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The ~N interaction in the nuclear medium is shown to be substantially altered by local field effects, including

dressing of internal pion lines by the optical potential. The local field effect arises due to scattering of pions in the
intermediate states of the nN t matrix from other nucleons in the medium. We develop an organization of pion
scattering theory based on Goldstone diagrams which includes all possible contributions but emphasizes the dressing
of propagators in n.N t-matrix intermediate states involving one pion and one nucleon only. Pion absorption and

rescattering are treated on an equal footing. Self-consistency is introduced through the demand that the optical
potential which dresses internal propagators be the same as the optical potential which is implied by the t matrix so
corrected. For calculational purposes, the general theory is simplified to the case of the mN t matrix in a Fermi gas.

The input data consist of the free nN t matrix, an off-shell form factor, the nN coupling constant, a binding energy,
and a Fermi momentum kF. Nucleon recoil effects are retained, as they have previously been found to be important.
Numerical results are presented for the quantity 8'Ik, co) which is related to the Klein-Gordon optical potential for
nuclear matter. The results show substantial modification of the mN resonance by the nuclear medium. In particular,
the resonance is broadened and the treatment of pion absorption provides sensible results for the imaginary part of
the self-energy near threshold. Our calculations show the self-consistency is not crucial to the results, as dressing of
propagators by the first-order optical potential is adequate. Nucleon recoil is significant. The results show that local
field effects are important in n. -nucleus interactions.

NUCLEAR REACTIONS General ~-nucleus scattering theory, self-consistent
~N t matrix, absorption, nucleon recoil, Pauli effects, propagator dressing,

optical potential.

I. INTRODUCTION

Theories of pion-nucleus scattering have gen-
erally developed within two organizational frame-
works; one is multiple scattering theory, ' and the
other is the isobar-hole approach. ' Although the
approaches are interrelated at a formal level,
they present quite different organizations of the
important physics.

Multiple scattering theory emphasizes the role
of quasifree nN interactions in a nucleus. Although
numerous corrections enter, the essential input
to multiple scattering approaches is the free sN t
matrix with appropriate off-shell behavior. The
tp optical potential can be calculated with rela-
tively little ambiguity and provides a start to-
wards understanding many gross features of pion
elastic scattering data. Recent analyses' have
also emphasized the need for a secondary term,
thought to be representative of m absorption, in
order to obtain good fits to elastic scattering
data. The large reaction cross section for w ab-
sorption underlines this need in a very direct
way. Generally, absorption contributions to the
optical potential have been treated on a phenomen-
ological level, particularly in cases where the mN

dynamics are modeled by a separable potential
theory.

The second approach —isobar hole theory —foc-
uses on the formation of b, isobars in the nucleus,
in direct analogy to the particle-hole excitations

which are conventional in nuclear physics. The
L isobar is treated on similar footing to a stable
particle; however, the isobar interaction with the
nuclear medium is emphasized, and generally the
mass and width parameters of the isobar are sub-
stantially altered by the nuclear interaction. The
principal difference between multiple scattering
and isobar-hole approaches therefore lies in the
relative emphasis on alteration of the mN inter-
action (isobar) due to nuclear interactions.

In the multiple scattering approach, medium-de-
pendent shifts of mN resonance parameters arise
due to higher order terms which have been called
local fieM corrections. ' These terms describe
the modification of the intermediate states of the
mN t matrix due to multiple scattering of the m

from other nucleons. Alternatively, one may view
the process as a self-energy dressing of the pion
propagation in the intermediate state of the mN t
matrix due to the local field produced by other
nucleons. Putting aside nuclear recoil correc-
tions, the pion self-energy becomes the same as
the m-nucleus optical potential, and the local field
corrections provide a microscopic theory for the
modification of the n N resonance due to the nuclear
medium. Keister, ' Johnson and Bethe, ' and Johnson
and Keister' have exhibited the role of local field
corrections in a particularly simple model (fixed
scatterers in nuclear matter). However, the lo-
cal field corrections are, in fact, much too large
when examined in the fixed scatterer limit. The
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leading order local field contributions to the w "0
optical potential is 3.5 times as big as the "lead-
ing" tp term at the resonance energy. Several ef-
fects regulate this divergent behavior of the mul-
tiple scattering series, the principal one being
nucleon recoil. Including nucleon recoil effects,
Banerjee and Wallacee have shown that the local
field correction is reduced by a factor of V in
m "0, but still ends up being about two-thirds
the magnitude of the leading tp term of the optical
potential. Multiple scattering expansions may
converge, but too slowly to be very practical, at
least near the resonance energy. Thus, there are
two main lessons which have emerged from the
previous work on local field corrections in m-nuc-
leus scattering: (i) a nonstatic treatment of the
nucleons is required; (ii) the local field effects
should be summed to all orders of multiple scat-
tering in terms of a self-energy which dresses all
pion propagators. These points form the founda-
tion of this work on the self-consistent m-nucleus
optical potential.

The idea of self-consistency is simply that the
optical potential and the self-energy insertion
which dresses the pion propagator should be iden-
tical. Johnson and Bethe7 used this idea to reg-
ulate the excessive local field effects which arise
in the fixed scatterer approach to pion scattering.
As will become apparent, self-consistency may
not be a central issue. In the present work the
dressing of pion propagators by the first-order
optical potential gives results which differ little
from the fully self-consistent results.

Celenza, Liu, Nutt, and Shakin' previously con-
sidered the modification of the separable potential
mN t matrix in nuclear matter due to the dressing
of pion propagators by the first order optical po-
tential. They found substantial broadening of the
resonance similar to that of the present study.
However, our emphasis differs in several re-
spects, most importantly by inclusion of the pion
absorption mechanism on an equal footing with the
mN scattering mechanism. Any complete treat-
ment of the m-nucleus optical potential requires a
treatment of the absorption processes. Correla-
tions between nucleons are usually thought to play
an important role in the description of m absorp-
tion. However, there is also a substantial two-
nucleon contribution to w absorption which does
not involve correlations, and this process can be
incorporated into the self-consistent m-nucleus
optical potential on the same footing as the reso-
nant mN scattering contribution. In work which
will be reported elsewhere, "we show that recoil
effects tend to lessen the role of correlations in
pion absorption. In the present work, only the
pion absorption due to uncorrelated pairs will be

dealt with directly; however, our general ap-
proach can readily include other contributions.

