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Pion-nucleus optical potential in the isobar-doorway model
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The isobar-doorway model is used to parametrize the pion-nucleus optical potential so as to take into account the
interaction of the Ll with other nucleons as well as coupling to inelastic and reaction channels. The parameters of the
model are determined by fitting elastic scattering angular distributions. It is found that the nonlocality associated
with the isobar propagation is important in the resonance energy region. This may indicate that the use of impulse

approximation in obtaining the pion optical potential may be doubtful even if we introduce a complex shift in the
energy at which the pion-nucleon scattering amplitude is evaluated to get a first-order optical potential.

NUCLEAR REACTIONS Pion-nucleus optical potential, parametrization of
many-body modifications to the isobar propagator, 0(8) and 0 for 0, C, and

4He in the energy range 110-250 MeV.

I. INTRODUCTION

In recent years there have been various studies
of pion-nucleus interaction. (For a recent review
of pion-nucleus scattering see Ref. 1 and ref-
erences cited therein. ) In calculations based on
multiple scattering theories, "the starting point
is the truncation of the series for the pion-nucleus
optical potential at the first term, which is then
evaluated using various approximations. ' Even
though such a first-order optical potential gives
a reasonable description of pion elastic scattering
data in the intermediate-energy region, its suc-
cess is rather surprising. Multiple scattering
theories are based on the assumption that projec-
tiles interact with nucleons in the target through a
potential, and hence do not take into account the
fact that pions interact with nucleons through ab-
sorption and emission. Furthermore, one has to
use closure over intermediate nuclear states to
identify the Watson operator with a free pion-nu-
cleon scattering amplitude —an approximation
whose validity may be doubtful' ' due to strong en-
ergy dependence of the pion-nucleon interaction in
the intermediate energy region. To compensate
for these inadequacies, one then adds terms pro-
portional to p', where p is the nuclear single par-
ticle density distribution, which are presumed to
take into account the effects of pion true absorp-
tion, inelastic scattering, etc. Potentials of this
type (with phenomenological p~ terms) are current-
ly being used to fit the accurate experimental data
now available. ' "

The isobar-doorway theory has been proposed
as an alternative approach for describing the

meson-nucleus interactions. " In this approach,
one introduces nuclear states of the A-baryon
system with (A-1) nucleons and an isobar [&(1232)
for pion-nucleus system] called the doorway
states. All pionic scattering and reactions medi-
ated by & formation must proceed through these
doorway states. The many-body effects are then
taken into account by allowing the doorway states
to couple to the states in the inelastic and reaction
channels. Recently a number of microscopic cal-
culations' "have used a T-matrix formulation
of the isobar-doorway model to calculate pion-
nucleus scattering and reactions. In such calcu-
lations 1~-1h states are used as the basis set and
the modification to the isobar propagator due to the
one-pion exchange potential are calculated —there-
by including elastic scattering, inelastic scatter-
ing, Pauli blocking, etc. The effect of coupling
to other reaction channels is included phenomen-
ologically. For example, this is done by intro-
ducing a complex "spreading potential" for the
&-(A-I) system in Refs. 12 and 15 and by intro-
ducing a damping width in Ref. 13. Within this
framework, there also have been purely phenom-
enological calculations" " in which a resonance
form for the pion-nucleus T matrix is introduced.
The parameters are determined by fitting elastic
scattering data. These are then used to calculate
cross sections for pionic reactions to isobaric
analog states, where we expect the isobar-doorway
states to be the same as for elastic scattering.

A microscopic calculation of the optical potential
can be carried out in a similar way by introducing
a basis set of 14-1h states and calculating the
energy shifts and widths due to coupling to the in-
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elastic scattering and reaction channels. " To the
extent that one or a few doorway states dominate,
one obtains a closed form of the potential corres-
ponding to the pion-nucleon 3-3 channel which not
only represents the entire multiple scattering ser-
ies but also takes into account the various many-
body effects such as true absorption, p-meson
exchange, etc. , which have to be set by hand if we
use a multiple scattering theory. Such an optical
potential would provide not only a better descrip-
tion of pion scattering data but also important in-
sight into the interaction and propagation of the is-
obar in nuclear matter.

