Z, ,(P). Further, the solution of Eq. (1.14)
yields a relation P'=po(p}, so that we can define



2276 M. R. ANASTASIO, L. S. CKLENZA, AND C. M. SHAgIN

Z(p) = Z[po(p), p], etc. We note that Z '(p) is pro-
portional to ~p~ for small [p~.

From Eq. (1.14) we find the coupled equations"

b(p) m Z"(~pI)
o(/&& E(p) 0' ~ &(p& —

& /&(p&» (liit& j
(2.7)

[p' —E(p)]a= (Z "a+ Z -b),
E(p)

[P'+E(p)]b= (Z b+ Z 'a).E p

From these equations we have

(2.5)

(2.6)

=[m«(p)]Z (~p~)/lm+E(p)], (2.8)

where in Eq. (2.8}we have put p'= m and neglected
Z (p) with respect to m+E(p).

Models for the calculation of Z '(p) and Z"(p)
have been discussed extensively in earlier
works. ""We have defined

and

Z"(p)= &
"'( ) "'(q)~iaaf""(I-I' )~

"'( ) "'(q)&

Z-'(p)=Q &w" "(p}u"'(q) ~M "(I-P„)~u" "(p)u"'(q)&,(»)' E(q)

(2.9)

(2.10)

(2.11)

Note that Z;;(p) and Z,,(P) are independent of s.
We should remark that the Z", Z-', and Z de-
fined in Eqs. (2.9)-(2.11) are only the leading
toms in an approximation to the fundamental quan-
tities defined in Eqs. (2.1)-(2.4). The quantities
Z" and Z ' should be calculated using the exact
(self-consistent) density matrix for the system.
In Eqs. (2.9)-(2.11) we have approximated this
density matrix in terms of positive energy spinors
only. 'This approximation is adequate for our pur-
poses in this work. We propose to do a fully self-
consistent calculation at a future time; however,
we do not expect any significant changes in our re-
sults for the saturation curves presented in Sec.
VIII.

We have calculated M "' using the following
equation based on Eq. (1.4):

1/2
P,(p)= E - I-

2 (p) u"'(p)Ep
+ ( 1)1/2-so(p) w(~&(p) (2.15)

0'.(p)&.(P) = 1. (2.16)

'The generalization of Eq. (2.15) for p in an arbi-
trary direction is

- &/2 o&a

Ep

(/&&Z (~'l~ &&~~&
"

'(p&(

(2.17}

and thus with u "&~(p)u "'(p) = w '*'t(p) u&'*'(p) = E(p)/m,
we have

+++ U' +++ + U ~++g~-++~++++

U M++
(I + g++M+++4' )

U «+++Q++++
e

(2.12)

(2.13)

(2.14)

Since (s ~o, ~s'&=5„, (-1)'/' ', Eq. (2.17) reduces
to Eq. (2.15) for p=pz.

In Secs. VI and VII we describe the modifications
of the kinetic energy and potential. energy when we
replace

We note that while Eq. (2.14) is obtained without
approximation it has the appearance of a relati-
vistic distorted wave approximation for M "'."
Some results of our calculations of Z"(p), Z '(p),
and Z (p) will be presented in Secs. HI-V.

In these calculations pseudovector coupling is
used for the pion-nucleon vertex. As noted in our
previous work" Z '(p) is larger than might be ex-
pected since the various mesons add coherently in
the construction of Z (p). The knowledge of this
quantity enables us to construct a(p) using Eq.
(2.8). To order o'(p) we may write

m -~~2

Ep
by P,(p) given in Eqs. (2.15) and (2.17).

(2.18)

III. CALCULATION OF Z++((p ))

In this section we present results for our calcu-
lation of Z"(~p~) defined in Eq. (2.9). We consider
the one-boson-exchange potentials of Ref. 9(HM2)
and of Ref. 17 (HEA}.

In Fig. 2 we show Z" as a function of
~
p

~
/kr for



RELATIVISTIC EFFECTS IN THK BETHE-BRUKCKNKR. . . 2277

HM2 k, =).36 fm'

I50-

& -50-

++
4I

0

b

C

r
d.-

00-
++
W

FIG. 2. The quantity Z"ip) as a function of )p)/kz.
The various curves represent calculations performed
for different values of k~. The solid lines represent the
values of Z (p) obtained in the Hartree-Fock approxima-
tion (M = U) and the dashed curves are the results ob-
tained including correlation effects Rq. (2.9)J. These
results indicate that correlation corrections make ma-
jor modifications in Z"(p). These calculations are made
using the interaction of Ref. 9 (HM2). (a) k~=1.2 fm ',
(b) k~=1.36 fm ', (c) k+=1.6 fm ', and {d) k~=1.8 fm '.

