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Recent work by Noble and collaborators has pointed out that wave function orthogonality in bound-state to
continuum-state transitions can produce large cancellations in transition amplitudes. In single-channel examples,

nonorthogonal wave functions (such as plane waves) were shown to greatly overestimate the exact results even at

high energies. In this paper we examine a simple coupled-channel model which can be exactly solved for the many-

channel scattering and bound wave functions. In such a model, the exact transition amplitude can be compared with

standard plane-eave and distorted-wave approximations. Dispersive corrections are shown to be large and to persist

even at high energies.

NUCLEAR REACTIONS Orthogonality constraints on bound-continuum transi-
tions in coupled-channel systems. Dispersive corrections to DWIA.

I. INTRODUCTION

There have been several experiments carried out
recently which have the capability of probing high-
momentum components of nuclear single-particle
wave functions. Among these are bound state to
continuum state knockout processes involving ab-
sorption of a photon or meson, such as A(v, N}B
(Ref. 1) or A(y, N)B (Ref. 2) at intermediate ener-
gies. These reactions are promising areas for
studying the effects of exchange-current phenome-
na in nuclei or multistep reaction mechanisms, and
also for probing components of single-particle
wave functions at large momentum. However,
there are long-standing questions regarding the
impor tance of wave function orthogonality in these
reactions. The or thogonality question arises
since the absorption (or emission) of a particle
changes the energy of the nucleus. For absorption
reactions, the initial (bound) and final (continuum}
nuclear states are eigenfunctions of the nuclear
Hamiltonian at different energies and are orthogo-
nal; i. e. , if we denote the initial and final nuclear
wave functions as q,. and +&, respectively, then the
wave functions must satisfy

Standard distorted-wave treatments of these re-
s.ctions (which evaluate the interaction of the eject-
ed nucleon via a complex and energy-dependent op-
tical potential) will produce wave functions which
do not manifestly satisfy the orthogonality criteri-
on. It would be useful to have estimates of the im-
portance of orthogonality in these reactions, in or-
der to appreciate the magnitude of this problem in
medium-energy reactions. Recent work by Noble
and collaborators has been very useful in this re-
gard. Using flux conservation techniques to ex-
plicitly account for orthogonality in the nuclear

wave functions, Noble has been able to provide
equations for calculating knockout amplitudes, and
in certain cases he is able to conlpare the "cor-
rect" amplitudes with amplitudes calculated using
plane waves for the ejected nucleon.

These results are interesting because they point
out three features of knockout reactions and or-
thogonality: (1) the difference behveen plane-wave
amplitudes and results calculated using Noble's
techniques is quite large (plane-wave amplitudes
greatly overestimate the exact result); (2} the
large differences persist even at high energies,
where it is often asserted that plane waves should
give progressively better fits-to the correct ampli-
tudes; (3) the amplitudes are very model-dependent
(since two different approximations by Noble give
rise to answers which differ asymptotically by a
factor of 2). Noble wrote down the full coupled-
channel amplitude for knockout reactions, but he
used examples where both the binding and scat-
tering of the single nucleon were governed by the
same real potential V, a fact which made it easier
to employ the flux-conservation arguments he set
forth.

Although the estimates obtained by Noble were
very useful in showing the possible effects of or-
thogonality, this does not necessarily imply that
large orthogonality modifications will be necessary
to correct "traditional" nuclear physics calcula-
tions of knockout reactions —by traditional, we
mean calculations which include the nucleon-nucleus
interaction via a complex and energy-dependent
optical potential, and which use a spectroscopic
factor for the single-particle bound wave function.
As is well known, one distinctive feature of nucle-
on-nucleus reactions at intermediate energies is
the strong coupling of different nuclear states in
the reaction. Consequently, if we are looking at,
say, (y, p) reactions on an A-body target leading
to a specific final state in the (A-1) body residual
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nucleus, then the final-state interaction of the pro-
ton with the residual nucleus must take into ac-
count the effects of a large number of states of the
(A-1} body system. The explicit energy depen-
dence of the proton-nucleus effective interaction
results from reducing the many-channel nuclear
system to an equivalent one channel problem with
an (energy-dependent) effective interaction, as was
shown by Feshbach. The spectroscopic factor for
the bound state single-particle wave function also
accounts for some features of the strong channel
coupling by renormalizing the proton-nucleus wave
function to account for strength in the other chan-
nels.