The strategy of this paper is to consider, for
the first time, the basic pion scattering and ab-
sorption contributions to the x-nucleus optical po-
tential in a nonperturbative fashion. More exotic
effects due to correlations, intermediate p me-
sons, and crossed pion insertions are not included
in this initial work. Thus, the only parameters
which enter are those required to parametrize the
mN t matrix by a pole and right-hand cut contribu-
tion. Apart from the off-shell form factor, all
the input is determined by the mN phase shifts and

the mN coupling constant.
The paper is organized as follows. A general

theoretical framework for the self-consistent nN t
matrix is developed in Sec. IIA. The theory is de-
veloped in some detail using Goldstone diagrams
in order to provide a clear basis for calculations,
although a number of aspects of the general theory
are well known. The absorption pole diagrams are
included and the general theory is so organized
that the final equations have all the simplicities of
a theory based on potentials. The reader who is
more interested in the approximate equations
which form the basis for our calculation may skip
to Sec. IIB. Section IIIA details the calculation
of the self-consistent t matrix in nuclear matter
using several simplifying approximations, and

Sec. III B presents the results. Conclusions are
discussed in Sec. IV.

II. THEORY

A. Introduction to a self-consistent theory of the nN t
matrix

A new organization of the theory of pion-nucleus
interactions is necessary to embed self-consis-
tently the mN t matrix into the nuclear medium.
In this section, a concise account of the theory is
presented in terms of Goldstone diagrams. For
the convenience of the reader a partial summary
of these rules, ' needed for understanding this
paper, is given in Appendix A.

The set of all diagrams describing the free
space mN t matrix modified by closing the exter-
nal nucleon lines to form a loop generates a very
important subset of diagrams describing the mN t
matrix in a nucleus. This subset will be repre-
sented with a hatched circle as shown in Fig. 1.
Figure 2(a) is an example of one particularly sim-
ple Goldstone diagram (pole term) occurring in
the free mN t matrix. Here the vacuum is the true
vacuum, A fermion line directed upward repre-
sents a nucleon and a fermion line directed down-
ward represents an antinucleon. Figure 2(b) shows
the corresponding contribution in the nucleus, and
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FIG. 1. Goldstone diagram representing the first-
order optical potential (self-energy). Dashed lines are
pions, downward direct solid line represents a nucleon
hole. Hatched circle represents the free 7rN t matrix.

in this case the vacuum stands for the nucleus in
the ground state. The upward directed fermion
lines represent nucleons above the Fermi sea
(particle states). Downward directed lines rep-
resent the creation of holes not only in the Fermi
sea but also in the filled negative energy sea (anti-
nucleons). The contribution of the latter in Fig.
2(b) normally would be a part of pion mass renor-
malization, but it is not the same as in free space
because it is modified by Pauli blockiag and,
therefore, will not be completely canceled by the
pion mass counter term. The difference is pre-
cisely the contribution to m-nucleus scattering
coming from the Z-graph mechanism of mN scat-
tering. The contribution of the holes in the Fermi
sea to Fig. 2(b) represents the more familiar nuc-
leon pole term. The preceding remarks show how
antinucleons can come into play, and how one does
the necessary bookkeeping; however, in the rest
of the paper we never again refer to antinucleons.
Only the part of the downward directed lines which
contain the holes in the Fermi sea will be retained,
since the purpose of this paper is to discuss the in-

fluence of the nuclear medium on the wN interac-
tion.

The set of Goldstone diagrams collectively re-
presented by the hatched circle of Fig. 1 differs
from the complete set of Feynman diagrams for
the free mN t matrix in two respects. First, the
diagrams of Fig. 1 incorporate several effects
of the nuclear medium such as Pauli blocking and
binding effects. Second, the diagrams contain a
factor of (1/2~, )' for each external pion line and,
in principle, a factor of [M/E(p)]~' for each ex-
ternal nucleon line; however, we take the nucleon
motion to be nonrelativistic and omit the second
factor.

A few more remarks are in order to help us ap-
preciate the role of Fig. 1 in the description of
m-nucleus scattering. For every direct diagram
in Fig. 1 there is a crossed diagram where the
entry and the exit points of the external pion are
interchanged. The set of crossed diagrams is in-
dicated in Fig. 3. If we decided to keep our phys-
ics at the simple level of the mechanisms indica-
ted by Figs. 1 and 3, one might suspect that the
sum of the two sets of diagrams would be the
Schrodinger optical potential. This is incorrect
because chains of the sort shown in Fig. 4, with
all connecting pion lines moving upward, are not
enough, and one must also include twists in the
chain as shown in Fig. 5. Reference 12 showed
that when the twists are included, the pion propa-
gation is described by a Klein-Gordon equation,
the "potential" for which is the sum of Figs. 1 and
8, but without the factors of (1/2(o, )+ from the
rule regarding external pion lines. Therefore,
the sum of Figs. 1 and 3, which represents the
pion self-energy in the nuclear medium, is re-
lated to the Klein-Gordon optical potential by a
simple factor. For this reason the terms "self-
energy" and "optical potential" will be used inter-
changeably in this paper.

The purpose of the present paper is to go beyond
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FIG. 2. Goldstone diagram representing the nucleon

pole contribution to the free xN t matrix (a) and the
corresponding Goldstone diagram in the nuclear medium.
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FIG. 3. Diagram representing the crossing of the
processes represented by Fig. 1.
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FIG. 6. Goldstone diagram representing the complete
vI-nucleus optical potential. The hatched square repre-
sents the complete ~N t matrix in the nuclear medium.

FIG. 4. A diagram generated by using a Schrodinger
vI-nucleus optical potential consisting of the sum of
Figs. 1 and 3.

the approximation of using Figs. 1 and 3 as the
source of the s-nucleus optical potential. The
complete set of all diagrams which make up the
optical potential will be donoted by Fig. 6, where
the hatched rectangular box represents the full
mN t matrix in the nuclear medium and the direct
and the crossed set are represented in the previ-
ously adopted manner. It is convenient to sepa-
rate the diagrams of Fig. 6 into two categories.

