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Polarization in intermediate energy inelastic scattering
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The simple relationship between the elastic polarization and elastic cross section derived previously is generalized
to include inelastic processes. The resulting data-to-data relations express the inelastic polarization in terms of the

corresponding unpolarized scattering distribution and two spin "lengths" related to the relative strength and range
of the spin orbit to central fundamental amplitudes. The success of these relations in describing inelastic analyzing

powers indicates that little new nuclear structure information can easily be obtained from such experiments.

NUCLEAR REACTIONS Intermediate energy inelastic polarization, data-to-
data relationship between polarization and unpolarized angular distribution.

I. INTRODUCTION

In a previous paper' we showed how the elastic
polarization is simply related to the corresponding
unpolarized scattering distribution using the
analytic methods of Amado, Dedonder, and Lenz
(ADL).' Similar relations between inelastic and
elastic angular distrinutions were given in Ref.
3 by Amado, Lenz, McNeil, and Sparrow (ALMS).
We call these relations data-to-data formulas in
that they use the experimental elastic distribution
as the nuclear structure input. In this paper we
extend those results to inelastic polarization pro-
cesses.

In Ref. 1 the polarization P was shown to be
comprised of three terms. The first is a linear
rise of P with momentum transfer q and is target
independent. The second involved tangent-like
oscillations reminiscent of the log-derivative
phenomenology, while the last term oscillates
like the inverse of the cross section and is new
to polarization phenomenology. We find each of
these terms present in inelastic polarization as
well. However, since the envelopes for inelastic
cross sections are not purely exponential as in
the elastic case,"the data-to-data relations re-
quire slight modification for application to inelas-
tic processes. In this paper we present the gen-
eralized data-to-data formulas and compare their
results to the data for 800 MeV inelastic P-"Fe
scattering. ' The excellent agreement suggests
that the nuclear structure enters the unpolarized
distributions in the same way as it enters the
polarizations; so little new structure informa-
tion can be extracted from such inelastic polari-
zation experiments.

In the next section we derive the analytic polari-
zation formula by a simple synthesis of two earlier
papers and generalize the data-to-data relations.
In the third section we compare the generalized

data-to-data formula to 800 MeV analyzing power
data on three low-lying collective excitations in
"Fe. We discuss these results and contrast their
basic features to that of direct unnatural parity
excitations. A summary is provided in the last
section.

II. THEORY

The spin-dependent amplitude for the natural
parity excitation of a spinless target by a spin —,

'

projectile in the eikonal formulation is [r = (b, s}]

pL& gg e ]q ~ b ix[b)
2'

dz rLM V, 0'r

with p, and p, referring to the central and spin
orbit interaction densities and the prime denoting
differentiation with respect to b. The remaining
parameters are defined in terms of the fundamen-
tal nucleon-nucleon amplitude,

t„„(q)= A(q) + iq scC (q),

where n is normal to the scattering plane. The
parameters y and se appropriate to a short range
approximation are defined by t„„;

y = —,
' or(1 ir}, —

r = Re[A(0)]/Im[A(0}],

~ = C(0)/a(0),

(4)

where o~ is the total nucleon-nucleon cross sec-
tion.

where q is the momentum transfer, k is the inci-
dent wave number, and (LM) is the final nuclear
state. The eikonal phase is given by

iX(b)= —yf de[p, t ) — ir ~ (E&f)p'(r)], (2)
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As in ALMS we take a local surface peaked
transition density of Tassie form appropriate for
low-lying collective excitations. We write for
the (projectile) spin dependent transition density

yL
&r ~MI 1', I

'r
&

= &~ Pzz(e) e' "

where be'~ = —ib 'V, e«~ has been used.
Performing the angle integration and the indi-
cated differentiations gives

= F +a''nF 2

with

x [p,(r) —wo(b x k) p,'(r)], (5)

where P~„(8) is an associated Legendre polyno-
mial and XL is the excitation strength which can
be related to the electromagnetic B(EL)'s.' Fol-
lowing ALMS we write P» as a homogeneous
polynomial in b and z, Pz„=r ~g ~ 0+"bz "z" .
For large (qb) the highest power of b dominates
the sum; terms with additional z' factors are
relatively smaller by (qb) '~' in the final ampli-
tude (see Appendix A of ALMS). Using (5) and (2)
and retaining only the highest power of b in the
expansion of P», we have