0.2 --8 0.8 I.O
plk):

FIG. 3. Contributions to 2 (~p~) due to the exchange
the e and p mesons for the potential HM2. The solid
lines denote the contributions in the Hartree-Fock ap-
proximation. The dashed curve shows the results of in-
cluding correlations. [See Eqs. (3.1)-(3.5).]

various values of k~ for the potential HM2. The
solid lines represent the values of E- obtained in
the Hartree-Fock approximation (lk = U) and the
dashed curves are the results including correla-
tion effects. (It is clear that the Hartree-Fock ap-
proximation is inadequate. ) In Figs. 3 and 4 we
present the contributions to Z" due to the exchange
of individual mesons. Again the solid lines denote
the results based upon the Hartree-Fock approxi-
mation and the dashed lines are the results in-
cluding correlation effects. One may write for
the quasipotential

HM2 ks=).36 fm '

0.4 0.6
p/ks

0.8 «~)

-l00
++
W

-l50

%&W W W W W W W W W % '% ~& ~&~~& &~ W W &W W &~W ~~ 00

U= U)=U, +U, +U„+ ~ ~ ~,
al

(3.1}

where U, is the potential corresponding to the ex-
change of a particular meson. We also note that

M'"'= U' '(I+/"M™r}i
a

(3.2)

where

l5++++
mrs.

~

ml

(3.3} FIG. 4. Contributions to Z ((p)) due to the exchange
of o, ~, and 6 mesons for the potential HM2. (See cap-
tion to Fig. 3.)
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M++++ P++++(1+go+M++++) (3.4)
2OO- HEA k,

'The Hartree-Fock results for Z" shown as the
solid lines in Figs. 3 and 4 result from the ap-
proximation M;." =U;.'". The results for Z"
shown as dashed lines result from the use of the
M;"' of Eq. (3.4) in Eq. (2.9}. Note that in both
cases

150-

(3.5)

where Z is the self-energy obtained from the use
of 2;"' in Eq. (2.9). [See Eq. (3.3}.]

In Figs. 5-7 we present corresponding results
for Z"([p() and Z; (~ p~) for the potential HEA. "
One interesting feature of these results is the be-
havior of the pion contribution as seen in Figs. 4
and 7. In the Hartree-Fock approximation one has
a repulsive contribution to Z "(~p

~

) of about 30
MeV; however, in the presence of correlations
the pion contribution becomes small for HM2

(Fig. 4) and strongly attractioe for HEA (Fig. 7).
This feature has its origins in the presence of
tensor correlations (The effe.ct is much stronger
for HEA since HEA has a stronger tensor force
than HM2. ) To some degree therefore, the pion
contribution to Z", when calculated in the pres-
ence of correlations, is similar to that of the o

meson. Note, however, that the dependence of
this contribution on

~ p~ is different for the pion
and the o meson. (See Fig. 7, for example. )

4I)

100-

++
IAI

0
0.2 0.4 0.6

p/kr
0.8 1.0

IV. CALCULATION OF Z +(ip 1)

In this section we present results for our
calculations of Z '((pl) =Z, t»ts()pl) defined
in Eq. (2.10). In Fig. 8 we present our values

FiG. 6. Contributions to Z"i~p~) due to the exchange
of ~, ft), and p mesons for the potential HEA. (See cap-
tion to Fig. 3.)

i50- HE HEA k„=i.36 fm'

100 =

IA
+ -50

-100

0.2 0.4 0.6
p/kF

0.8
I

1.0

0

-50-
4)

c -100-
+
+
4I

-150—

0.2 0.4 0.6 0.8
p/kF

I.O

-150—

FIG. 5. Same caption as Fig. 2 except that the inter-
action is HEA (Ref. 17). (a) kz=l. 2 fm ', (b) k+=1.36
fm, (c) k~=1.5 fm, and (d) k~=&.6 fm

FIG. 7. Contributions to Z"(~p() due to the exchange
of 0, 7t, (5, and g mesons for the potential HEA. (See
caption to Fig. 3.)
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75

CL

+
I

lr4

50

25

0.2 0.4 0.6
p/k~

0.8 l.o

FIG. 8. Calculated values of Z&gz &~&(p) for the inter-
action of Ref. 9 (HM2). The various curves represent
calculations made for various values of kz. The solid
lined denote the results for calculations carried out in a
Hartree-Fock approximation, i.e., M '= U "'. The
dashed lines are the results obtained after correlation
effects are included. [See Eqs. (2.11)-(2.13).]. We note
that in contrast to the results for Z"(P), correlation ef-
fects are rather unimportant in the calculation of & 'gi).
(a) k&=1.2 fm ', (b) k+=1.36 fm ', (c) k+=1.6 fm ', and

(d) ky =1.8 fm

for 3;ja, gs( I p I ) calculated using the interaction
HM2 in the Hartree-Fock approximation (solid
line). The results including the effects of corre-
lations are shown as the dashed lines. The effect
of including correlations is remarkably small.
In Figs. 9 and 10 we present the contributions
of the individual mesons to the calculation of
Z '(Ip I) for HM2. We remark that the exchange
of the 0 meson makes the major contribution to
Z '( I p I). This aspect of the theory clearly re-
quires further investigation since the o' meson
(often called the e meson) is not an established
resonance such as the p and ~ mesons. It is,
however, an essential feature of any pseudopo-
tential constructed in the one-boson exchange
model of nuclear forces.