Category 1 contains the set of Fig. 1 and all

other diagrams which one can generate by letting
one of the internal lines, w or N, of a diagram of
Fig. 1, have one or more elastic interactions with
the nuclear medium. In this paper we ignore the
elastic interactions of internal nucleon lines for
simplicity. The elastic interaction of an internal
pion line with the nuclear medium can be any ir-
reducible diagram (i.e., not containing two parts
connected solely by a pion line} inserted into a
pion line which does not connect with other lines
in the main diagram. A complete set of these ir-
reducible diagrams is necessarily equal to the
set represented by the hatched rectangular box in
Fig. 6, and this is precisely how self-consistency
comes into the problem. Figure V(a} shows a
simple element of Fig. 1; Fig. V(b) shows a com-
plete elastic interaction inserted once; and Fig.
V(c) shows the interaction inserted twice. When
all orders of insertions are included, the internal
pion line is fully dressed. Of course, the full
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FIG. 5. A diagram which cannot be generated by the
optical potential described in the caption to Fig. 4.

FIG. 7. Some diagrams represented by the diagram of
Fig. 6, which illustrate the dressing of internal pion
lines.
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(b)

FIG. 10. The cross hatched circle represents all con-
tributions to the ~N t matrix in the nuclear medium
which do not contain elastic (one pion-one particle-one
hole) intermediate states where the pion propagator is
dressed.

(c)
FIG. 8. Some other diagrams which are represented

by Fig. 6 and which belong to category 2.

dressing requires inclusion of insertions of the
type shown in Figs. 4 and 5.

Category 2 contains all other irreducible dia-
grams which contribute to the optical potential of
Fig. 6. A few examples are given in Fig. 8. Fig-
ure 8(a) represents absorption and them emission
of a pion by a correlated nucleon pair. The solid
wavy line represents the nucleon-nucleon G ma-
trix and this interaction plays an important role
in providing the momentum required in the m ab-
sorption process. In Fig. 8(b) the sN scattering
serves that purpose. The NN interaction corre-
lates the motion of the two nucleons and has other
important effects. Figure 8(c) represents a piece
of double scattering of m by a correlated nucleon
pair and is an important part of the well-known

Lorentz-Lorenz Ericson-Ericson (LLEE) effect.
Figure 8(d) results from nucleon exchange in a
diagram which belongs to category 1 (see Fig. 9).

We now introduce a tactical simplification for
the purpose of the present paper only. This in-
volves dropping all crossed graphs which are not
internal to Fig. 1. The crossed graphs internal
to Fig. 1 are included in the calculations of this
paper since we obtain all of our mlV amplitudes
from the measured physical amplitudes. In a sub-
sequent paper we will show how to include the
other crossed graphs; however, dropping them
simplifies the problem considerably and is well
worth doing at this developmental stage. We do
not intend to convey any impression that the cros-
sed graphs are unimportant, however.

The next step is to identify a subset of the dia-
grams of Fig. 6 which have the following feature:
there is no elastic interaction inserted on an in-

I
I

I

FIG. 9. An absorption diagram belonging to category
1.

(a)
FIG. 11. (a) A diagram which is contained in Fig. 10,

and (b) a diagram which is not contained in Fig. 10.
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FIG. 12. Diagrammatic representation of the self-

consistent t matrix equations.

ternal pion line if at the same time only one par-
ticle-hole pair and nothing else is present. This
subset is represented by Fig. 10. The set contains
all of Fig. 1. It contains all diagrams of category
2 with bare internal pion lines, such as the ones
shown in Figs. 8. Some of the internal pion lines
can be dressed. Thus, it can contain Fig. 11(a)
but not Fig. 11(b), because in the latter the elastic
interaction is inserted when we have only one par-
ticle-hole pair besides the internal pion.

The wN t matrix, represented by the cross
hatched circle of Fig. 10, therefore contains the
subset of all diagrams contributing to the full nN t

matrix in the medium, represented by the hatched
box of Fig. 6, which do not contain a dressed pion
line in any one-nucleon-one-pion (elastic) inter-
mediate state. The reason for grouping the dia-
grams in this manner is that the dressing of the
pion lines in the elastic intermediate states can
then be accomplished through a linear equation
which is amenable to solution as a practical mat-
ter. The complete set of diagrams for the wN t
matrix in the nuclear medium is then given by the
diagrammatic self-consistent equation represen-
ted by Fig. 12(a) where the double dashed line rep-
resents a fully dressed pion line as given by the
linear equation displayed diagrammatically in Fig.
12(b). The diagrams shown in Fig. 12 represent
the linear self-consistent equation

T~» = T„»+ Tg»(G~» —G f»)T„„, .

where T,'c is the self-consistent t matrix repre-
sented by the hatched square, TD~ is the t matrix
resulting from the processes represented by the
cross hatched circle, G~„ is the Pauli corrected
mN propagator, and G~~ is the self-consistent mN

propagator which depends upon the self-consistent
self-energy. Equation (1) is very general, as it
simply expresses the replacement of the Pauli-
corrected propagator 6 ~„ in the elastic intermed-
iate states by the fully dressed propagator G sc.
The theory can always be so organized.

In the general framework represented diagram-
matically in Fig. 12, nuclear potential insertions
in the nucleon lines have been neglected on the
grounds that the effective interaction for particles
above the Fermi sea is weak. In the context of
nuclear rnatter, Brandow" has argued that this is

(o)
FIG. 13. Diagrams illustrating possible double count-

ing of potential contributions by the self-consistent
equation.

FIG. 14. Goldstone diagram representing the local
field correction.
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+ ~ ~ ~

FIG. 15. Diagrams representing the local field series.

a reasonable choice. However, it is important to
note that one cannot avoid additional potential-like
insertions on the nucleon lines being generated by
the self-consistent theory when the nucleon pole
term is included in the mN t matrix. Some exam-
ples of this are given in Fig. 13.

