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Spin dependence in intermediate energy p-nucleus scattering
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We obtain closed form approximations for the spin dependent eikonal p-nucleus scattering amplitudes. The
polarization P and spin rotation function g can be written in terms of the unpolarized elastic scattering cross section
and two complex parameters related to the nucleon-nucleon spin orbit strength and range. These forms agree well

with the available data and illuminate the dynamical content ofP and Q.

NUCLEAR REACTIONS Closed form eikonal amplitude for spin dependent p-
nucleus scattering. Data-to-data forms relating spin observables to elastic

scattering.

I. INTRODUCTION

The study of spin dependent effects in proton-
nucleus scattering forms an important part of the
intermediate energy program. At these energies
polarization has a rich structure that is closely
related to the diffraction structure in the cor-
responding elastic scattering process; neverthe-
less, attempts to develop that relationship have
not proceeded far beyond ad hoc phenomenology. '
In this paper we extend our method for obtaining
analytic expressions for diffraction scattering to
include spin. We obtain closed form expressions
for the spin observables that accurately repro-
duce the numerically evaluated eikonal results
and make explicit what new features of nucleon-
nucleon and nucleon-nucleus dynamics are in-
volved. Best of all, our closed forms can be
expressed in terms of the elastic scattering cross
section directly (data-to-data relationship) and
thus provide both a derivation and a realization of
the heretofore phenomenological connection be-
tween spin observables and the corresponding
elastic scattering.

Ihffraction theory has enjoyed much success in
accurately describing a wide body of intermediate
energy hadron-nucleus scattering phenomena.
Until recently, however, it has been necessary to
evaluate the underlying eikonal integral numeri-
cally in realistic applications. With the high speed
of modern computers this has proved no more
than an inconvenience, but an inconvenience which
nevertheless obscures an essentially very simple
theory. A recent paper by Amado, Dedonder, and
Lenz (hereafter referred to as ADL)' shows how
the principal scattering features can be extracted
analytically from the eikonal integral. Exploiting
the dominance of the nuclear radius in setting the

length scale, they obtain closed form expressions
for the (spinless) central scattering amplitude
%'e used the same methods to obtain closed form
amplitudes for the low lying collective excita-
tions as well. ' In each case the closed form is
found to reproduce the direct numerical evalua-
tion of the eikonal amplitude as well as the prin-
cipal features of the data except in the extreme
forward direction where the approximation
methods employed are not valid. Furthermore,
having closed forms for both the elastic and in-
elastic cross sections allows one to obtain rela-
tions between them. ' These data-to-data form-
ulas in which the elastic cross section is used
as input are found to be even more successful
in describing the inelastic data than their parent
closed form expressions. Processes left out of
the theory or not well approximated are automa-
tically restored or corrected when the elastic data
itself is used as input. For a full discussion of
the elastic-inelastic relationship see Ref. 3 and a
forthcoming paper on two-step processes.

In this paper we extend this approach to include
the projectile spin degree of freedom within the
eikonal framework. Several studies of polariza-
tion at intermediate energies already exist. Be-
sides Ref. 1 there are the recent works of Auger
and Lombard' and Glauber and Osland. ' These
later works share with us an eikonal theory start-
ing point, but the methods and results of this
paper will differ considerably since we use the
methods of ADL to derive closed form spin-chan-
nel amplitudes. We use these, in turn, to obtain
for the spin-dependent observables a new set of
data to-data formulas which are the primary
focus of this work. These are formulas for the
polarization (analyzing power) P and spin rota-
tion function' Q expressing each in terms of the
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elastic cross section and two complex length
parameters which characterize the underlying
nucleon-nucleon spin dynamics. The first of
these, v, is a measure of the spin-orbit to cen-
tral strength and can be taken directly from
nucleon-nucleon phase shifts. The second, &,
characterizes the difference in geometry {radius
and diffusivity) of the central and spin-orbit parts
of the nucleon-nucleus effective potential. In a
simple first order optical model & is related to
the differences in range of central and spin-orbit
nucleon-nucleon forces. In particular we find that
if this difference is neglected, the resulting po-
larization will display negligible structure. The
well known and strikingly evident structure in
polarization is therefore a direct consequence of
this geometric difference. Though implicit in the
empirical need for such a difference in optical
model fits, this point and its generality seem not
to be well known. The origins of this geometric
difference merit further investigation which may
perhaps best be carried out in an analytic frame-
work where the influence of geometry is manifest.