In Figs. 11-13we present values for 5 '( Ip I)
calculated with the interaction HEA. The results
shown in Figs. 8 and 11 are remarkably similar.
[Calculations for another one-boson-exchange
potential, which we will denote as HM3', also
give very similar results for Z '( Ip I).] From
the calculations we have made thus far we would
conclude that 3 '(I p I) is largely Potential inde
Pendent and also largely independent of corre-
lation effects. (See Figs. 8 and 11.) Again

0.2 0.4 0.6
P/kF

0.8 l.0

we can remark upon the interesting behavior of
the pion contribution as seen in Figs. 10 and 13.
In both cases correlations enhance the pion con-
tribution to Z '(I p I ) changing a negative contri-
bution to one close to zero (Fig. 10) for HM2 and
to a positive contribution for HEA (Fig. 13).

It is also of interest to note that for both HEA

HM2 kq=l. 36 fm'

25 ~

X

0.6 0.8

P/kF
&(pv)

FIG. 10. Contributions to Z"'((pj) from the exchange
of 7l and I() mesons for the interaction HM2. Pseudovec-
tor coupling is used for ~NN vertex. (See caption to
Fig. 8.)

FIG. 9. Contributions to Z '(IpII from the exchange of
cr and ~ mesons for the interaction HM2. (See caption
to Fig. 8.)
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HEA
50

HEA k, = ).se fm '

+ l00
h4

25-

0 0.2 0.4 0.6
P/kF

0.8 I.O

a
w

P/ks
&(pv)

FIG. 11. Calculated values of Z, &t, ~t()i)() for the in
teraction HEA. (See caption to Fig. 8.) (a) k+=1.2
fm ', (b) k+=1.36 fm ', (c) k~=1.5 fm ', and (d) k+=1.6
fm-'

and HM2, the contributions of the 0 and ~ mesons
calculated in the Hartree-Fock approximation add
to a value quite similar to that obtained from the
sum of all meson contributions when correlation
effects are included. Therefore a theory which
contains only a 0 and ~ meson can yield a good
value for g' in the Hartree-Pock approximation.
(The value obtained for Z' in a (r+ &c model is
also satisfactory if the Hartree approximation
is used. )

FIG. 13. Contributions to Z&~t t(t(~p)) due to the ex-
change of the p, 7t, and 6 mesons. The contribution of
the 6 meson in the presence of correlations is negligi-
ble. (See caption to Fig. 8.)

V. CALCULATION OF Z ( Ip I)

In Figs. 14-1V we present the results of our
calculations for Z=. Again the solid lines denote
the Hartree-Pock results and the dashed lines
represent the results when correlation effects

~()«HM2

50

x

I
W

25

~ IOOO-
I
I

0 --—--—==: w lp M T' I I

0.2 0.4 0.6 0.8 l.G

FIG. 12. Contributions to Z, ~t, ~t((pI) due to the ex
change of 0., ~, ft), and q mesons for the potential HEA.
(See caption to Fig. 8.)

0 I

0.2 0.4 0.6
P/kF

I

0.8
I

I.O

FIG. 14. Calculated values of Z (~p)) for the poten-
tial HM2. The solid lines represent results obtained in
the Hartree-Fock approximation and the dashed lines
represent the results when correlations are included.
(a) k~-—1.2 fm, (b) k~=1.36 fm ', (c) k+=1.6 fm, and
(d) ky-—1.8 fm '.
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HM2 kF=1.36 fm' HEA kF =1.56 fm '

Ck—200—I
I

100—

I I l I I0 0.4 0.6 1.0
PlkF

FIG. 15. Contributions of the individual meson to the
calculation of Z (lpl) in the Hartree-Fock approxitna-
tion for the potential HM2 are shown as the solid lines.
The dashed lines represent the results when correla-
tions are included.

0.2 0.8

HEA

~'

w 1000-
X

are included. We note that Z is quite large
since, unlike the case of Z", the o and ~ con-
tributions add coherently. Correlation effects
are significant but not very large. For example,

0 1.0

PlkF

these effects reduce the value of Z (0) from 810
to 670 MeV for the potential HEA. (See Fig. 16.)
Further, mesons other than the 0' and (d make
only a relatively small contribution to Z

The contributions of the individual mesons in
the calculation of Z are shown in Fig. 15(HM2)
and Fig. 17 (HEA}. The contributions of the v,
g, and 6 mesons are negligible for the potential
HM2 and therefore these contributions are not
indicated in Fig. 15. Similarly the contribution
of the r( meson, and the (Hartree-Fock) contri-
butions of the w and 6 mesons are not shown in
Fig. 1V.

FIG. 17. Contributions of the individual mesons to the
calculation of Z ((p() in the Hartree-Fock approximation
for the potential HEA are shown as the solid lines. The
dashed lines represent the results when correlations
are included.

1.004
I I I I I

0.2 0.6 0.8
p/k~

FIG. 16. Calculated values of Z (lpl) for the potential
HEA. The solid lines represent results obtained in the
Hartree-Fock approximation and the dashed lines repre-
sent the results when correlations are included. (a) kz
=1.2 fm ', (b) k~=1.36 fm, (c) kp-—1.5 fm, and (d) kp
=1.6 fm s

VI. MODIFICATION OF THE KINETIC ENERGY

As a simple exercise we can show that the den-
sity of the system is unchanged if we use P,(p)
rather than P,"'(p}. The density operator is

n(x) = g4', (x)y 4,(x) .