Since the nuclear system is characterized by
strong coupling to intermediate excited nuclear
states, it is not clear that the results obtained by
Noble from a one-channel description of the bound
and scattering states will be applicable for realis-
tic situations. For example, one could imagine a
situation where plane-wave calculations might dra-
matically overestimate the "exact" result, but
where standard distorted-wave methods give very
good agreement with the correct amplitude. In
this paper, we present the results of a model cal-
culation where we can examine knockout reactions
in a coupled-channel system. In this model, we
have a nucleon interacting via separable interac-
tions with a nuclear core possessing a ground state
and a single internal excitation, and we calculate
the amplitude for a transition where the initial
bound state of the nucleon plus core absorbs a
scalar meson, going to a final state consisting of
a continuum nucleon and the ground state of the nu-
clear core.

Such a model is useful because we can analytical-
ly solve the coupled-channel problem for the bound
and scattering states of the nucleon relative to the
core. Thus, we can solve the multichannel nuclear
problem while explicitly maintaining orthogonality.
For purposes of illustration, we will choose a sim-
ple form for the absorption operator for the "me-
son"; in this case, the resulting amplitude can be
shown to consist of three terms. The first term
is just the plane-wave impulse approximation
(PWIA) for the knockout reaction; including the
second term gives the distorted-wave impulse ap-
proximation (DWIA) for the reaction with a spec-
troscopic factor for the bound proton; the third
term provides an additional dispersive contribution
not included in standard distorted-wave analyses.
In the context of this model, we will examine the
following questions:

(1) To what extent is the DWIA analysis an ade-
quate representation of the full amplitude&

(2) Do Noble's estimates of the importance of or-
thogonality corrections (based on single-channel

examples) overestimate the effects of such correc-
tions in many-channel systems?

(3) How large are the dispersive corrections,
and does their importance diminish with increasing
energy?

In Sec. II, we review the formalism for calculat-
ing knockout reactions in coupled systems and we
repeat the arguments by Noble which led to his
estimates of the effects of orthogonality correc-
tions in coupled systems. In Sec. III, we present
the coupled separable potential model which we
have employed for the nuclear wave functions. We
write down the solutions for the wave functions and
we show phase shifts for three different cases
which we use as examples. Details of these equa-
tions are deferred to Appendix A. In Sec. IV we
present the exact results of our calculations and
compare with PWIA and DWIA predictions, and
with Noble's estimates extrapolated from one chan-
nel systems; we also present our conclusions based
on this work.

II. COUPLED SYSTEMS AND NUCLEAR REACTIONS

For the purpose of illustration, we shall consid-
er reactions of the form A(v, N)B or A(y, N)B in
this paper. Also, wherever convenient we will fol-
low the notation used by Noble. 5 We consider the
residual nucleus IB) to have an orthogonal set of
intrinsic excited states In), and we divide the total
Hamiltonian X into an intrinsic term X„,and a one-
particle term relative to the intrinsic states, i. e. ,

X= —V2/2M + V++„. (2. 1)

and the potential V is a matrix which couples the
single nucleon to various intrinsic states; it will
turn out to be most useful to expand in terms of
single-particle momentum components of the wave
func tions

(2. 3)

In Eq. (2. 3), g„(j5) are single-particle compo-
nents of the initial bound state wave function IA),
and g„' '(p} are scattering wave functions whose
precise form is determined by the boundary condi-
tions for a particular reaction. With this expan-
sion, the statement of orthogonality for the initial
and final states is

In Eq. (2. 1), the states In) are eigenstates ofx„,
with eigenvalues &„,

(2. 2)
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(2. 4)

The transition matrix element for absorbing a
boson of momentum k ean be written as

&g&(k) = Q I 2 3$. *(k+9)o(.(P)

+I. f,"..(.'. "(i+(((;.(k((.5(.