In Sec. II we start with the spin dependent eikonal
amplitude, explicitly allowing for different central
and spin orbit densities, and derive closed forms
for the spin channel amplitudes, Eq. (25). We
compare SOO MeV proton- 'Pb elastic polariza-
tions computed from the closed form amplitudes
with the numerically evaluated full eikonal amp-
litude for the cases of identical and different spin-
orbit and central geometries. In Sec. III we pre-
sent the data-to-data relations for the spin ob-
servables in terms of the elastic cross section.
These results are summarized in Eqs. (31), (35),
and (40). We then compare 800 MeV P-~'Pb
elastic polarizations computed from both the ana-
lytic closed form and the data-to-data relation
with the data. The agreement is excellent. We
also present a prediction for Q, the spin rotation
function, for the same process. In Sec. IV me

discuss our results, present our conclusions, and

point to avenues for future development. We pre-
sent some details in the Appendix.

II. THEORY

Consider the elastic scattering of a spin & pro-
jectile (proton} from a spinless target nucleus.
The scattering amplitude can be written

F(q)=F, {q)+o nF(q)

where q is the momentum transfer, o is the pro-
jectile spin operator, and n is a unit vector nor-
mal to the scattering plane. In the eikonal form-
ulation one has'

F, (q) =ik db bJO(qb)

&(1 —e "'&"'cosh[myt, '(b}]},
(2)

F2(q) = kJ-l db bJ, (qb)e "'&'~' sinh[wyt, '(b)].

In the above expression k is the incident wave
number and t is the thickness function defined in
terms of the nuclear interaction density p by

i(b) = de p[(b'+e')"']. (3)

The subscripts c and s on t of (2) refer to the
central and spin-orbit interaction densities, res-
pectively. In the limit of zero range forces and
a first order theory the interaction density mould
equal to the underlying nuclear matter density.
This designation enables us to choose these den-
sities differently. The primes on t, of (2) denote
differentiation with respect to b. The parameters
w and y in (2) are complex strengths which in a
simple first order optical model are related to
the fundamental nucleon-nucleon amplitude t»
suitably averaged over neutrons and protons. We
ignore double spin-flip contributions in con-
sidering p-nucleus applications. From symme-
try considerations the nucleon-nucleon spin-orbit
amplitude must vanish as q -0 like q. Extracting
this dependence explicitly, we may write for the
fundamental amplitude

t„„(q)=&(q)+iq(7 nc(q). (4)

In the context of a first order optical model
only the short range parts of t» are needed and
we define

(5)

d„(x}= —.'[a "(x)+H""(x)]

This division manifests the two terms that

(6)

mhere cr& is the nucleon-nucleon total cross sec-
tion. Note that ~ is complex and has dimensions
of length as it is associated with q to give the
dimensionless relative strength of the spin orbit
to central amplitude. In practice, for interme-
diate energy applications ~w ~

is much smallerthan
the nuclear radius. Additional q dependence of
& and C is implicitly included via the freedom
to take p, and p, to be different.

To evaluate (1) we shall lean heavily on the
methods of ADL. The first step is to write the
Bessel functions in (2) as Hankel functions.
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interfere to produce the diffraction pattern.
It is analogous to the classic treatment of dif-
fraction from a slit where the slit is divided into
interfering halves. Writing the sinh and cosh
terms of (2) in exponential form and recalling
that y and zv are the only complex quantities under
the integrals of (2), we have

[G,(q, r, w)+G, (q, r, w-)1 2

+Gf(q, r~, w~}+Gf (q, r*, -w*}],

F, = [G, (q, r, u) —G, (q, y, -w)2 2

+G,*(q, r~, w~) -Gb~(q, 'Y*, -w*)],

where

for the spin-orbit density. The complex length
parameter 5 characterizes the effective shape
differences between the central and spin-orbit
densities. We assume