If the ground state of our nuclear matter system
of momentum % is denoted as l%') with (0 I W')
=6(W-4'), we have for the matrix element of
the number operator



2282 M. R. ANASTASIO, L. S. CELENZA, AND C. M. SHAKIN

(W' IN Ill)=(W'I fdx (x)1())

= g f fdx(W IP'('x)l ,—p-*)dp

x (-p, —s l)k, (x) 10& . (6.2)

here by (f),(p) =[m/E(p)]' 'f"'(p). [See Eq. (2.17).]
In the foregoing analysis we have presented an
alternative derivation of the first term of Eq.
(6.8), the energy of the Dirac field.

We are using the Bjorken-Drell" conventions
so that our spinors satisfy

Using

4 (x) =e'~'*@(0)e "*
we have

(6.3)

(r p+ ~)s"'(p) =r'E(p)s"'(p),

(r p+ m)~"'(p) = r'E-(p)~"'(p) .

(6.9)

(6.10)

(W' IN IO)=(22)'PlW')g f dp(W'Ipt(P)i —p — )
Therefore using Eq. (2.17) we find that the kinetic
energy per particle xs

x (-p —stan (0)10&

= 2((()') g fdp 2!(p)p.(p)

=2(W')Q fdp.
S

(6.4}

The effective volume is (2v)' so that the density
is

cfp 2

(2.P 3e' (6.5}

dx+~ x n —.V+y'm 4 x .j
Again making use of Eq. (6.3) we find

(W' IN, IP)=2(W') fdPP;(P)(p P+ )P.(P).

(6.6)

where we have used a statistical factor of 4 for
each state of momentum p.

With this elementary calculation completed
we can go on to calculate the modification of
the kinetic energy when (t,(o)(p) is replaced by
(f,(p). We write

+t'4s- p2dp E p m Q p 2E p
F 0 (6.11)

Of course if c(=0 and [E(p) —m]=P'/2m, we obtain
h~„/A =-', [kr'/2m], the standard nonrelativistic
result. Further, we remark that one-half of the
correction term in Eq. (6.11) arises from the
a' term in a (p). Thus we see that it is vital to
maintain the correct normalization of the P,(p).
[See Eqs. (2.15) and (2.16) and Fig. 18.]

In Fig. 19 we present the kinetic energy per
particle as a function of kF. The dashed line is
the result for a =0 and the solid line represents
Eq. (6.11). We note that the relativistic correction
to the kinetic energy, which is about 1~ at kr
=1.36 fm ', grows extremely rapidly with increas-
ing density. We remark that at the higher den-
sities it is more appropriate to call the quantity
given by Eq. (6.11) and represented in Fig. 19,
the "Dirac energy" since it has little resemblence
to the nonrelativistic or relativistic kinetic energy
of a noninteracting system.

(6 7)

We note that in the preceding paper we obtained
an expression for the total energy of the system
[Eq. (10.5) of that work],

N= g f -), -)f"'(2)( 2+ )d"'(2)

dp dq m m

(2'}'(2wPE(p) E(q)

x(«(p}T RIM(1 &„)If"(p}f""%

(6.8)

where the f'*'(p) are related to the (f) (p) used

+ ~ ~ ~

FIG. 18. Representation of the kinetic energy by Gold-
stone diagrams. The wavy line is a reaction matrix and
the black dot is the kinetic energy operator. The heavy
line denotes the self-consistent relativistic wave func-
tion. Double down going lines denote negative energy
states. Single light lines denote states represented by
positive energy spinors only.
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We refer to Fig. 20 for a diagrammatic represen-
tation of the nature of these corrections to the
potential energy.

LLI

25—

1.0 1.2 1.4 1.6 1.8 2.0 2.2

VIH. MODIFICATION OF THE SATURATION CURVE
FOR NUCLEAR MATTER

In this section we will present results of our
calculations for the potential of Ref. 9 (HM2) and
for the potential of Ref. 1V (HEA). We will con-
centrate most of our discussion on the potential
HM2.

In Fig. 8 we presented some results for E,&»&,
(p) for HM2. The calculations were made for
various values of k„and therefore we can discuss
the dependence of Z ' on k~ or on the density.
Therefore we will write Z„'(p, kr) or Z '(p, p)
in this section. We can make a simple approxi-
mation to the results shown in Fig. 3:

FIG. 19. Representation of the kinetic energy and po-
tential energy versus kz for the potential HM2. Results
obtained with the standard expression for the kinetic en-
ergy are shown in the upper ha1f of the figure as a dashed
line. The solid line is the result for this quantity when
the relativistic correction is included IEq. (6.10)l. The
corresponding curves for the potential energy are shown
in the lower portion of the figure.