Figure 13(a) indicates the leading order local
field correction due to pion absorption obtained
when we consider the nucleon pole terms for the
circle and boxes in Fig. 12(a) and usethe free pion
propagator for all pion lines. This diagram is
similar to one for a two-pion exchange potential
insertion on the nucleon line. Similarly, Fig. 18
(b) shows the leading order local field correction
due to pion rescattering via the isobar (right-hand
cut) portion of the t matrix. This diagram is sim-
ilar to one for another part of the two-pion ex-
change potential insertion on the nucleon line.
Thus, the general framework of the self-consis-
tent equations of Fig. 12 automatically generates

FIG. 16. A complicated diagram illustrating the need
for self-consistency.

some parts of the potential insertions on the nuc-
leon line. If the same parts were already included
via a potential insertion on the nucleon lines, there
would be double counting. Our present treatment
of the dressing of the nucleon line due to NN in-
teraction is so simplistic that it is pointless to
dwell on this question. At this stage we merely
note that the question of double counting is insep-
arable from the question of the correct NN inter-
action to be used in the appropriate kinematical
regime, and we leave such questions to the future.
As a practical matter the difficulty is not very im-
portant in the numerical calculations of Sec. III,
as may be gauged by the small energy shift of the
nucleon pole part of the self-consistent t matrix
away from the free pole energy This energy
shift of the pole will be discussed later in this
paper. In particular, the imaginary part of the
optical potential is expected to be relatively in-
sensitive to these questions.

B. Dominant contributions to the self-consistent wN t
matrix

Having presented the general theory of the self-
consistent t matrix, it is instructive to consider
some of the important diagrams which contribute
to the self-consistent self-energy represented by
Fig. 6 in more detail. In order to simplify the
discussion presented in the remainder of this
paper, we will assume that the set of diagrams
represented by the cross hatched circle of Fig.
10 is well approximated by the Pauli-corrected
t matrix represented by the hatched circle of Fig.
1. This assumption amounts to neglecting con-
tributions to the driving term (cross hatched cir-
cle) from correlated multiple scatterings such as
those shown in Fig. 11 and processes involving
other than elastic (one paxticle-one hole-one pion)
intermediate states. The relative importance of
correlated double scattering (LLEE) and corre-
lated absorption contributions is reported in two
other papers z"4

The simplest contribution to the m nucleus opt-
ical potential which involves nuclear particle-hole
excitations is shown by the Goldstone diagram in
Fig. 14. Here the incoming pion scatters from a
nucleon in the Fermi sea, exciting a particle-hole
pair. The pion then scatters elastically from a
second nucleon in the Fermi sea before rescatter-
ing from the first nucleon to leave the nucleus in
the ground state. This process is called the local
field correction, ' as calculated by Keister, ' and
Banerjee and Wallace. '

In order to obtain a reasonable value for the
local field correction and to ensure that unitarity
is maintained, it is necessary to consider an in-
finite sequence of these events such as shown in
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Fig. 15. This series contains the first-order
optical potential plus the lowest order local field
correction plus diagrams containing two or more
"reflections" of the intermediate pion by other
nucleons but always returning to the first nucleon.
We refer to this set of diagrams as the locul geld
series. It should be noted here that such a series
is included naturally in the isobar-hole formalism
by means of the isobar self-energy. Indeed, the
equivalent of the local field series is generated if
the lowest order pion self-energy is used to cal-
culate the isobar self-energy, as is the case in
the calculation of Oset and Weise. "

In the local field series, as described above,
each reflection of the intermediate pions consist
of only one elastic interaction of the pion with
another nucleon before returning to the first nuc-
leon. It is, of course, possible for the pion to
undergo any number of elastic interactions with
other nucleons before rescattering from the first
nucleon, as is illustrated by Fig. V. The effect of
including all such elastic interations is the "dres-
sing" of the internal pion lines.

An example of another type of local field diagram
is shown in Fig. 16. In this figure the incoming
pion scatters from a nucleon in the Fermi sea, ex-
citing a particle-hole pair. The pion proceeds to
a second nucleon and scatters creating a second
particle-hole pair. The pion then interacts elas-
tically from a third nucleon before returning to
the second nucleon to deexcite the second particle-
hole pair. It then returns to the first nucleon to
rescatter, leaving the nucleus in the ground state.
Alternately, this may be viewed as the interrned-
iate pion interacting with the nuclear medium by
means of the lowest order local field correction
term before returning to the first nucleon. The
point is that intermediate pions can be scattered
from the nuclear medium by the same processes
associated with the optical potential seen by in-
cident pions. Therefore, the determination of the
optical potential must be done self-consistently.

Pauli corrections to the ~N t matrix can be ap-
proximated in a well-known manner. ' It is always
possible to organize the diagrams contributing to
the free nN t matrix in such a manner that the free
t matrix can be found by solving a Lipprnan-Sch-
winger-type equation

in the second term of (2) and is very much in the
same spirit as the organization of the self-consis-
tent equation presented above. It is, of course,
not convenient to solve Eq. (2), but this organiza-
tion facilitates the introduction of Pauli correc-
tions by allowing one the calculational advantages
of a potential theory without resorting to the use
of a potential theory. A similar equation can be
written for the Pauli-corrected t matrix:

T„~= D+ DG~gT~~, (3)

P 0 0 1-Q
Tfrz = T~g-T~+ E K„K . T

r N

where E is the starting energy of the mN system,
K, = Irn, ' —v, ')+, K„= v„'/2M, a-nd Q is the
Pauli operatnr which projects onto unoccupied
states. This method can be recognized as the
matrix inversion method used in the nuclear
many-body problem"

When the Pauli-corrected amplitude T~~„of Eq.
(4) is used to approximate the set of vN reducible
diagrams Ts„, the self-consistent equation (1) be-
comes

P P Q
mQ xN rg E -K. -K„-Z(~ -K„)+ iq

E -K -K~+ iq j

where T~„ is the Pauli-corrected nN t matrix and

G„„is the Pauli-corrected mN propagator. In
writing this equation it is assumed that the major
contribution to Pauli corrections comes from the
elastic (vN) intermediate states. By using the
same driving term D in Eqs. (2) and (3), Pauli
corrections to inelastic and nucleon pole intermed-
iate states are neglected. It can be argued that
since pions in multiple pion intermediate states
must have a rather high total momentum in the
c.m. frame, any nucleon in such a state must also
have a large momentum and will be little influen-
ced by Pauli blocking. Therefore, it is reasonable
to ignore Pauli corrections to these terms. Equa-
tions (2) and (3) can be formally combined to elim-
inate the driving term D. This leads to the equa-
tion