~
bib,

~
«1 as well as

]wlb,
~
«1 so that we may calculate the stationary

point perturbatively in u and 5.
Following ADL, we separate t into a nonsingular

piece t and a singular piece t„which carries the
singular dependence of the thickness integral near
the pole bo. For qb» 1 it is the singular piece
which is needed to guarantee a stationary phase
solution. The nonsingular part is simply evalua-
ted at the singular point b,. We write

G, (q, y, w) = exp[-yt, (b,)+uyt,'(b,)]

X bo
( db Ps(b)

G„(q) y, w)= g ( dbbH„"'(qb)

x exp[-yt, ( b) + u yt', ( b)] . (8)

where

g, (b) =tqb-yt, (b, b,)+wyt,'(b, b ) (14)

The 1 term of (2) has been dropped since it con-
tributes only at q = 0. As shown in ADL, the scat-
tering is dominated by the nuclear radius so that,
except for the extreme forward angles, qb» 1
and we may approximate the Hankel functions by
their asymptotic forms

and we have used (ll) and (12). ln ADL the
singular part t, is explicitly evaluated to be

-i&ho
'Yt()(b, b()) =

(b ~ b~)b( ~
0

where & = 2mppoy is a dimensionless strength
parameter. To first order in 6 we have

and

Z/2
a~'&- e-4&/4efeb

mqb

~&»- -i+&»
1 0

),(bb) = () + b ', t(b, b,)',
0

= t) (b)rt,'(b, b,), (16)
From this last relation we get ~, —-i~„and we

need evaluate only G„
e-gr/4

Go(q 'Y w) —
(&2wqj

x„db b exp iqb-yt, b +~yt,' b

(10)
To evaluate this integral we will use the method

of steepest descent, or stationary phase, taking
for the density a Fermi distribution normalized to
& nucleons,

b~=bo+& (12)

Po
1+~(r-c)/8

in the thickness function integral. Differences in
central and spin-orbit geometry are reflected in
different values of the half density radius c and
diffusivity P. In ADL it is shown that the com-
plex density parameter bo=c+tvP (the nearest
pole of the Fermi distribution) controls the amp-
litude. We call this parameter b, for the central
density as before and

where

g, (b) =tqb —
ty, (b, b,) w+t()b) ty(tb, b,)

~b-yt, (b wt (b), b-,). (18)

This is precisely the form of the spinless case
considered in ADL. We may therefore use the
ADL result at the shifted argument. Note that
this will not change t evaluated at the stationary
point; the shift will appear only in the iqb term.
That is, if b, is the (central potential only) sta-
tionary point of ADL, then the stationary point
of (18) is b, =b, +wt((b, ) to the desired order.
The phase evaluated at the stationary point be-
comes simply

g, (b, ) = g, (b, ) + iqw t)(b,) . ,

From ADL we have the stationary phase solu-
tion

3b 2

t(, (b)=1+—. 1— 2 b2

To first order in u we can use Taylor's theorem
in reverse to obtain
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b =bo(1 —4/2),

«1.
(2O)

Thus to lowest order

3
p(b ) =1+—1-—.C

Note also that since the nonsingular parts of G

will be the same as those of ADL when the shift
from bo to b, is used, we have

G, (q, y, u) =G, (q, r)e" "'~', (22)

tv
(b~ g

I I

2wP

bo bo

where G, is the central only result of ADL

~1/3
c(qt r} 0 ~( g4/3

&&exp[f gv —yt+ '(&'qb, )'-'e" ']e'"o,

(23)

with

yt =1 46po(2. vPbg'~

We may summarize the approximations made
in obtaining our solution by describing the hier-
archy of lengths involved. The dominant length
characterizing the nuclear geometry is b,
=c+Atg, the nearest pole of the Fermi distribu-
tion. For the spinless case we may ignore the
other poles when the stationary phase point (b,)
is much closer to b, than the pole separation
(2vP), that is, b, —b, =~hb, «2vP. When including
spin we may treat the additional shift in the sta-
tionary phase point as a perturbation of the spin-
less solution when sop, (b,) «&Nb, In additio. n,
to treat the 5 dependence of p. perturbatively, we
need 6 «3 4b„but in practice this combination is
redundant since so & 5 and we already have se « ~Nb, .
Summarizing these conditions we have

' ' =-'(IF I2- IF I')/c (26)

and the spin rotation function'

2I F*
q t 2 L(Fey' FgF )/& (27)

c= lail + I&21'=-'(I& I'+ I& I'} (28)

is the unpolarized cross section. For convenience
we define the following quantities:

lating and exponentially falling cross sections
characteristic of diffractive scattering.