Z~&2~~2(p, kz) = r (110) MeV, (8.1)Ip t k,
P ~

where kz is to be expressed in units of fm '. Equa-
tion (8.1) expresses the (approximate) linear de-
pendence of Z '(p, kr) on Ip I. Using Eq. (8.1)
we see that a reasonable approximation for a*(p)
is

(8.2)

VII. MODIFICATION OF THE POTENTIAL ENERGY
$/0& ~ )p t

2 p '}2'4
(8.3)

The modification of the potential energy may be
obtained from Eq. (1.8) by replacing I'*' by [au")
+ (-I}'~' 'ks)")], i.e., replacing Q@)(p) by )t),(p).
[See Eq. (2.15).] This leads to a correction to
the potential energy per particle of the form

&( ~" =k, P'~Pa'(p) 4m-E- Z ((51)(A kz o p

(V.l)

In Eq. (8.2) we have made the kz dependence of
a'(p) explicit and introduced p„ the density corre-
sponding to k~=1.36 fm '. The quantity 2m in
Eqs. (8.2) and (8.3) should be expressed in MeV
units.

Let us write the relativistic correction of Eq.
(7.3} as

if we use Eq. (2.V). In writing Eq. (V.l) we have
dropped quite small terms of the order Z"(p)/4m.
If we also neglect terms of the order Z (p}/2m
we have

ant P2dP Q2 p 4m
3

A k„3 (7 2)

where the use of Eq. (2.8) is implied. Combining
Eq. (V.2) with Eq. (3.10) we have for the total
con ection

klII sot p2dp ~2 p 4m 2g p

=)2-)(„'.) j")e-)5). (~.~)

+ ~ ~ ~

FIG. 20. Representation of relativistic corrections to
the potential energy. The heavy lines denote self-con-
sistent relativistic wave functions. The wavy lines are
reaction matrices. The double lines are negative energy
states and the single lines are occupied states (hole
states) represented by positive energy spinors.
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~E= 3 P dP&, kF 2m .
F 0

(8.4)

Inserting the approximation given in Eq. (5.3) in
this expression we find t E= 3.86(kz/1. 36)7'2. A

more accurate calculation yields

0 l.0 l.2 I.4 1.6 l.s 2.0
I I I I I I

HEA k [tm-t]

kF 't '2
s.E = (3.6 MeV) 1.36~

2+4
= (3.6 MeV)

Po

(8.5}

(8.6)

M5

HM2

2~4

+ 3.6 — (MeV) .
Po

(8.7)

(We recall that p, is the density corresponding
to k~ = 1.36 fm '.) The standard nonrelativistic
approximation is obtained by dropping the last
term in Eq. (8.7),

22.9 — —12 —28.7 — MeV) .

(8.8)

The approximate expressions given in E|ls. (8.7)
and (8.8) are for the interaction HM2. The results
of exact calculations for HM2 and HZA are shown
in Fig. 21. We also present in Fig. 21 the results

From these simple considerations we see that
the relativistic correction is strongly density de-
pendent. Further insight can be gained by in-
spection of Fig. 19 which presents the results of
computations for the potential HM2. In the upper
half of this figure we present the standard cal-
culation of the kinetic energy (dashed line) and

the calculation which includes the relativistic
correction [Eq. (6.10)]. We remark that the rela
tivistic correction is about 17'7p at kr = 1.36 fm
and rapidly becomes quite large as the density in-
creases. We have, approximately, a[8& /A]=
—3.6 MeV(p/p, )". In the lower half of Fig. 19
we show the standard calculation for the potential
energy for the interaction HM2 (dashed line).
Inclusion of the relativistic correction yields the
solid line. This relativistic correction is given
to a good approximation by a[g~„/A]= 7.2
MeV(p/pa)" and represents about a 20% correc-
tion at kF = 1.36 fm '.

It is interesting to note that for HM2 the de-
pendence of the potential energy (dashed curve)
on kF is almost linear in the region 1.2 fm s kF
S 1.8 fm '. In this region we may write S„,/A
= —12 MeV —28.7 MeV(p/p, }'h. Therefore com-
bining our results we have approximately, for
1.2 fm '&kF &1.8 fm ' only,

E p
'~~ —12 —28.7

HEA

-l5—

-20— & HM5

,' HM2r

FIG. 21. The dashed lines labeled HEA, HM2, and
HM3' denote the saturation curves for the standard cal-
culation (Ref. 1j for the potentials of Refs. 17, 9, and

18, respectively. The solid lines are the saturation
curves for these potentials when calculations are made

using the relativistic theory. The empirical values for
the density and binding energy lie within the rectangle
(Ref. 5).

of our calculations for a potential we denote as
HM3'. ' The dashed lines are the results for the

standard model and the solid lines include the
relativistic correction. The generally accepted
values for the binding energy and saturation den-

sity of nuclear matter correspond to values in-
side the rectangle in Fig. 21.