LkfSk X,ao
2'

I+ ~

x b e«q ~e«9'e«xA ) bL-1
cS y

kx ~"
r. 0 d2b bL-1 «q ~ b «ftt@ «x(b)e e e

(6)

Integrating by parts and retaining only the asym-
ptotically dominant term, we find

sa0 L — gbbL 2e'~ ~ «~v «xW)
2%y

We define the following phases:

L ««'

FJN -N j, a0 ~LkQ
1 y

x db bLe-yt+)
0

x cosh[wyt, '(b)] J„(qb), (1la)

g Qp XLktg
LN

F2
y

x db b' e-~'db)
0

dx sinh[wyt, '(b)] 2 Jz(qb) ~ (11b)
d qb)2

Following ALMS again, we write the Bessel func-
tions as Hankel functions which are subsequently
approximated by their asymptotic form. We have

F, = ——[G~„(q,y, w)+ G~„(q, y, -w)ik

+ Gf„(q,y*, w~)+ Gg„(q, y*, -w*}],

L~ t'k
F, = — [G~„(q,y, w—}—G~„(q, y, -w)

+ Ggz(q, r",w*) Gge(q-, r*, -w*}],

where

G,„(q,y, w) = -iq '2 e """"a A, L

tX.(b) = rt.(b), -

ix, (b) = wy t,'(b),

where

t(()= f dep[((' ~ s')'*)

is the thickness function. Using (8), the spin
dependent exponential is expanded to give

(8)

40

x db b e-st&(~)+~ytgb) e «qb

0 wqb

p(r) = p /(1+et"- &~'), (14)

and again only the asymptotically dominant terms
are retained.

The problem is to evaluate (18) using the analy-
tic methods of ADL. Following ADL and ALMS,
we take a Fermi distribution for the density nor-
malized to A nucleons,

ia0 ~~k d
2' dq

d 2b bL-2 e«fftcpe «x gb)

o-(&,xk)x cosy, (b)+ ' sinX, (b) e'~'

where c is the half density radius and P the surface
diffusivity. These parameters are united in the
single complex parameter b0=—c+ imp which is the
nearest pole of (14) and which plays an important
role in our analysis. To represent a different
geometry for the spin-orbit thickness function we
use a different pole position b0&.

(10) b~ =bo+& ~ (15)
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to'(b, bo~)= p, t21(b, b2),

where

(16)

p =1+ —1 —— (17}

The length parameter 5 represents the difference
in central and spin orbit geometries and was seen
in Ref. 1 to be crucial to an understanding of the
structure of polarization. In practice, its magni-
tude is about what one would expect from the
different central and spin orbit fundamental force
ranges. The central and spin orbit thickness
functions have identical functional forms but with
different poles; so we denote them by t(b, b,) and
t(b, b ~}, respectively.

Using the stationary phase methods of ADL, we
can reduce (13) to the previously solved central
potential only case of ALMS by absorbing the w

dependence as a shift in the argument of the cen-
tral thickness function. For asymptotic (qb) we
note that the singular parts of the thickness func-
tion t, will determine the stationary phase condi-
tion. Using the explicit forms of ADL, one finds

2 ReF,F,* 2 2
ReCS*

0 C*C
= 2qvx —2qvg

Im CS*
+ 2~/ (23)

the spin rotation f'unction

2ImF, F.*
2 2

ReCS*
a C*C

= 2 qQg —2QQg

Im CS*—2 q5$

and unpolarized cross section

(24)

The key features of (21) are the extra power of
q and the asymptotically dominant e" 0 phase de-
pendence [Eq. (21}]which gives rise to the oscil-
lating and exponentially falling cross sections so
characteristic of intermediate energy (diffractive)
scattering.