We have achieved our goal of obtaining closed
form expressions for the spin channel amplitudes
by reducing the spin dependence to a trivial geo-
metric shift of the previously solved central case.
Knee the thickness function dependent part of the
phase is unchanged when evaluated at the sta-
tionary point even when its argument is shifted, the
the final result can be written in terms of the ADL
G function. This function appears in an analysis
of inelastic processes as well and is important in
deriving the data-to-data relations appropriate to
those processes. In the present case we see that
the spin amplitudes are controlled in a simple
way by four complex parameters which describe
(1) the nuclear geometry (bg, (2) the central
nucleon-nucleon strength (y), (3) the relative
nucleon-nucleon spin-orbit to central strength
(w), and (4) the centra}/spin-orbit geometry dif-
ference (6). The first two of these are familiar
from the spinless case and the second two are the
new dynamical parameters relevant to spin de-
pendent scattering.

Analogous to the inelastic case we considered
in Ref. 3, the closed form expressions will allow
simple relations between the spin dependent ob-
servables and the elastic cross section to be un-
covered. The spin-dependent observables are the
polarization (or analyzing power)

F =Fr+F2

with

(24)

For 800 MeVP-2~Pb scattering applications at
qc = 4m, this relation yields 0.05 «0.15 «1. The
left (right} inequality is worsened (improved} by
inc reasing q.

It is convenient at this stage to introduce spin
channel amplitudes

u = Items),

v= rm(ur),

x = Ite[p, (b,)],
y = lm[p(b, )],
~ = 2[&,(q, y) + &.'(q, r')],

3= [G,(q, r—).—G:(q, y')] .1

(28)

&,=-fb[~,(q, r)e"' '+ &;(q, y*)e"' "*]. (25)

From (23) we note that the asymptotic q depen-
dence is given by the simple phase factor e""
=e *+e'". For y=y~ in (25) this gives the oscil-

From the dominance in G of the phase factor
e"'0, these last two quantities are recognized as
cosine- and sine-like in behavior, respectively
(modulated by an exponentially falling envelope).
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Note also that for ~5/b,
~
«1, x 1+0(5/bo) while

y
-O(5/b, ).
To first order in w the cross section is simply

@=4k C~C (30)

and to the same order the polarization and spin
rotation function are, respectively,

HeC~S ImCS~
P=2qvx —2qvy C~C +2quy

ReC~S ImCS+
Q 2qux 2quy C ~C

(31)

We see that P and Q are essentially identical in
structure but with the roles of u and v inter-
changed. Note that these linearized expressions
are not properly bounded, i.e., they do not in
general satisfy P'+Q'- 1, since they are only
valid to first order in qw and p. . The properly
normalized expressions based on (25) are pro-
vided in the Appendix.

The dependence of P or Q on momentum trans-
fer q is carried in the overall kinematic factor q
and in the nuclear structure quantities C and S.
The first term has only the linear kinematic q
dependence. Since x-1 andy-0 as 6-0, only
this linear term survives when the spin -orbit and
central geometries are identical. No nuclear
structure terms are present. This is true to
higher orders in w as well in the analytic treat-
ment. The spin observables computed from (25)
take a particularly convenient and illuminating
form when 5=0 (see Appendix).

P + fQ = tanh2qv +i sin2qu/cosh2qv . (32}

Without a geometric shape difference between
the spin-orbit and central densities, there are no
oscillations in either P or Q, and no nuclear
structure dependence. Furthermore, we see
that asymptotically P —1 and Q- 0 while P'+Q
~ 1 throughout. We will return to this point- later.

The second term in P or Q of (31) involves
ReC~S/C~C. Recalling that C and S are, res-
pectively, cosine- and sine-like, ReC*S/C~C is
tangent-like in q. It is these tangent-like oscil-
lations that are so characteristic of medium
energy polarizations and have been the focus of
much phenomenological study. We stress again
that the magnitude of the oscillations in P or Q
is governed by y, which depends on a central and
spin-orbit geometry difference.