As can be seen from the figure, the relativistic
correction takes one off the Coester line, Fur-
ther, the interaction HM2 gives saturation at the
correct density and with a binding energy per
particle of 14.2 MeV. (An additional 1 or 2 MeV

binding may arise as the contribution of three-
body cluster terms. ' Such calculations have not
been made for interactions with weak tensor for-
ces such as HM2. ) We find it gratifying that a
generally satisfactory result is obtained with HM 2

since there is a body of evidence ' that favors
strong p-meson tensor coupling and relatively
weak tensor interaction, both characteristics of
HM 2.
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IX. CONCLUSION
Z„-', (p) =(slo pl s') [C(p) -A(p)], (AS)

While the relativistic quasipotential method has
been extensively applied in the study of nucleon-
nucleon scattering, there have been relatively
few applications of this method to bound state
problems. Indeed, almost all applications have
been in the study of the deuteron. In this work we
have applied this method to study the properties
of nuclear matter and have found large correc-
tions to the nonrelativistic theory.

One should note that only a limited set of
matrix elements of the quasipotential U are
determined in the study of nucleon-nucleon scat-
tering. (In the notation used here only the matrix
elements of U"" are relevant in the analysis
of scattering data if one uses a Green's function
such as g" which restricts the intermediate
nucleons to positive energy spinor states. ) ln the
study of nuclear matter other matrix elements
of U come into play and these elements are
responsible for our success in providing a
more satisfactory description of the saturation
properties of nuclear matter.

Clearly, further studies are called for. In
particular we plan to study the properties of
finite nuclei. Almost all calculations of finite
nuclei using the nonrelativistic Brueckner-Har-
tree-Fock theory yield too small radii and/or
insufficient binding. We will investigate whether
the use of our relativistic theory will lead to an
improved description. Further, we can study
the spin-orbit splitting in the finite system as
well as the role of three-body forces. It is clear
that if one constructs a description of nuclear
structure based upon the use of only positive en-
ergy Dirac spinors or Pauli spinors to describe
the states of the nucleon, one will need significant
three-body forces due to the relativistic effects
considered here.

This work was supported in part by the National
Science Foundation and the PSC-SHE Award pro-
gram of the City University of New York.

«2 I

Z (p) = () -A(p)+ B(p}—p, C(p), .
(A4)

Thus the quantity Z '(p) = Z,@,~,(p) is given by

Z-'(p) = [C(p) -A(p)j; P= pf . (A5

"(p)) ' '(p) ==
m

w»' (p)y'(0» (p) = I)„,
(AV)

2
((" )(p)) p&»)(p}= ~ ()

2

(()» ) (p )y p (()») (p ) & ()

(A8)

~'(i)w~'(fT) = —(I' ' s
7S t

((» ) (p)yo(()») {p) 0

(A9)

(A10)

((" (p)r 'p(( (p) ={s'lv p Is). (All)

We may solve for A, Bt and C to obtain

g(-} I ' Z" (p) -Z (p) I p I,(-)
E(p) 2 m

(A12)

In obtaining these results we have used the rela-
tions

u»'(p)s»)(p) =() ., (()»')(p)(()»)(p) = —I)„., (A6)

APPENDIX A

In this appendix we discuss an alternate re-
presentation of Z (p). We may write a general
form and

m Z" (p}+Z (p)
E(p) 2

(A1S)

&(p) =&(p)+B(p)r'+ C(p}. (A1)
(-)

'
m ' m,

( )
Z'+(p}- Z (p).E(p) I p I . 2

Recalling the definitions of Z" (p), Z '(p), and
Z (p} we have

2

Z"(p) = I) ~ A(p)+ B(p)+, C(p),
(A2}

(A14)

Our results for A(1}},B(p), and C(p) are shown
in Fig. 22 (HM2) and Fig. 22 (HEA). As can be
seen from these figures, the quantity C(p) is
quite small. Indeed if we neglect C(p) we have



2286 M. R. ANASTASIO, L. S. CELENZA, AND C. M. SHAKIN

oooo- HM2
A

——'-C

600
5oo- HM2

400—
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kF =1.36 fr@
'

~ ~ ~ ~ ~ ~ ~ ~ ~0 ~ ~ ~

0.2 0.4 0.6 0.8
P/kF

100—) 0

-100-
0.2

I I

0.4 0.6
P/kF

0.8 1.0

-500—

FIG. 22. The quantities A, B, and CfSee Eqs. (Al)—
(A14)] for the potential denoted as HM2. (a) k+=1.2 fm ',
(b) k+=1.35 fm ', (c) k+=1.5 fm ', and (d) k+=1.8 fm '.

FIG. 24. The quantities A, B, and C for the potential
HM2 calculated for k+=1.35 fm '. The solid lines are
the Hartree-Fock results and the dashed lines are the
results when correlations are included.

the approximate relation

~"(p)-~ (p)= -2 - & '(p).
/pl

(A15)

The role of correlations may be seen from in-
spection of Fig. 24 (HM 2) and Fig. 25 (HEA).
Here the solid lines again represent the Hartree-
Fock results and the dashed lines are the results
obtained if correlations are included. It may be
noted that the major correlation effects appear
in the parameter B(p).