In this work we treat the optical potential given
by the isobar-doorway theory as a phenomenologi-
cal quantity. (A preliminary version is given in

Ref. 18.) Our objective here is to use the form
provided by theory, with certain quantities defined
by theory taken as parameters. We should em-
phasize that approximate fits to elastic scattering
data can be obtained with widely different poten-
tials." It is essential to have a theoretical basis
for the form of the optical potential if the parame-
ters determined by fits to the data are to be mean-
ingful.

In Sec. II we give a brief derivation of the pion
optical potential in the isobar-doorway model (see
Refs. 11 and 20 for details). Section III describes
our parametrization. Details of the calculation
together with our fits to elastic scattering data
are given in Sec. IV. The summary of our results
and conclusions is given in Sec. V.

and making the doorway assumption that the states
in Q space do not couple to the states in P space
except through the states in D space, the effective
Hamiltonian for the scattering states is given by

with
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where ~0) is the nuclear ground state and

where V" = Hp p Hp Hp being the free pion-nu-
cleus Hamiltonian, is the nonresonant optical po-
tential generated by the interactions in P space.
Since the nonresonance interactions vary slowly
with energy, V" is taken to be the first order op-
tical potential with the contribution of the pion-
nucleon 3-3 channel excluded. For the resonant
part we introduce in Eq. (2) a complete set of
states

~
D,) which diagonalize the energy denomin-

ator so that

II. DERIVATION
@i = (Di I Hen I Di) (8)

The starting point of the isobar-doorway model
is the introduction of states which explicitly con-
tain isobars. Let us use the standard notation""
of the doorway picture with the subspaces: P con-
taining states of a pion and nucleus in its ground
state, D containing states with one 6 and (A-1}
nucleons, and Q containing all other states. 'The

model makes implicit use of the interaction V,«,
which couples the & to wN scattering states in the
3-3 channel:

where S(T) is the transition operator between spin
(isospin) i~ and spin (isospin} 3 objects, n the
pion isospin index, g(«} the vNn. vertex function
[g(0) =1], and « the pion-nucleon relative mo-
mentum. The matrix elements of V,&~ are taken
as basic input to the theory, much as two body
matrix elements are used as the basic input for
nuclear many-body calculations.

Using the standard projection operator algebra

and

121j/2=. D~ 8 2D D
H 2 D~).E —Hqq

In general the doorway states
~
D,) are complica-

ted A-baryon states. However, due to the single
particle coupling interaction V,„~, only the 1&-1h
components of these states contribute to the ma-
trix elements in the numerator in Eq. (5). We
now make the assumption that the spin-spin and
spin-orbit interactions for the 6-(A-I) system can
be neglected. [Although never specified explicitly
in Ref. 11, this turns out to be a necessary con-
dition for using the Kisslinger-Wang model de-
fined by Eq. (9).] The states [D,.)=[D, ) with
the same ~-orbital angular momentum but with
different total angular momentum corresponding to
different n, the z component of 4 spin, will be de-
generate. We group these terms for a given or-
bital angular momentum together and sum over the
spin quantum number e. We can then use the de-
finition of V,„~ to write
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where QN is the nuclear single particle wave func-
tion and Q~ is the radial part of the & wave func-
tion in the doorway state ~D, ). f» in the above
equation is an operator in the spin space of the
nucleon. However, for a closed j-shel]. nucleus,
the spin-flip term will not contribute and t~, can be
treated as a c number depending on momenta only.
The relative momenta in the pion-nucleon center
of mass system are defined by

3/2

X. X. V.N~ ~
fx~-3 /2

= v',», (» )v,«(»)
=(E —M +fr, /3)&»'I f'. (E)l ») ( )

where
~ g ) are the spin -,'eigenvectors, M~ is the

mass of 6, r~ its width and {»'
~

t», (E)
~

~) is the
(off-shell) pion-nucleon scattering matrix in the
3-3 channel. The numerator in Eq. (5), which is
the sum over all such degenerate states, then re-
duces to

where {k'~ f,",
~
k) is the pion-nucleon scattering

amplitude in the 3-3 channel. in the pion-nucl. eus
center of mass frame, and

(k',, k)=QJ(„"(p)('(p'+k')(' (p+k)(„(p)d'pd p'

is a modified nuclear form factor which takes into
account nonlocality associated with 4 propagation
in the doorway state