The numerator of the last term in (31) depends
on ImCS~ which is proportional to ~G, (q, y))'
—~G, (q, y~}~'-0(r). This combination does not
oscillate since it is simply the difference of mag-
nitude with no interference term. It is dependent
on the imaginary part of y [real part of the forward
nucleon-nucleon amplitude; see Eq. (5)] which
is responsible for minima filling in elastic scat-
tering. Because of the C*C term in the denomina-
tor of the last term in P or Q, the ratio will os-
cillate, but simply like the inverse of the elastic
scattering cross section.

It is also interesting to note that Eq. (25) admits
different minimum filling behavior in the spin
channel cross sections. To lowest order in w and
tQe fundamental forward real to imaginary ratio r
the spin channel minimum to maximum envelope
ratio is given by

1+,lqy, [u(1+@,' —q, ')+vq, (1+q,'+rI, ')],
max p +9c

(33)

where g, = 2r (n 2qBO) ' ' sin(p/3+ s/6), rt, is the
same expression but with cosine replacing the
sine, and B, and fge} are the magnitude and phase
of bo. The factor outside the curly brackets of
(33) is just the unpolarized cross section minimum
to maximum ratio. The term in square brackets pro-
vides for different minimum filling of the spin
channels. This difference is also proportional
to y and thus to the spin-orbit/central geometry
dif'ference. Other properties of the spinless closed
form scattering amplitude and further details
including a treatment of Coulomb corrections are
provided in ADL.

We have seen how the difference in the central
and spin-orbit geometries plays a crucial role
in providing structure in the spin-dependent ob-

servables. Without this difference P and Q are
smooth functions independent of the nuclear struc-
ture. This point has been previously noted, at
least implicitly, in the eikonal treatment of Auger
and Lombard. ' It is not difficult to prove in the
high energy limit of potential scattering that, to
first order in w, the nucleon-nucleus spin flip
amplitude is proportional to the central amplitude,
and hence provides no oscillations to P or Q.
Since both P and Q must be odd in m (the sign of
the nucleon-nucleus polarization must reverse
if the spin is reversed), corrections to the linear
form must be of order w'. To this order there
may be oscillations in P or Q even with 5 = 0, but
as Glauber and Qsland point out, the oscillations
are too small to account for those observed in
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FIG. 1. Polarizations {analyzing power) as a function
of momentum transfer for 800 MeV p-" Pb scattering
computed from the eikonal amplitude, Eq. (2), and the
analytic expression, Eq. (25), are compared. The
spin-orbit strength parameter ge =0.16+i0.2 fm was
taken from a phase shift analysis of Amdt and is used
throughout; the remaining scattering parameters are
provided in the text. In (a) the spin-orbit and central
geometries are identical, 6 =0. The absence of struc-
ture is evident. In (b) the spin-orbit and central com-
plex radii, differ by 6 =0.08 + i0.15 fm (see text). Note
the dramatic difference in the magnitude of the oscilla-
tions between (a) and (b).

polarization. This is clearly seen in Fig. 1(a},
which shows the polarization of 800 MeV protons
on ~'Pb with 5 = 0 for the full eikonal amplitude

(2} evaluated numerically and the analytic result
(25). For all the figures of this paper the param-
eters were chosen as follows. The nuclear
geometry parameters were taken from electron
scattering'. g =6.60 fm and P=0.63 fm. The
strength parameter y= 2.10 (1+i0.18) fm' and
spin-length parameter gu = 0.16+f0.2 fm for 20'Pb

were determined by suitably averaging the nucleon-
nucleon phase shifts of Amdt. ' These parameters
remain fixed throughout the paper. We see in
Fig. 1(a) that the analytic result tracks the full

eikonal result quite well. The very small oscilla-
tions in the full eikonal polarization are due to w'
contributions and are clearly much too small com-
pared with the observed oscillations. From finite
range effects we expect ~5[- 0.1 fm. In Fig. 1(b}
we compare the polarization calculated with the
same two equations, (2) and (25}, but with 5 = 0.08
+z0.15 fm, a value fit in Sec. III. The oscillations
grow dramatically to the observed magnitude.
We also see that the analytic result reproduces
the full eikonal numerical calculation fairly well.