T~~ = D + DG~~T„~, (2)

where T„„is the free mN t matrix, G„„is the free
nN propagator, and D is a driving term. In order
to obtain this form, the driving term D contains
all diagrams which do not have any one-pion-one
nucleon (elastic) intermediate states. This organ-
ization emphasizes the importance of the elastic
(xN) intermediate states through the vN propagator

where T,„is the self-consistent mN t matrix. The
cross hatched circle of Fig. 12 is approximated by
the Pauli-corrected t matrix T,„, and Z is the
self-consistent pion self-energy obtained from T,„.
A specific example is worked out in the next sec-
tion. A similar set of equations has been proposed
by Celenza et al. '
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III. A SIMPLE SOLVASLE EXAMPLE

A. The nuclear matter case

Our discussion up to this point has concerned
only general considerations relating to the self-
consistent t matrix and has been independent of
any particular models for the nucleus or for the
free mN t matrix. Before proceeding to solve Eq.
(4) for Pauli corrections and Eq. (5) for the self-
consistent t matrix using the nuclear shell model
and a more sophisticated treatment of the free t
matrix, it is instructive to consider the solution
of these equations within the context of a simple
solvable model. This model, as presented below,
contains the basic elements of the self-consistent
calculation so that the solution should exhibit the
same qualitative features as the more complicated

I

problem while not necessarily being quantitatively
accurate. This allows one to gain some feeling for
the relative importance of the various elements
and features of the self-consistent solution before
one tackles the more complicated problem.

In order to simplify the solution of the Pauli
correction equation (4) and the self-consistent
equation (5), we use the Fermi gas model of the
nucleus which has only the Fermi momentum k~
and the binding energy B as parameters. Use of'

the Fermi gas model requires that all elastic pion
scatterings in the Fermi sea must be forward scat-
terings. In keeping with the motivation of this
calculation, nucleons are allowed to recoil. We
are Not using the fixed scatterer approximation.

In the Fermi gas model the Pauli correction
equation (4) becomes

,(&'p».Ku),= &',,(&'p, » I', IA+ ~2;, I.fA&'.,(&'p, sv;l', D'& —s&

8((p+ fc —q( —k„}—1
(o+ E(p) -E(p+ R —q) —(u, +iq

and the self-consistent equation (5) becomes

T,„(k'p, k a; p', p) = T~„(k'p, k o.'; p', p)

+,g d'qT«(k'p, qy;p', p+ k-q)9(~p +jt-q~ -k„)2n'
y

1
&u+ E(p}-B —E(p+ R-q} —~, -Z[q, ~ -E(p}-B -E(p+ jt —q)]+iq

1
(o + E(p} B —E(p + —R —q} —&u, + iq

where k and k' are the initial and final pion four-
momenta; p and p' are the corresponding nucleon
four-momenta; a, P, andy are pion isospin in-
dices; and the caret denotes that the t matrices
are operators in the nucleon spin-isospin space.
E(P) = p'/2M and (u, = (q'+m„')~'.

In order to simplify further the solution of (6),
only P-wave mN amplitudes are used and the free
wN t matrix is taken to be of a static factorable
separable form:

T~~(k'P ~ k &~ P', p)
= -4w Qh20, ,~((u)G,~(R', %}A, (p, a)

I,J
u(k') u(k)

(2„)1/2 (2„)v2

where ~ is the pion energy, h20z ~(a&) is related to
the experimental phase shifts by

M+ CO g~2~e2' ar. 2~ -1
2'k..'.*(k..)

where

(&o+M)2+m, '-M' '
2(M+ &u)

(10a)

1
v(k) (10b)

is a form factor. p is the form factor mass and
will be chosen to equal the nucleon mass (p = M)
in the calculations presented below.

In Eq. (8) both the isospin (I) and spin (J} in-
dices are understood to be summed over the val-
ues 2 and 2. The isospin projection operators
A2~(P, a) are

(11a)~,(p, a) =

&,(p, a) = 5~, — (11b)

and the static spin projection operators Q,~(X', R)
are
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Q, (R', R) =R"R+ is"R'xR,

Q, (T,R) = 2R'R-is R'xR.
(12a)

(12b)

As a further simplification in this calculation, the
spin-dependent parts of the spin projection op-
erators are dropped, giving

and replace the theta functions, e(lp+ R- |1I
—kz)

in (8) and (7), by an effective Fermi function, "
P (IR —iil, kz), where

P'(R, R,)=- —1 ——,e(2k, -k)3 k 1 k

Q„(R',R) =-(J+ —,')R"R. (13) + 9(k —2k~) . (i8)

Retaining the spin-flip terms increases the com-
plexity of the coupling of the amplitudes, but adds
nothing to the instructional value of the problem.

The energy dependence of the off-shell ampli-
tudes is given by a Low e(enation for the right-hand
cut plus the right-hand nucleon pole term. The
nucleon pole term corresponds to the absorption
and reemission of a single pion by a single nuc-
leon. This term produces pion absorption con-
tributions to the self-consistent t matrix. The
energy dependence of the off-shell amplitudes is
then given by

2g.'(0)
18vM2~ ~l~ 'V'
1 " Imk,'~.~ ~ (z)
'IT 8 —(d —t'g

m

(14)

where g, (0) = 12.7.
By choosing a static form of the t matrix, ef-

fects associated with transformation of variables
from the wN c.m. frame to the nuclear rest frame
are ignored. When applied to the free t matrix,
these Fermi motion effects have been shown to
result in a considerable broadening of the reso-
nance as well as an increase in resonant mass."
However, local field effects also considerably
broaden the free resonance, and thus the self-con-
sistent t matrix is less susceptible to Fermi
broadening. Our neglect of this effect should not
qualitatively alter the results discussed below.
A correct treatment of this effect would greatly
increase the complexity.