The form of the spin-dependent amplitudes
[Eq. (19}]is identical to that of Ref. 1; so we

simply carry over the spin observables to lowest
order in se from there. We have the polarization
or analyzing power

2/3
4 = 3(b, - 5,) = (—qbo

(18)

and we have neglected the effect of 5 on the den-
sity normalization p2. In (17) b, is the deviation
of the central only stationary phase point 5, from
the pole bo; that is,

0 =—4k'C~C,

where

se =s+Ap,

P. =X+Sgy

C =-,'[G,"„'(q,y)+ G,"„'*(q,y*)],

(25)

(26)

where & = 2nPp, y is a dimensionless strength
parameter. Calling the central potential only
result of ALMS G~~osi, we have for (12)

F~" = it3[Gt~2]-4(q, y) cos(qw p, )

+ G~&'$2(q, y") cos(qw p*)],
(19)

E,"= k[Gt~o~„(q, y) sin(qw i3}

+ Gl~', )*(q,y*) sin(qwp*)].

In terms of the elastic G, of ADL, Gt~') is given
by (ALMS)

G ]f= —a "e '" "b 'qG(qy) (20)

where

y a~Z/3 i5w
G.(fir}= ~( b )4/. exp 6

-rt
q 0

+ 3 (+2qb )I/3e3 2/6 e 3430
2 0 y

(21}

with the nonsingular part of the thickness function
t evaluated at the stationary phase point given by

yt = 1.46. . . p2(2wpba)+ . (22)

S = —[G' (q y)-G'*(q y*)] .

This is identical to the result obtained for elastic
scattering except now one uses the appropriate
inelastic G's. Due to the -e "~o asymptotic behav-
ior of G' [Eq. (17)], C and S of (26) are cosine-
and sine-like. Thus Re C 'S/C*C is tangent-like,
and, since Im CS* is flat, ImCS*/C*C goes like
I/o [Eq. (25)]. The three terms contributing to
the polarization in (23) are (1) a linear rise in

q proportional to v = Im(w) and z= Re(p); (2) a
tangent-like term Re C*S/C*C, proportional to
v = Im(w) and y = Im(g), and (3) a 1/&r-like term
proportional to u = Re(w) and y = Im(t3). Since
x-1 and y-0 as 5-0, the significant structure
seen in polarization is principally due to the dif-
ferent central and spin orbit geometries, since
with 6 = 0 only the linearly rising term survives.

To obtain a data-to-data formula we note that
the relationship of the nuclear structure terms,
Re CS*/C*C - tan qc and Im CS*/C*C - 1/o, to the
appropriate angular distribution will be the same
as that given in Ref. 1 except for the slight modi-
fications due to the extra power of q modulating
the envelope. The modified expressions are
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Re CS* 1 F&(5q}o(q - 5q) F-q(5q) o(q + 5q)
C*C 2 o(q)

where 5q = w/4c and Fz(5q) = [1+ (5q/q)]' e '"s~',
and

( & q
2 (a-a&)/(e&-c&)

Eo)q& c(q)q, ' '

where o,, are the nearest cross section maxima
located at q,, and o~ is the intervening cross
section minimum. The main structure to this
term is the 1/o which provides an oscillatory be-
havior of a fixed sign determined by r, Eq. (4).
A complete discussion of the relationship of these
terms to the spin observables is given in Ref. 1.

The data-to-data relations easily generalize to
n (natural parity) step transitions by noting that
the envelopes for such transitions have, relative
to the elastic cross section, an extra power of
q' for each step. For an I (natural parity) step
excitation coupled to an unnatural parity final
state, the envelope shows an extra q'" '+ power
dependence (relative to the elastic cross section}.
These effects are so minor that multistep excita-
tions of both natural and unnatural parity states
will have the same qualitative features as the di-
rect excitations studied in the next section.

IH. COMPARISON WITH EXPERIMENT

Using (23}, (27), and (28) one can write the po-
larization for a given process in terms of the
unpolarized cross section and the spin parameters
so and 5. Similar formulas relating inelastic to
elastic processes are presented in ALMS.