~
D,). The above equation is

the defining expression for the optical potential in
the isobar-doorway model. As mentioned earlier,
a theoretical determination of the optical potential
requires evaluating the quantities F, , F, , ej", and
I"," for each doorway state. This requires not only
a complete understanding of the interactions in D
space, but also a coupling of

~
D&) to states in Q

space. As these features of the isobar dynamics
are still not well understood, " we look for a
convenient parametrization of the optical poten-
tial. Before discussing our phenomenological
model we point out that the optical potential given
by Eq. (11) not only includes higher order scatter-
ing terms but also the many-body effects such as
p-meson exchange, pion true absorption, Pauli
blocking, etc. , in the pion-nucleon 3-3 channel.
This is shown schematically in Fig. 1. Of course
we still have to add by hand corresponding correc-
tion terms for the nonresonant part. In the lan-
guage of the isobar-doorway model, these corres-
pond to lifting the doorway assumption Hp~ =0.
The most important in this category is probably
the "S-wave absorption" term where the scattering
states couple to A-baryon states with no pion in the
asymptotic region. Although there have been many

and

(S,„)'" M ' E (P)+M

MN
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We now make the approximation that V,»~(7»')
V,»~(ic) can be factored out of the integration on
the right hand side of Eq. (8). (We give a justi-
fication for this approximation in the next section. )
The resonant part of the optical potential is then
given by

{k'i V
i
k) =Q . ,„{k'it

i
k)F((k', k),

, E E, -e, +fr;"/3-
(11)

FIG. 1. Left hand side: pion opti. cal potential in the
isobar-doorway model. ---x represents all the many-
body modifications to the isobar propagator except
those due to coupling to P space. Right hand side: some
of the lowest order terms contributing to the optical
potential: (a) single scattering term, (b) quasi, elastic
scattering term, (c) 6- (A —1) binding correction term,
(d) higher order scattering term, (e) p exchange term,
(f) two nucleon absorption term, and (g) local field cor-
rection term.
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estimates of this correction term, ~ "we feel that
there are some unresolved questions which need
a more careful treatment. For example, the tran-
sition operator in the two nucleon absorption model
is taken to be scattering from the first nucleon fol-
lowed by absorption on the second so as to provide
energy-momentum sharing. As this correction
is to be added to an (uncorrected) optical potential
which generates scattering from individual nucle-
ons, the rescattering may be counted twice —once
in the correction term and again in the optical po-
tential. Also, in some cases a closure over the
intermediate 2-nucleon 2-hole states is used with-
out proper orthogonalization with the nuclear
ground state, which may lead to further double
counting'' Moreover, the estimates of the effect
of p-meson exchange for absorption are in con-
siderable doubt. ' Because of these and other
problems associated with estimating the nonres-
onance absorption terms, we have confined our
analysis to the resonance energy region, i.e., for
pion kinetic energies lying between 100 and 250
MeV. In this energy region the contribution of the
S-wave absorption terms to elastic scattering is
less important and does not affect the conclusions
reached here.

III. PARAMETRIZATION

In our attempt to parametrize the optical poten-
tial given by Eq. (11},we notice that the impor-
tant differences between this expression and the
corresponding one for the first-order optica1. po-
tential are (a) inclusion of a-(A-I }binding through

E, =(D, ~H»t(D, ), (b) inclusion of coupling to re-
action channels (except coupling to the quasielastic
scattering channel which is included in both)
through