As a further simplification we make the angle-
averaged approximation to the energy denomina-
tors

Since the free t matrix was chosen to be of a sep-
arable form, it is also reasonable to assume, as
an ansatz, that the self-consistent t matrix will
be of the separable form

T,„(k'P, ka;P', P)

4v Q h», ~(k, (d)Q, ~(k', k)&,g(p, a)
1,4

v(k) v(k')
(2(d )'~ (2(d„)~ (17)

The Pauli-corrected t matrix is also of this form.
Substituting (8), (18), and (17) into (8) leads to

the solution of the Pauli correction equation

1+ H,', (ar) 8( k(v) ' (18)

H,", '= 4mp (J+ ,')h,'j~2~(—, (19)

1 (Pq, (R (l)'
F(k (v)

( )~
v2(q)

p'(I f1-RI, k~) —1
&o —[(R- fi)2/(2M)] —(d,+iq

'

Note that by using the idempotency relations for
the isospin projection operators, "separate so-
lutions can be written for each isospin channel.
However, the spin quantum numbers are summed
because the various spin channels are coupled.

Similarly, the solution of the self-consistent
e(iuation (7) becomes

E(p) —E(p+ R- @= P (p+ R-71)'

= —E(R —|1) (15)
(R- Q)' where

H„(k, (d)

1+ H»(k, (d)F(k, (d)
(21)

F(k, (o) = v'(q) p'(IQ-Rl, k~)
1 (Pq, (R 7|)2

1
B —[(R--Q)2/(2M) ]—(d, —g (ft, (o-B —[(R —ft) /(2M2)]} f 7+(

1
-& -((((-0)'/(2M)I- .+ n)

(22)
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The self-energy Z(k, &u), which is related to the
Klein-Gordon optical potential II(k, &o) (the invari-
ant self-energy) by

II(k, ~) = 2&v, Z(k, &o),

is defined as

(23)

Z(k, &o) = — v (k)W(k, u&), (25)

where we define

2k 3

W(k, ar) = i (I+ ~)8~&(k, &o —B) .
l

(26)

Similar equations hold for the free quantities &',
~, Z', and the Pauli-corrected quantities&,
W, Z . The function W'which is related to Z by
(25) is dimensionless and weakly dependent upon
the pion momentum k.

To obtain a numerical solution to the self-con-
sistent equation, Eqs. (18), (20), (25), and (26)
are used to find a Pauli-corrected self-energy.
This then gives a first approximation to the self-
consistent self-energy needed to calculate I from
(22). This in turn can be combined with (21), (25),
and (26) to give a new approximation to the self-
consistent self-energy in (22). This process is
continued until the input and output self-energies
are identical.

B. Results for the nuclear matter case

Z ~(k, &u)=g, (stlT(kP, ka;P, P))sf),HAPP

at (24)

where s and t are the spin and isospin indices of
the nucleon.

Using (8) and (1'I), the self-energy may be writ-
ten as

(&u& m, ) shows that the primary effect of Pauli
corrections in the region is to shift the position
of the nucleon pole to higher energy. This shift
reflects the effect of Pauli corrections on nucleon
mass renormalization in the nuclear medium and
is discussed in detail in Appendix B. Above
threshold the Pauli-corrected curves have the
resonance shifted to higher energy and the reso-
nant width is only approximately 75% of the free
value.

Figure 18 shows the effect on ~ of adding the
lowest order self-energy correction shown in Fig.
14 to the Pauli-corrected S'. The imaginary parts
of both the Pauli-corrected (curve 2) and Pauli-
plus-local-field-correction (curve 3) W's are
shown in this figure. It is obvious that the first-
order local field correction has a drastic effect
on the self-energy, causing ImW not to have a
simple resonant shape. Indeed, ImW changes
sign, indicating that unitarity has been violated.
This is the result of two competing processes.
By opening a new channel, flux is robbed from the
original channel and S' is quenched. In addition,
the new channel contributes flux to the scattering
process in a way that tends to maintain the orig-
inal sign of the imaginary part of W. In the lowest
order local field correction, too much flux is re-
moved without being replaced by the new channel.
This causes the imaginary part of W to change
sign.

If unitarity is to be maintained, it is necessary
to sum the entire local field series as shown in

Im 2-~1 (
I
I

)Im I—I I'i
I
(

All of our results are presented in terms of the
dimensionless quantity W(k, &o) which is defined
by Eq. (26). This is directly related to the self-
energy Z(k, &u) by Eq. (25), and Z is then related
to the Klein-Gordon optical potential v by Eg. (23).

Figures 17-23 show W as a function of the pion
energy &o. As noted earlier, W(k, ur) is a weakly
varying function of the pion momentum k. All of
the curves shown in these figures are calculated
with the Fermi momentum k&= 1.9m„c, the form
factor mass p equal to the nucleon mass I, the
binding energy B = 0.15m„and, with a fixed pion
momentum, k= 2m„c. Solid or broken lines rep-
resent the real part of W, while dashed lines rep-
resent the imaginary part of 8'.

Figure 1V shows W as calculated with free (curve
1) and Pauli-corrected (curve 2) t matrices. Com-
parison of these two calculations below threshold

-2
0

u [mvj

FIG. 17 ~(k, ~) as a function of ~, comparing 8'cal-
culated with the free mN t matrix (curve 1) and the
Pauli-corrected W. In this graph, and all, those pre-
sented hereafter, solid or broken lines represent the
real part of 8', and dashed lines the imaginary part,
k = 2m c, k&= 1.9m, c, and the binding energy = 0.15m, .
For the relationship of N to the Klein-Gordon optical
potential, see Eqs. (23)-(26).
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FIG. 18. Pauli-corrected +'(curve 2) versus the
Pauli-corrected ~'plus the lowest order local field
correction (curve 3). Note that unitarity is violated.

Fig. 15. Figure 19 compares W resulting from the
summation of the local field series (curve 4) to
the Pauli-corrected W (curve 2). It is clear from
this figure that by summing the local field series
unitarity is maintained and that W is again roughly
of the resonant form.