HEA ------ B
I 0 C

300—
600-

HEA k, = i.z6 &m
~

500-

100-

-200-

-50Q—

-400-

-SOO-

-600-

~ ~ ~ ~

0.2 0.4 0.6
p/kF

0.8 1.0

300—

200-

IOO—

-200—

-300-

-400-

0.2 0.4 0.6
P/kF

0.8

A

1.0

FIG. 23. The quantities A, B, and C [See Eqs. (A1)-
(A14)] for the potential denoted as HEA. Only one curve
is shown for C since the variation with density can not
readily be exhibited in this figure. (See Fig. 22.) (a) kz
=1.2 fm, (b) k~=1.35 fm, (c) kg=1.5 fm, and (d) k~
=1.5 fm-'

-600

FIG. 25. The quantities A, B, and C for the potential
HEA calculated for k+ -—1.35 fm '. (See caption of Fig.
24.)
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APPENDIX B

In this appendix, the techniques used to construct the matrix elements needed to evaluate Eqs. (2.9}-
(2.11) are discussed. In general, we will extend the approach of Erkelenz by transforming these matrix
elements to the center-of-mass frame and helicity basis, where the contribution from individual meson
exchanges are easily constructed. Each of the three cases will be considered separately.

1. M""

We will discuss this case only briefly, as it corresponds very closely to the G matrix constructed in
Erkelenz. ' The matrix elements in Eq. (2.9) are Lorentz invariant so that we may transform to the center-
of-mass frame

X —= u' '
p

p"'' q M'"'1 —P» u~ p
"'

q

(s k gts'» k M++++ 1 —P g e) k is' )

S

where the isospin labels are implied. Since these matrix elements are independent of s [Z„ is independent
of s, see Eq. (2.1)], then

x-=-' g '
(~, ~,I, lM;;-(I-P„)l~, ~,}t.&.

7 Tkl &t2
r

These helicity matrix elements of M~'r', through Eq. (1.4), are related to the helicity matrix elements
of the one boson exchange potential in Ref. 1. Note that the exchange matrix elements can be constructed
using the relation

2 M-+++

In this case, the transformation to the center-of-mass frame is not trivial since the matrix elements
in Eq. (2.10) are not Lorentz invariant. Therefore, it is useful to reexpress the matrix elements in Eq.
(2.10) in terms of Lorentz invariant ones. If we take p along the z axis, then

(S4)

Therefore,

X.'=- E(s '(p) ~' '(q) IM '-(I -P .}Is"'(p) '"'(q)&

P'

-2s (~"'(p)u" '(q) lM'"+(1 —P»} lu"'(p)u'~'(q)&
gt m

+ (v' "(p)u"'(q) lM "'(1-P„)lu"'(p&u '(q)&

We may now transform to the center-of-mass frame, but we wish to reexpress everything in terms of
u"' and co"', so with k, the relative momentum and using

k'
+&a)(k ) a&&-&j(k ) 2s e &&e &-8)(k ) + c +&-3+Q(k ) + e &-+-u(k )

E(k ) E(k~) E(k,) E(k,)

where

0,'= lk, l
sine, e'""

(B6)

and taking s=+-,', then
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X,' = Q ' ' — &u "~"(k,)u"'(-k, ) ~M'"'(1-P») ~u"~"(k,)u '(-k, )&mEk, m.

(BS)+ (N "~ (i) "(-k)~M'"(( —P,.)( ""(f)"'(-it))IE k

The first term can be constructed as in Sec. B.1. 'The second term must now be expressed in the angular
momentum projected helicity basis. This is also no longer trivial since this term is not independent of
s. In fact,

g&u) ""(k,)u '~'(-k, ) ~M "'(1—P„)~u~e(k, )u"'(-k, )&

( )~,~,~;s,s,„, , g2 (2J+1)(2T+1)[(2S+1)(2S'+l)(2I. +1)(2I,'+1)]"~'

LLsJ'TS S' 4m
Z1112l1l2m

x&x;~;k, ~M;;"(1 p„) I1., xp, &&L su~~;~;z&&~, ~,a~Lsd&

where

(L L' s}|' -,' —,
'

sq g s s
~l I~a —,

'
—,
'

~~ 4„
xl

(0 0 Oj~-s, s, m/IJ L L' ~ S S'

(B10)
2L+ 1

&Lsd~xp, z&= (LOS1, -x, ~d'x, -x,)(-, x, —, -z, ~sx, -x,).
The helicity matrix elements of M~r in Eq. (B9) are related through Eq. (1.4} to the helicity matrix

elements of ~U "' which we must now construct explicitly. As in Ref. 1,
1

&Xf X2k,'
~

U
'

~XXP,& =2)i d(cose)d„„.(8)&u)' 1'(k,')u'"&'(-k,')
~

U '"~u'""(k,)u'""(-k,)&, (all)

where A. =X, —X2. However, now the only invariance property is

Consequently, there are now eight independent amplitudes (instead of six) and we choose the set

(B12}

g U~+++
2

~U~++
3

gU +++
4

=&++k.'I'U "'
I

—-k.&

=&+-k. l'U- I+-k.&

=&+-k; ('U-- (-+k.&,

U,"'=&++k,'i U '" i++k, &, ~U, '"=&++@,')~U "'i+-k, ),
'U.""=&+-k.'I'U "'1++k.&.