1
i, -i("&"/2 = OHk ,H ), ))i

QQ

and (c) inclusion of nonlocality due to & propaga-
tion through F, (k', k). The nonlocality contained in
I", is in addition to that given by the finite range
off -shell extrapolation of the pion-nucleon scatter-
ing amplitude which has been included in most of
the momentum space calculations of pion-nucleus
scattering. '"" Effects (a) and (b) are sometimes
included in conventional calculation phenomeno-
logically, by introducing a shift in the energy
parameter at which the pion-nuc'. eon T matrix is
evaluated, by smearing the resonance (collision
broadening due to Fermi motion), and by adding
"p2 terms" (presumably due to true absorption,
etc. ). However, due to the static limit used in
deriving the optical potential (i.e., using closure
over the nuclear Hamiltonian in identifying Wat-
son's operator with a free pion-nucleon scattering

amplitude), the nonlocality associated with a
propagation is missed completely. It is our aim
here to include all these dynamical effects through
a small number of parameters. To this effect we
note that even in the absence of coupling to the re-
action channels, we expect the inel, astic width of
the doorway states ~" to be very large due to
coupling to the quasielastic channels. Thus to the
extent that the average width of the doorway states
is larger than the average separation energy

~
E, +4, —E,„-2„,~, we can replace the energy

denominator by an appropriate average. We
therefore write Eq. (11}as

where

where the sum extends over the states which con-
tribute at a given energy. In Eq. (13) we have in-
troduced the following parameters: &E—the av-
erage energy shift, P—the average ratio of the
width of & in the nuclear medium to the free width,
and A.—a nonlocality parameter. The modified
form factor F for light nuclei (A ~ 16) is chosen to
be

(3 q2c 2')} 2 3 g2p 2

F(X;k', k) =2 1+n
i
——.(2 4 ] 4c 2 4

x q2& )4 -r222 )4F-(Q) (16)

with

c2A. 2 c2A, 2

i61 2+g 2 P2 2+g2/4

c being the oscillator parameter, Q =k' —k, K
= (k+%)/2, and c( = (N —2}/3 [(Z —2)/3] for neu-
trons (protons). F, (Q) is the correction due to
the center of mass motion of the target, which we
take from the static limit" to be F. (Q) = exp
(Q'c'/4A). X, and A are given in terms of the
nonlocality parameter A. by

andA =—,1
koA, ko

' (16)

k, being the on-shell pion-nucleus relative mo-
mentum. The form factor given by Eq. (16) is a
generalization of the one used in earlier works. ""

d(k;k'k)=gfy (P')d t)i;)i'+k', (i+k)d ()i)d')id')i',

(14)

with

Pa(&ip'+ k', 5+k}= ~ 0'(p'+k')4)k*(p+k}

(15)
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This corresponds to the &-density matrix being

S&~(p, p'}=e"'" "|'(p - p') . (19)

By introducing the parameter X, we allow for a
change in the three-momentum of the 4 due to in-
teractions with the nuclear medium.

'The parametrization of the optical potential as
given by Eq. (13) is not unique (or necessarily op-
timal). One can conceivably keep the averaging
interval small enough so that an intermediate
structure of the optical potential shows up in terms
of there being more than one term on the right
hand side of Eq. (13), each being significant at a
different energy. Or one can possibly construct a
better parametrization of the form factor to de-
scribe the propagation of the & in the nuclear me-
dium. One such improvement which we did in-
vestigate is the channel dependence of the para-
meters. In general, we expect the parameters of
the isobar-doorway model to be dependent on the
pion-nucl. eus channel quantum numbers such as l,
J, T, etc. For spin-zero-isospin-zero targets
such as ' C, "0, etc. , this channel dependence
can be included by allowing &E, and P, to go to the
asymptotic values 0 and 1, respectively, through
a Fermi cutoff:

parameters.
Finally we give a justification for the factoriza-

tion approximation made in writing Eq. (11). Us-
ing a separable form of the pion nucleon scatter-
ing amplitude, Eq. (8) can be written as

) ')
V',„,(» )V,„,(~}=(Z-M,+fr. /2)~ ~, f„(~,),

g Ko

(21)

where g(g) are the off-shell extrapolation factors
and we have separated out the threshold depen
dence explicitly. Since the pole in f»(~, ) is exactly
canceled by the factor (E-M~+f1'~/2), and since
g va, ries with g smoothly, we can factorize [g(g)
g(~')]/g'(~, ) and (E -M~ + il'~/2)t»(~, ) out of the
integral on the right hand side of Eq. (9) without
any appreciable error. Under the assumptions