III. DATA-TO-DATA RELATIONS

In Ref. 3 we showed that once closed forms are
obtained for inelastic as well as elastic processes,
it is possible to relate the two cross sections
directly, thus stepping over much of the inter-
mediate theoretical framework. Qne uses the
elastic scattering distributions as input, exploits
the dominance of nuclear geometry, and obtains
directly an expression for the inelastic cross
section. We show here that similar data-to-data
relations can be obtained for the spin observables.
This is not new' to polarization phenomenology;
the familiar log derivative relationship between
the cross section and polarization is probably
the first such formula. Our goal is to relate the
structure of each af the three terms of Eq. (31)
to the elastic cross section and momentum trans-
fer in an explicit way. The coefficients of these
three terms depend on M} and 5. These two com-
plex lengths represent the additional dynamical
content of P and Q over the elastic scattering.

The first term in (31) is the trivial rise in q
which is proportional to v ands in the case of P,
and g and g in the case of Q. There is no added
nuclear structure contained in this term.

The second term is proportional to the tangent-
like factor ReC*S/CW. Using the trigonometric
identity

1 cos'Q+ v/4) —cos'Q —v/4}
tang =—

2 cos g
(34)

and noting that for y =y+, (r varies lake p '"icos'qt.-
by (30), we may write

ReC*S 1 F(5q)o(q+5q} F( 5q)a(q —5q)--
C"C 2 o(q)

(35)

where 5q = v/4c and F(5q}=e'"s~' reflects the scale
change necessary to compensate for the 5q shift
due to the exponential envelope. Thus to evaluate
ReC*S/CW we need only the elastic cross section
and the nuclear shape parameters c and P (b,}.

The last term of (31) is proportional to the real
part of the forward amplitude y which is respon-
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Imcs'= kt}.IG. (q, y) I'

where only the asymptotic qc term is retained.
Using (30) again with y =y ~, we have

(36)

= —,q, /cos'(qc).

sible for filling minima. Using (23) and (30) and
calculating to first order in y, we find

a8

01—

0.5—
Ay

04—

I I

ANALYZING POSER
800 MIV p- ~Pb ELASTIC

3*0.08+ I 0.15 fm

] & (e- e&)/(e&-a &) ]
cos gc g(q) ' (38)

Ne recognize the cos'qc term which is easily
extracted from the cross section. Using the ex-
ponential envelope dependence, we have

0.2—

I, "
0.5

I

I

1.0

I I

I I

ii
II
ll,

1.5

q (fm ')

II
I

I

I

2.0

II
ii
ii

I

(

2.5

ImCS* (signr) g~I '~' „2&A,
CW 2 0, )

{c- e&) l(e&- a&)

0'& g(q)
(40)

where z& and cr, are the two nearest cross section
maxima (which determine the scale}, and the ex-
ponential q dependence follows from g(q) -e "8'.
The y -dependent coefficient can be extracted from
the minimum filling. Again using (30) to first
order in z and retaining only the asymptotically
dominant term, we compute the ratio of cross
section minima to maxima. (g, or g, refer to
the maximum at the larger or small. er momentum
transfer, respectively. ) Since neighboring mini-
ma and maxima are separated by v/2c, we find

2
/g q

2 e 0r 8/c (39)

Solving for q, and combining with (37) and (3&)
gives

FIG. 2. The analyzing powers as a function of momen-
tum transfer for 800 MeV p- Pb scattering computed
from the closed form analytic amplitudes, Eq. (25), and
the data-to-data expressions, Eqs. (A5), (35), and (40),
are compared with experiment (Ref. 11). The elastic
scattering data of Hoffman et al. was (Ref. 11) used as
input for the data-to-data expression. Again w =0.16
+i0.2 fm and 6 was adjusted to the value 0.08+ i0.15 fm.
The data-to-data form agrees well with the data, auto-
matically filling the deep minima present in the analyt-
ic result.

tion uses the correct elastic scattering, and thus
agrees with the polarization data.

In Fig. 3 we show the spin rotation function Q
calculated using the full eikonal, Eq. (2), the
analytic, Eq. (25), and data-to-data formulas,
Eqs. (A6), (35), and (40). This figure is a pre-
diction, as there are no measurements of this
observable yet.