The next step is to dress the internal pion lines
in the local field series using the Pauli-corrected
self-energy. This corresponds to the first itera-
tion of the solution of the self-consistent equation.
W for the dressed local field series (curve 5) is
compared to W for the local field series without
dressed pion lines (curve 4) in Fig. 20. The effect
of the dressing is a smoothing of the energy varia-
tion. Although the general effect may not appear
to be large, the dressing may result in a consider-
able change in the value of W at a given energy.
In particular, the imaginary part of W at thres-
hold, ~ = m„ is increased by about a factor of 3
over the bare value. At threshold the imaginary
part of W comes entirely from pion absorption in
the intermediate states.

Figure 21 illustrates the importance of nucleon
recoil in calculating the local field series. This
figure compares the dressed local field series
(curve 5), as shown in the previous figure, to a
similar calculation where the rrucleon recoil mass
has been doubled (curve 6). The change in ImW
caused by doubling the recoil mass is substantial
at threshold and at resonance. It is clear that
rrucleon recoil must be properly treated in order
to evaluate local field effects.

Figure 22 illustrates the convergence of our
iterative scheme for solving the self-consistent
equation. W is shown for both the first iterate (or
dressed local field series, curve 5) and the con-
verged self-consistent solution (curve 7). The
two solutions differ only in detail which suggests

W

4 I I I I I I I I I I I I I I I I I I I I I I I I

]~ & rIm2

I
f
IRe2~

2 1

)'( ™4
0

Re 4 &r

I I I I I I I I I I I I I I I I I I I I I I I I

l.0 l.5 2.0 2.5 5.0 5.5 4.0
(u [m„j

FIG. 19. 8' resulting from the summation of the local
field series (curve 4) compared to the Pauli-corrected
+' (curve 2).

3 I I I I I I I I I I I I I I I I I I I I I I I I

Re 4

-lm 4
/

I
l

Im 5

w
/

/

e 5

s i & i I s S

I.O l.5
I I I I I I I I I I I I I I I I

2.0 2,5 3.0 3.5 4.0

4I {Al~]

FIG. 20. +' resulting from the local field series with
pion lines dressed by the Pauli-corrected self energy
(curve 5) compared to the local field series without
dressing (curve 6). Note the increase in ImS' near
threshold (co = m, ) when the pion propagators are
dressed.

that the scheme converges quite rapidly. Indeed,
we found that the solution has essentially conver-
ged after the second iteration.

Finally, Fig. 23 compares the self-consistent W
(curve 7) to W calculated with the free wN t matrix
(curve 1). The resonant mass is slightly larger
than the free value, and the resonant width is al-
most twice the free width. While the imaginary
part of the free W is zero at threshold, the im-
aginary part of the self-consistent W is finite at
and below threshold, reflecting the existence of
pion absorption channels in the self-consistent
equations. This allows us to make some contact
between the nuclear rnatter case and reality.
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FIG. 21. Comparison of the dressed local field series
(curve 5) to a similar calculation where the nucleon re-
coil mass has been doubled (curve 6). This illustrates
the sensitivity of local field effects to nucleon recoil.

cu [mv]
FIG. 23 Comparison of the self-consistent +'(curve

7) with the free W (curve 1). Note the broadening of the
resonance in the self-consistent quantity and the finite
Im W below threshold which results from absorption.

From the work of Batty et al.,"on finding a
phenomenological optical potential for the pionic
atom, it is possible to calculate an empirical
value for the imaginary part of W at threshold by
using the equation

1m',}= (p„+ pp)'ImC„
SgM

(2V)

where ImCO= 0.0425m„' is the value given by
Batty et a/. , resulting from a fit to the data with
a form for the optical potential not including the
LLEE correction. Equation (27) gives
ImW(me)™~= 0.107, while the self-consistent

4 I I I I

I

I

2 I

Re 5

Im 5

+Im 7

s a-2
0

FIG. 22. Comparison of the first iteration of the self-
consistent equations (curve 5, same as the dressed lo-
cal field series) to the converged self-consistent W

(curve 7). Complete self-consistent dressing of pion
lines results in little difference from dressing of pion
lines with the Pauli-corrected self-energy

W'""(k, ~}= W(k, &u} + W(k, —&u) . (20)

A more complete treatment of the crossing will
be left to a future paper.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a general ap-
proach to the calculation of the self-consistent
mN t matrix using field theory and Goldstone dia-
grams. As an illustration of this general theory,
a simple solvable case has been presented which
treats pion scattering and absorption processes
on an equal footing. This model problem does not
include contributions from crossed diagrams, cor-
relations, or p exchange. A Fermi gas model
is used to describe the nucleus, and the mA' t ma-
trix is chosen to be of a static, factorable, se-
parable form. From this calculation we draw the
following conclusions.

(1) Any conclusion of local field effects must
allow nucleon recoil. The pion absorption con-
tributions cannot otherwise be included.

nuclear matter problem gives ImW(m, ) = 0.127.
The nuclear matter solution is then within 30% of
the empirical value.

Finally, the values of the function W shown in
curve 7 of Fig. 23 should not be used directly to
construct an optical potential for calculating m-nuc-
leus elastic scattering. Since only the right-hand
(uncrossed) contributions to W are displayed, the
values of ReW in the threshold region and below
are not adequately described. A minimal treat-
ment of the crossing would be to simply use
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(2) All graphs in the local field series must be
summed in order to maintain unitarity.

(2) A detailed description of the pion self-energy
requires that all internal pion lines must be
dressed by at least the first-order optical poten-
tial.

(4) Dressing of the internal pion lines increases
the imaginary part of the optical potential at thresh-
old by a factor of 3. The dressed value is within
30% of the empirically determined imaginary part
of the optical potential.

(5) Dressing of the internal pion lines with the
fully self-consistent pion self-energy results in
only detailed changes from dressing of the pion
lines with only the Pauli-corrected self-energy.

The modification of the mN t matrix by the nuclear
medium must be taken into account in multiple
scattering approaches to the pion optical potential.

Both w-absorption and resonant scattering pro-
cesses play a substantial role in the local field
correction, and the net result is considerable
suppression of the imaginary part of the m-nucleus
optical potential at the mN resonance energy. Be-
cause pion absorption and resonant scattering
mechanisms have been treated on an equal footing,
the theory is expected to have very interesting
implications for the breakdown of reaction cross
sections into components due to absorption and in-
elastic pion scattering. A local density approxima-
tion to the self-consistent optical potential will be
explored in future work aimed at the explanation
of reaction cross sections.