IO

IO

IO

~E
aE, = 1+ exp[(l —l,)/5l, ] ' (20a) IO

(V-1)
1 + exp[(l —lo}/bio] ' (20b)

where Eo =k,R and 6lo =k,t, R and t being nuclear
rms radius and surface thickness, respectively.
In the next section we compare cross sections for
the channel independent and channel dependent par-
ametrizations. In view of the similar quality of fit
to experimental data obtained for the two cases,
and also the fact that the inelastic width P, I', is
much larger compared to the variations in ~E,
with l, it is not unreasonable to take these para-
meters as channel independent.

For isospin nonzero targets such as 'Li, "C,
"0, etc. , we have shown in an earlier work" that
elastic scattering cross sections are not changed
very significantly by allowing the parameters to be
isospin dependent. On the other hand, charge ex-
change scattering, which is determined by differ-
ences of elastic scattering ampl. itudes in different
(pion-nucleus) isospin channels, is very sensitive
to the isospin dependence of the parameters. Thus
in making a choice between channel independent
and channel dependent parametrization, one should
look at the channel decomposition of the amplitude
for the process under consideration. If the ampli-
tudes in different channels interfere destructively,
one has to include the channel dependence of the

IO

E

~ )0'
Nb

IO

IO

IO

IO

IO

20 C) 60 80 IOO l20 I40 I60 ISO

e,.[.,]
FIG. 2. 7}+-~60elastic scattering angular distributions

at pion kinetic energies of 114, 163, and 240 MeV.
Solid curve: fit obtained by using channel-independent
parametrization of the isobar-doorway model. Dotted
curve: prediction of the first order optical potential.
The data are from Ref. 36.
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made earlier we then have to evaluate the integral

I= K. v'Q„* p' p~ p'+k', p+k QN p d pd p',

(22}

(k'~fR~k)=E ' k k 1+-+-I-

„g(»)g(»')
( )g2(» ) 33 0 (24)

where» and»' are given by Eq. (10). With Gaus-
sian wave functions and a momentum conserving
form of nonlocality, this reduces to

where

E„(»)E„(»)E,(»')E„(»')
E, (~)E.(p)E, (~ )E, (p )

(25)

f= " k k (1+-'+- ~-' — E(~k', k).
S,„. i 2 2) 2 2

(23)

10

10

I I I I

(o)
)12C

This not only provides a justification for the fac-
torization approximation used in writing Eq. (9},
but also provides a definition of the pion nucleon
amplitude in the pion nucleus center of mass
frame:

takes into account the noncovariant normalization
of the plane waves. '

g, a, b, and z's in the above
equation can now be evaluated using a frozen nu-
cleus approximation.

IV. NUMERICAL RESULTS AND COMPARISON
WITH DATA

The calculations were done using the momentum
space code PIPIT. ' The code is modified so that
the background potential V" was calculated with
the amplitude in the pion-nucleon 3-3 channel ex-
cluded. The contribution of the 3-3 channel is then
calculated by replacing the single particle form
factor p(k' —k) by the modified form factor
E(X;k', k) and multiplying the resulting expression

10
3 10

10
T» = l20MeV

10

103

E
4 10'- T» = l50MeV

10

10

IO 10
Cy

10 10

10

T» = l80 MeV

10

10 IO

10 I I I I I i I 103 I I I I I I I I

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

8 Cdeg)

FIG. 3. (a) ~ -~2C elastic scattering angular distributions at pion kinetic energies of 120, 150, and 180 MeV. Solid
curve: fit obtained by using channel-independent parametrization of the isobar-doorway model. Dotted curve: predic-
tion of the first order optical potential. The data are from Ref. 37. {b) Same as (a) except at pion kinetic energies of
200 and 230 MeV.
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IO
(~+, «+)"C

10

IO 10

10 T~ =l48MeV— 10

IO

E
10'—

O

10 T» = 168MeV

10

Cs

~b 10'

10

10' 10'

10 10

10& I t I I I I I I

20 40 60 80 100 120 l40 160 180

FIG. 4. ~'-' C elastic scattering angular distributions
at pion kinetic energies of 148 and 162 MeV. Solid
curve: fit obtained by using channel-independent param. —

etrization of the isobar-doorway model. Dotted curve:
prediction of the first order optical potential. The data
are from Ref. 38.