We now consider 800 MeV protons on "Fe excit-
ing three low-lying natural parity collective
2'(1.408 MeV), 3 (4.8V2 MeV}, and 4+(2.538 MeV)
states. We use the anlmlar distributions of
Adams et al.' as input for the nuclear structure
terms (2V} and (28). We obtain w = 0.2 —i0.15 fm
from a phase shift analysis of Amdt' suitably
averaging over the nuclear constituents. The
central to spin-orbit radius difference 5 = 0.07
+ i0.09 fm is fit to the 2' case. Presumably, if
available, we could have determined 5 from the po-
larized elastic angular distributions. The nuclear
geometryparameters c =4.01 fm and p = 0.54 fm were
the same as those used in ALMS. In Fig. 1 the
data-to-data formula is compared with the analyz-
ing powers of Adams et a/. ' The agreement is
excellent. Since only the nuclear structure mani-
fest in the unpolarized angular distribution is
used, these results suggest that there is little
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FIG. 1. The 800 MeV p-+Fe analyzing powers of
Adams et al. are compared with the data-to-data rela-
tions, Eqs. (23), (27), and (28), using the unpolarized
angular distribution of Adams et al. as input.

new structure information to be obtained from
such analyzing power measurements of inelastic
excitations.

These calculations have been carried out using
the Tassie model to relate the coupling and dis-
torting potentials. ' The conclusions should have
the same range of applicability as the Tassie
model, and may even have wider validity at 800
MeV for two reasons. First, the Tassie part of
excitation form factors dominates the transitions
at large q. Second, in practice, the collective
model is used only to obtain a connection between
the cross section and analyzing power which prob-
ably has much wider applicability than just to
Tassie-type transitions. Experiments are cur-
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rently underway which will measure the analyz-
ing powers of states populated by two step proces-
ses induced by 800 MeV protons. ' We expect this
approach to have comparable success in these
cases. In short, we expect that most measure-
ments of medium energy inelastic analyzing pow-
ers will provide no information not already pre-
sent in the elastic analyzing power and inelastic
angular distribution.

Let us now point out two exceptions to this some-
what discouraging conclusion. The first concerns
lower energy (-200 MeV) proton excitation of
nearly pure shell model transitions. Here the
possibility exists for departures from the Tassie
model and from our asymptotic (qc-~) limit,
permitting some independent nuclear structure
information to be carried by the analyzing power.
A recent study of this sort focuses on the (p, p')
excitation of the ' Zr 8+ state by 160 MeV protons. '
An attempt to devise a data-to-data formula for
this transition would require, at least, inclusion
of additional terms of order I/qc and possibly
consideration of double spin flip fundamental
amplitudes as well.

We may strike an even more positive note con-
cerning the generality of our conclusions for un-
natural parity two-step excitations. Such pro-
cesses, we predict, will universally have rising,
oscillating analyzing powers. However, unnatural
parity excitations may also proceed directly via
the double spin-flip terms in the nucleon-nucleon
amplitude which include target spin operators. It
turns out that the analyzing power in such transi-
tions is expected to be radically different. The
measured analyzing power for 800 MeV proton
excitation of the 1+, T = 0 state in "C is negative, '
as predicted by plane-wave impulse approxima-

tion (PWIA) arguments based on the Amdt phase
shifts. Hence we have a signature of spin-spin
versus two-step population of unnatural parity
states. This should prove useful in interpreting
the planned measurements of the analyzing powers
in ' Ne(p, p')2 and "Mg(p, p')2', 5'.'

IV. SUMMARY

We have constructed a data-to-data formula re-
lating the inelastic polarization to the angular
distribution. This relation relies on the Tassie
model and our approximate analytic expression
for the scattering amplitudes. Analyzing powers
calculated for 800 MeV '4Fe(p, p') with this rela-
tion show excellent agreement with the data. We
conclude that nuclear structure information not
contained in medium energy angular distributions
will only rarely be contained in analyzing powers.
Exceptions may be found at lower energies for
transitions of nearly pure shell model character.
By happy circumstance, our very general pre-
dictions for the polarizations for unnatural parity
states populated by two-step mechanisms are radi-
cally different from the polarizations expected
in ~T = 0 one-step unnatural parity excitations.
We hope that both this qualitative result, and our
more quantitative data-to-data formula will prove
useful in the analysis of analyzing power measure-
ments currently underway or just completed. Un-
fortunately, there is little hope that these mea-
surements will provide any new information about
either nuclear structure or nuclear reactions.
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