~U, '"=&++k,'i U "'i—+k, &,

'U,"-=&+-k. ('U- i- -k, &,

(B13)

where X=+& is denoted by +. Using

(B14), „), E(p)+m '~ t-2z~p~/[E(p)+m]}„

and Eq. (B11), the eight amplitudes in Eq. (B13) can be constructed for each type of meson exchange fol-
lowing the same method as Erkelenz. ' As an example, we show, for scalar meson exchange,

and

4 2 2 1

~U,"'=— ",' —,
' m(k,'+k, ) d(cos8)(1+cose) —Pz(cose)

w1

(B1S)

4 2 2 1 1l2 1~U;- = '; —,'[ k, E(k,)+k,E(k;)] d(cose) [coseP, (co—se) P, ,(cose)]-, (B16)
1

where 8 is the angle between k, and k,' and 1/e is the meson propagator, i.e., e =[E(k,'}-E(k,}]'—(k,'-k, )'
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Again we may use Eq. (B3) to construct the exchange terms since the ket in Eq. (A9) refers to two
u("' spinors.

3. I''
As in Sec. B.2, the transformation of the matrix elements in Eq. (2.11) to the center-of-mass frame is

not trivial. Using Eqs. (B4), (86), and (B7) and specializing to s =+2, we find

X. = g(u&"'(p)u'"'(q) IM""( — 2} lw"(p}u '(q)&

( «)'2&( )u&"&{ k ) ~M""(] P )~
&'~ &(k )u"'( k })

S C

E'(p) I k. l cos82„
»&E'(k )

'p
(W '~e(k )u"' (-k ) ~M

- (1 —P ) ~u"'"(k ) '"'(-k )&E(k ) c c 12 c c

2& ~
,'p ~k,

~
8, e&22.(-"~"(k)u"'( k, ) ~M '-(1-J„)~u'-' "(k )u'"'(-k )&

C

E2+, - &C "&2) '"'&-k)~M''&1 —P„))w" "&1) "&-k))I.
C

(B17)

Noting that Z„.(u& ~&(k,)u ~ '(-k, ) ~M "(1—P») ~u2&(k, )u~ '(-k, )) =0 and using Eq. (B9), the third term in

Eq. (B17) can be rewritten as

e ' e" ' k u"' -k M '" 1-P~ u' '~" k u" ' -k

=tang g (w")@(k,)u'+'(-k, ) ~M "'(1—P») ~u" ~"(k,)u" '(-k, )& (B]6)
C

so that Eq. (B17}becomes

w e

X- = ' '""' &u""(k )u"'(-k )IM""(1-P ) I"'"(k }u"'(-k }&
m mE(k, } 12 c

ha

I (w" 2&(k )u"'(-k ) ~M '"(1-P )~u"~2&(k }u"'(-k )&

C

w "~'&( ) u &2'(-k, )(M
' '(1 —P„)~w")'z(k, )u~ '(-k, )l

C

(B19)

The first two terms can be evaluated as in Secs. B.1 and B2, respectively. Since the helicity matrix
elements of Mz'r' are related through Eq. (1.4) to the helicity matrix elements of 2U ' ', the last remaining
problem is to construct these one boson exchange matrix elements explicitly.

Tp do this, we may proceed as in Sec. 82 except that now, since both the bra and ket are a product of
a w"& and u"' spinor, the exchange terms can not be obtained using the symmetry relation Eq. (B3}. They
must also be constructed explicitly. With

(&&,'&&2'0,'i U ' '(1-P„)i&&, &&2k, )=2» (dco8s) d(8) &'w"(k,')u (-k')
i

U ' "(1-P„)iw ' (k, ) u& '(-k, )&

and the symmetry property

&&&;&;a;~'U'"(1-P„}[&,~, a, ~=(-&;-& P;)'U-'- (1-P„)
( &, - &,u, &

we again have eight independent amplitudes

(B20}

(B21)
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~U, ' '=&++k,'l
~U

' '(1 —P„)l++k, ), U,
' =&++0,'l U (1-P„)l+-0,),

'U" =&++f.'l'U-' '(1 P-.)
I

-I-.), 'U' '=&+-1.'I'U "(1-P2) I++~.)

U,
' =(+ —}t,'l U

'
(1 —P„)l+-}t,), U,

' =&++0,'l~U
' (1-P„)l—+}t,),

'U,""=&+-u.l'U '"(1--P„)l-+u, ), 'U; "=&+ u. l-'U-'"(1-P„)l--n. ).

(B22)

These eight amplitudes can be constructed for each type of meson exchange using Eq. (B14) and the method
of Erkelenz. ' As an example we show, for scalar meson exchange,

2 2

~U, ' =+,' ', {[k',k-, —E(k',)E(k,) —m']+ (-)~[k,'k, +E(k,')E(k, ) —m']j

and

1

x d(cos8)(1+ cos8) —P~(cos8)
-1 e (B23)

U7' = 2' —{[E(k,') +E(k,)] + (-)~[E(k,) —E(k,')]j

1 ( J 'i'1
x d(cos8)l —[cos8P~(cos8) —P~, (cos8)],

-I, It 4+1 e

where again 8 is the angle between k, and k,' and e =[E(k') —E(k,)]' —(k,' —k,)' —p, '.

(B24)
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