10 I l I I I I

20 40 60 80 100 120 140 160 $0

8, (deg)

FIG. 5. 7t —He elastic scattering angular distributions
at pion kinetic energies of 110, 150, 180, and 220 MeV.
Solid curve: fit obtained by using channel-independent
parametrization of the isobar-doorway model. Dotted
curve: prediction of the first order optical potential.
The data are from Ref. 39.

with the complex energy factor (8 M~ +iI'~/-2)/
(E -M~ +ipse~/2) The r.esulting optical potential
is used in the Lippman-Schwinger equation to gen-
erate the pion-nucleus scattering amplitude. The
parameters &E, P, and A. were determined at each
energy by fitting the elastic scattering angular
distribution. The fitting is done by doing a chi-
square search' for each energy and target using
the CERN minimization routine MINUIT. 3 The
harmonic oscillator parameter c is taken as 1.36,
1.64, and 1.'T7 fm for He, "C, and ' 0, respec-
tively, as determined by electron scattering
experiments. ~

Our fits to the pion elastic scattering angular
distributions in the resonance energy region using
the channel-independent parametrization of the
isobar-doorway model are given in Figs. 2-5.
Also given for comparison are the predictions of
the first order optical potential. 2~ (The latter are
slightly different than the published results due to

TABLE I. Parameters of the isobar-doorway model
(IDM) for x-~60 scattering. Quantities in parentheses
correspond to the channel-dependent IDM.

Tr
(MeU) (MeV)

114

163

240

4.07
(0.023)
0.201

(-7.7)
4.26

(11.99)

1.264
(1.538)
1.12
(1.333)
1.2
(1.168)

0.38
(0.373)
0.329
(0.327)
0.176
(0.135)

inclusion of the effect of center-of -mass motion of
the target which increases the cross section at
large angles. ) The parameters of the isobar-
doorway model so determined are given in Tables
I-III. As can be seen from the figures the agree-
ment between theory and experiments is very good
at all angles except in the region of the second
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TABLE II. Parameters of the IDM for m- 2C scatter-
ing.

IO

T»
(MeV)

120
148
150
162
180
200
230

DE
(MeV )

19.9
16.59
19.87

307

12.59
16.14
19.9

1.26
1.094
1.065
1.146
1.186
1.263
1.160

0.368
0.400
0.45
0.462
0.336
0.270
0.112

IO
2

IO

IO

minimum, with y' in the range 0.3-1.5 at the
minimum. The positions of the minima and the
slope of the diffraction peak are reproduced very
well. Although the parameters of the model are
strongly correlated at the minimum of y', in gen-
eral it was found that the width parameter p is sensi-
tive to the forward angle cross section, and the non-
locality parameter is sensitive to the shape of the
angular distribution. The parameter ~E is positive
in most cases, except around 160 Me V. The parame-
ter P was found to be larger than the impulse approxi-
mation valueof 1 by 5 —20@. In mostcaseswe found
that a finite nonlocality is required to fit the data. As
X=0 corresponds to the fixed-scatterer approxi-
mation (V~ tp), we may interpret our results as
an indication of the importance of including isobar
dynamics in the pion-nucleus interaction. By in-
troducing a complex energy shift in the subenergy
at which pion-nucleon scattering amplitude is
evaluated, these dynamical effects can only be in-
cluded partially in conventional optical potentials.