Several extensions of the theory are expected
to prove numerically signifcant but are not ex-
pected to alter the qualitative conclusions. One
of these is a more complete treatment of Fermi
broadening effects which have been emphasized
by Shakin and collaborators. ' However, little
additional broadening of the resonance from that
calculated in this paper is expected when Fermi
effects are included in the calculation of local
field effects since the input amplitudes will have
effectively a much weaker resonancelike energy
dependence. A second refinement of interest is
to include the crossed insertions into the theory.
Finally, we mention the connection of the present
results to earlier work by Banerjee and Wallace
on the leading order local field correction in z-"O
scattering. The reflective mechanism that was
found to be important in the earlier study is sup-
pressed in the nuclear matter calculation of this
paper because the pion may only scatter forward
in nuclear matter. Thus, there is a need to re-
investigate the reflective parts of the local field
correction incorporating the self- consistent T,„
and dressed pion propagators which will reduce

this effect.
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APPENDIX A: GOLDSTONE RULES
FOR THE x-NUCLEUS t MATRIX

Rules for drawing Goldstone diagrams

1. A Goldstone diagram consists of directed lines
for pions, nucleons, and other particles and ver-
tices where three or more of these lines join. If
a potential theory for the NN interaction is used,
there will be nondirected horizontal lines of speci-
fied character connecting two nucleon lines to in-
dicate potential interactions. The types of lines
used in this paper are (i) dashed lines for pions;
(ii) upward solid lines for nucleons in unoccupied
(particle) states, downward solid lines for, occu-
pied (hole) states; (iii) horizontal wiggly lines
represent G matrices. Single potential lines are
never exhibited separatel. y.

2. All of our diagrams will have two external
lines, incoming and outgoing pion lines.

In Goldstone diagrams the time sequences of
events are maintained. However, in our diagrams
for the t matrices, the starting point and end point
of the external pion lines are of no significance.
The relative time sequences of the first and the
last interactions of the external pion lines with the
nuclear medium are of significance. The arrows
on the external pion lines are drawn only to help
the reader distinguish between the incoming and
the outgoing lines.

Rules for evaluating the Goldstone diagrams

1. Associate with each internal line an appro-
priate set of quantum numbers (e.g. , spin, iso-
spin, momentum, etc.). The energy of the line
is determined by the chosen model Hamiltonian
and the quantum numbers. The energy associated
with the external pion line is the incoming energy (d.

2. Between successive vertices, there is an
energy denominator. To determine these deno-
minators we draw for each diagram an auxiliary
diagram where we remove the original external
pion lines and then replace them with a singl. e
line directed from the exit point (last interaction
point of the external line) to the entry point (first
interaction point). This line is directed upward
or downward depending on the relative time order-
ing of the first and last interactions. A denomina-
tor is equal to the sum of energies of all down-
ward-going lines minus the sum of all upward-
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going lines present in the interval.
3. The rules for the vertices and |"-matrix in-

teractions are the usual ones.
4. Form the product of all denominators and

matrix elements of interactions and sum over
all internal variables.

5. The sign of any contribution of any diagram
is given by (-1)"+', where h is the number of hole
lines and E is the number of closed fermion loops.

s, (p-q)

P
ig

(q)
I
l

/
/

APPENDIX B

To illustrate the connection between the nucleon
pole shift and the effect of Pauli corrections on
mass renormalization, Eq. (18} can be rewritten
as

P

FIG. 24. Nucleon line insertion which is related to
nucleon mass renormalization.

H~k(u = 1
IP '(~)+S(k, &u}

' (81)

In. the region where 8 comes primarily from the
pole contribution, i.e. , near +=0, the function
P serves to shift the energy of the pole. The rela-
tion of this shift to mass renormalization can be
seen by considering the segment of some arbitrary
Goldstone diagram represented by Fig. 24. In
free space the insertion of such a diagram into the
nucleon propagator is part of the nucleon mass re-
normalization, and the nucleon mass counter term
in the Lagrangian is chosen to exactly cancel the
mass shift due to such an insertion. This implies
that the nucleon mass counter term is equal to the
insertion represented by Fig. 24 ~ Therefore, this
insertion minus the counter term when calculated
in the nuclear medium is proportional to

where the positive frequency nucleon propagator
in nuclear matter is

„„,,) 8(Ill —k~) 8(k~- I ll )
Io E(j)+i&-lo- E(T}—ip' (83)

Sfpse 1
l' E(I} i-q+

8(I I I
—k„} 8(k —

I II )
lo —E(T}+i q lo — (ET) i+@

'

and the positive frequency pion propagator is

8(+1 )— 1
2u&,(q'- &u, +ig)

(84)

(85)

the free positive frequency nucleon propagator is

From (83) and (84) it is clear that

S~""(I)—S~""(I)=2@i6[I, E(1)]8—(k~ —
~

l ~) . (88)
1

d'q& P ~i, (o) IP q) [Sr"""(P —q) —S' "(P—q)]—
«"(q}&P—q li, (0) lp&, (82) Using this, (82) becomes

'q (P I.(o) p q)(P-q ~.(o) P-)
6[p E( g]8(k

~
~)(2v)' 2(u, qo —(u +ig

d'q(PIi. (0)Ip-q&(p-qIi, ( &IP& 8k [p q[) (87)
(2v)' 2u& p'- E(p —q) —~,+i@

which is of the same form as the function p, Eq. (20). If retardation is neglected, (8"I) becomes

d3

, ,',). "„'.(Pli, (0)lp-q&&p-ql~, (0)lp&8(k. —Ip-ql} (88)

which can be recognized as the exchange part of
the Hartree-Fock potential arising from one pion
exchange. The factor of —,

' occurs because we
have used only the positive frequency part of the
pion propagator. Since we have made no attempt
to include a potential for excited nucleons, we

I

have made no attempt to subtract this small po-
tential contribution. If a potential for excited nuc-
leons were used, this type of insertion (and many
more besides) would have to be canceled by an
additional potential counter term.
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