The relationship between P and Q is clearly

Besides the sign of z, the only residual model
dependence in this expression is in the complex
nuclear radius parameter b, Combin. ing Eq. (31)
[or (A5) and (A6) for proper normalization] with

(35) and (40} gives data-to-data formulas for the
polarization or spin rotation function in terms of
just the complex lengths and p, the nuclear
radius b„and the elastic distribution. The data-
to-data formulas are consolidated and summarized
in the Appendix. In Fig. 2 we compare the analytic
expression for the polarization with the norma-
lized data-to-data formulas and the experimental
data of elastically scattered 800 MeV protons on
"'Pb." The agreement is remarkable. The spin-
orbit central geometric difference is adjusted
to 5= 0.08+z0.15 fm. The analytic form, like
the full eikonal result of Fig. 1(b), has minima
that are too deep. It would also lead to overly
deep minima for the elastic scattering. Rather
than try to adjust z to fill these minima we need
only use the data-to-data form which by construc-
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FIG. 3. The spin-rotation function Q for 800 MeV p-
Pb elastic scattering as a function of momentum

transfer is predicted using the data-to-data expressions,
Eqs. (A6), (35), and (40), closed form (25), and eikonal
amplitudes (2). Again the elastic scattering dataof Hoff-
man et al. (Ref. 11) was used as input for the data-to-
data expressions. The other scattering parameters are
the same as in Fig. 2.
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illustrated in Figs. 2 and 3. Consider the three
terms of Eq. (31}and how each contributes to the

polarization in Fig. 2. The linear term is im-
mediately seen to be positive since the polariza-
tion rises with q. Since x=1&0, the slope of
this rise fixes the sign and approximate magnitude
of g. The polarization data appears to have a
negative tangent-like component, which by (31}
and the previous analysis fixes the sign of Y as
positive. The I/o term enters negatively and
since ImC$*(xy, the sign of gy is fixed as nega-
tive. If we choose to take the nuclear constituent
weighted fundamental phase shift value for r (r & 0
for 800 MeV p-'O'Pb applications), the sign of u

is thereby fixed as positive. These assignments
agree with Amdt's independent nucleon-nucleon
phase shift analysis. The signs and approximate
magnitudes of all the relevant parameters are
determined by the polarization data alone (modu-
lus the sign of r) enabling a prediction to be made
of Q. In particular the gross features are given
solely by the signs just determined. The spin
rotation function for 800 MeV p-"'Pb will rise
with q, with negative tangent-like and positive
1/o oscillations. These features are clearly
seen in Fig. 3.

IV. DISCUSSION

It has long been known that the structure seen
in the polarization of protons scattered from nu-
clei in the diffractive region is closely related
to the oscillations seen in the scattering cross
section. In this paper we show how such a rela-
tionship arises from the nuclear geometry which
dominates the diffractive structure. Starting from
an eikonal formulation of the spin-dependent amp-
litudes, we derive accurate closed form approxi-
mations, Eq. (25}, using the analytic methods
of ADL. Beside the geometric and dynamical
variables which enter a discussion of spinless
scattering, the spin-dependent amplitudes depend
on only two new dynamical quantities —the com-
plex lengths w and 5. The first, w, is the ratio
of central to spin-orbit scattering in the funda-
mental nucleon-nucleon amplitude. The other, 5,
is a measure of the range and diffusivity differ-
ence of the central and spin-orbit nucleon-nucleus
potentials. One immediate result of our closed form
expression is that to first order in the spin-orbit
strength m there are no oscillations in the polar-
ization when g =0. Furthermore, higher order
terms either normalize the expression as in Eq.
(32} or are too small to account for the observed
oscillations in polarization. Of the origins of the
central/spin-orbit geometric difference 5 we are
uncertain. The different ranges of the fundamental

central and spin-orbit forces upon folding over
the nuclear density will induce an effective shift
in the central and spin-orbit densities of approxi-
mately the correct size needed to explain the
polarization structure, but more study is needed
before we can conclude that 5 arises solely from
such fundamental differences.

Perhaps the most important use of the closed
form spin-dependent amplitudes is to display
explicitly the close relationship between the un-
polarized cross section and the spin observables,
P and Q, using only I) and 5 as the spin-dynamic
input. This relationship becomes manifest in the
data-to-data expressions for the spin observables
in terms of the cross section and these paramet-
ers.