In Fig. 6 we give a comparison of the fits ob-
tained by using the channel-independent and the
channel-dependent parametrizations of the energy
shift and width parameters [cf. Eq. (20)]. By in-
troducing an / dependence in the parameters, the
second minimum becomes less sharp. However,
the overall quality of the fit for the two cases is
the same. We note that the simple l dependence
given by Eq. (20) may be adequate only if we are
considering processes such as elastic scattering
or coherent m photoproduction. If we study other
reactions, e.g. , asymmetries for a spin nonzero

IO
45

E
C' IO'

b

IO'

10

IO-'

IO

l000—

I I

"O(~. .)"0
~«e«e««e«ee««i

~ee
~ ~~ee

~e~

600—
b

~ eee«e««e ee«
oeeee ~e ~ee ~eee

r

IO

20 40 60 80 IOO l20 I@0 l60 $0

8, (deg)

FIG. 6. Comparison of the fits obtained by using chan-
nel-independent parametrization (solid curve) and chan-
nel-dependent parametrization {dashed curve) of the
isobar-doorway model to ~'- 0 elastic scattering
angular distribution.

TABLE III. Parameters of the IDM for x- He scatter-
ing.
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FIG. 7. Comparison of total cross sections for»'- 0
given by the isobar-doorway model (crosses joined by
solid line) and the first order optical potential (dotted
curve) with the data of Refs. 40 and 41.
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FIG. 8. Comparison of total cross sections for m - C
given by the isobar-doorway model (crosses joined by
solid line) and the first order optical potential (dotted
curve) with the data. of Ref. 37.

target, we might have to construct a little more
sophisticated model. for the channel dependence of
the parameters.

Finally, in Figs. 7-9 we give the comparisons
of the total cross sections in the resonance energy
region for the isobar-doorway model and the first-
order optical potential with the experimental data.
Whereas the first-order optical potential. gives
total and integrated elastic cross sections which
are too large, the isobar-doorway model gives a
reasonable fit to both. This is hardly surprising,
as we fit the forward angle cross section as well
as the slope of the diffraction peak very well.

V. CONCLUSIONS

In this work we have used the isobar-doorway
model to obtain a phenomenological pion-nucleus
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FIG. S. Comparison of total cross sections for m -4He
given by the isobar-doorway model (crosses joined by
solid line) and the first order optical potential (dotted
curve) with the data of Ref. 39.

optical potential which incorporates the effects of
isobar-nuclear dynamics in terms of a small num-
ber of parameters. The parameters of the model
are obtained by fitting the elastic scattering data.
It is found that to obtain a reasonable description
of the experimental data we have to include the
nonlocality associated with isobar propagation in
the nucleus —a feature completely missing in the
models based on impulse approximation. Although
it is hard to disentangle various many-body effects
leading to the inelastic energy shift and width, we
find that the cumulative effect of coupling to in-
elastic and reaction channels is to make the ~
isobar less bound than a nucleon. This is indica-
ted by the positive value of ~E found in most cases
and an increase of the width by 10-30/&. It is in-
teresting to note that this result is consistent with
the results for A(1405) and A(1520) isobars re-
cently obtained with an isobar-doorway study of
kaon-nucleus scattering. "

At present we have analyzed data for light nuclei
where we could use harmonic oscillator wave
functions. To extend this model to heavier nuclei,
one could use numerical methods to generate a
modified nuclear form factor in terms of the iso-
bar density matrix p~(r„r, ), or look for some
other convenient parametrization to include the
nonlocal nature of the isobar propagator.

Finally, we emphasize that in view of the sig-
nificant deviations from the impulse approximation
for el.astic scattering found in this work, it is im-
portant to include these many-body effects in the
transition operator for other pionic reactions
where isobar production contributes to the ele-
mentary process. Using the model described
here we have shown that this is indeed the case for
coherent w photoproduction. We find that cross
sections calculated using the impulse approxima-
tion and the one given by the isobar-doorway differ
substantially, even when the pion optical potential
is the same. On the other hand, different: optical
potentials which fit elastic scattering data give
very similar cross section, provided we modify
the transition operator correspondingly.

Although there are still a number of theoretical
problems to be solved, we conclude that it is pos-
sible to extract information about the interaction
of the ~'s with nuclei and at the same time obtain
an improved optical potential for use in the analy-
ses of pionic scattering and reactions on nuclei.
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