We find that P and Q each contain three terms.
The first two are familiar to spin dynamic pheno-
menology. The first is the simple linear rise
related to the symmetry condition that polariza-
tions vanish like q as q- 0. Only this term sur-
vives if 5 = 0. The second term is the tangent-
like term familiar to polarization phenomenolo-
gists as the log derivative of the cross section.
Indeed, since from ADL we know that the oscilla-
tions in the cross section come from o- cos'qg,
we have d Ing/dq ——tanqc, which recovers the
old phenomenology. We use a related trigono-
metric identity to derive the relationship used
in the data-to-data form, Eq. (35).

The last term in P or Q is new to spin pheno-
menology. It is proportional to the reciprocal
of the cross section - I/o, and thus it oscillates
but does not change sign as the tangent term does.
Furthermore, it is proportional to y, the forward
real to imaginary ratio, and will thus be relatively
more important in energy regions where z is
large. The structure of P and Q are symmetric
(modulus signs) in the three terms with the roles
of Re(w) and Im(w) reversed In principl. e, one
can determine both the real and imaginary parts
of w from P alone (modulus the sign of r) and
thereby predict Q. This is, in practice, difficult
since the sensitivity of P to the real part of w

is weak. On the other hand, the double scattering
experiments needed to determine Q are technically
difficult. In any event the simple relationship
of P and Q manifested in (31) should aid in the
planning and analysis of experiments to determine

Q both by giving an indication of the structure
to be expected and by showing what few quantities
determine that structure.

We plan to extend these ideas to polarization
in inelastic scattering as well. Extensions to
lower energies will require some caution. In
deriving the closed form expressions here, a
simple perturbation of the earlier ADL result



2I22 R. D. AMADO, J. A. McNEIL, AND D. A. SPARROW

was used. For 800 MeV applications, as we have
seen, this is perfectly satisfactory. For lower
energy applications where the spin strength M)

grows and in particular the forward real to imag-
inary ratio approaches unity, the solution given
here will presumably fail. At 180 MeV, for ex-
ample, M)= —0.27+ j0.41 fm and y —1.' This is
not to say that the analytic methods will not work
in this region, only that the algebraic solution
to the stationary phase condition is no longer given
by a trivial perturbation of the ADL result; a
more careful approach is necessary.

In summary we have obtained closed form ex-
pressions for the spin dependent p-nucleus scat-
tering amplitudes at intermediate energies. These
forms can be cast into data-to-data relationships
for the spin observables, that is, into relations
for these observables directly in terms of the
elastic scattering and two fundamental lengths, w

and 5. These forms fit the data well and illumi-
nate the dynamical origin of its rich structure.
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The spin channel cross sections are given by
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The cross section and polarization are then given
by

For reasons of space economy the properly
normalized equations for p, Q, and 0 computed
from (25} along with the data-to-data expressions
for the nuclear structure factors ReCS*/C*C and
ImCS*/CW are presented in this appendix.

First we write (25} as
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The spin rotation is given by

(A4)

(A5)

Q= B(F+F E+E*)/o-

S*S
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In the identical spin-orbit and central geometry
limit we have

to-data relations

i
[&

mB B/aso ( -&/4 }
sin2quE+iQ tanh2qv -+i

cosh v
' (AV)

(A9)

These expressions for p and Q are properly
normalized. Since p and Q measure phase differ-
ences, they obey the inequality

P2+QR ~ 1 (AB)

The nuclear structure information of p and Q
is contained in the factors ReC*S/C(C and ImCS*/
C*C. For completeness we summarize here the
formulas for computing these factors directly
from the elastic cross section data. Using these
expressions in (A3)-(A5) and (A6) gives the data-

ImCS~ (signr) o „'' ~ .2B/~ (T( (~ ((&~/(o& ~&~ o)
a(q)'

(A10)

where o is the nearest (in q) cross section min-
imum, o, (o,) are the nearest cross section max-
ima located at the larger (q&) and smaller (q, )
values of q, and o(q} is the elastic cross section.
In both (A9) and (A10), c is the half density radius
and P the diffusivity.
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