The operator T«contains two parts: the first part
involves absorption of the boson by a nucleon, gov-
erned by the transition operator O. The second
part [given by the form factor F„„(k)]contains two

types of terms: "core coupling" terms, in which
the boson is absorbed by the core; and gauge
terms, in which the boson absorption is coupled to
the potential V. Both of these latter terms can in-
volve transitions from one intrinsic state to anoth-
er. The different types of terms are easily seen
by expanding the absorption reaction to lowest or-
der in the potential V, as is shown diagrammati-
cally in Fig. 1. The terms in Fig. 1(b) represent
inclusion of initial and final-state interactions; the
term in Fig. 1(c) represents dispersive correc-
tions, i.e. , absorption of a meson while the resid-
ual nucleus is in an excited state, Fig. 1(d) shows
excitation or deexcitation of the core by coupling
to the boson, or what we have called the core
coupling terms; Fig. 1(e) illustrates the gauge
terms, whexe the boson couples directly to the po-
tential. For example, if we were considering the
reaction A(yi, fv)&, then Fig. 1(d) would represent
the "semidirect*'~ terms, where the photon couples
to intrinsic (e. g. , giant resonance) collective
states of the residual nucleus, and Fig. 1(e) would
represent the "exchange current" terms, where
the photon couples to the charge of a virtual ex-
changed meson.

In general, solving the coupled nuclear equations
and calculating the absorption reactions is a for-
midable task. It is even more complicated for pi-
on absorption reactions, where the pion is both the
"external" absorbed meson and an important com-
ponent of the nuclear force. In this calculation,
we wish to nlake the reaction as sln1ple as possi-
ble, so that we can solve analytically for the nu-
clear wave functions, while still retaining some
connection to the underlying physics. In this way,
we hope to illustrate the various effects of orthog-
onality as clearly as possible in a multichannel
problem. %ith this in mind, we make the follow-
ing simplifications for the purpose of illustration:

(1) We consider only the nucleon transition oper-
ator terms in the reaction, i. e. , we set F„„(k)=0

FIG. 1. (a) Lowest-order diagram for absorbing a
scalar boson of momentum k (we have not included the
elastic nucleon-core interactions in this diagram). (b)
Initial correlations and final-state interactions. (c)
Dispersive correction to the absorption amplitude. {d)
Core-coupling terms for the absorption. (e) Gauge
terms, representing coupling of the boson to the poten-
tial. Figure reprinted from Ref. 5(a).

in Eq. (2. 5).
(2) We use one-term separable potentials for the

interaction V,

I.;{p,p') = g (2f+I)~"'~.'."(p).."'(p'P', (p p').

(2. 6)

In Eq. (2. 6), V„,„ is the (nonlocal) potential cou-
pling intrinsic states n' and n. X"' is a coupling
constant, v„'(p) is a form factor depending upon the
magnitude of the momentum p, and I', is the I e-
gendre polynomial of order /.

Kith the assumption of separable potentials, we
can solve directly for the bound and scattering
wave functions. To simplify the resulting algebra
even further, we choose a "two-state" system by
restricting the core intrinsic states to a "ground
state" (n=0) and one "excited state" (n=1). Our
model is then the following: %e consider a system
in which originally we have a nucleon bound to a
nuclear core in an s-wave orbit. The nucleus ab-
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sorbs a boson, leading asymptotically to a free
nucleon and the residual nucleus in its ground
state. It is easy to show that the single-particle
wave functions take the form

Xv„(p'(p)
'4(p) —

E E (p)
(2. 'I)

().' '(p) = (»)'5(p- k&)5. p

+ „)(2l+ I) v„"'(p)vp''(k )S', (p fp, )

D, (E ) E —E„(p)—p„- iq

(2. 8)

pr
v."'(p)-

p
P +~nr

(2. 8)

with these form factors, the Jost functions can be
calculated analytically. The details of the wave
functions and transition matrix elements are given
in Appendix B.

Now that we have the nuclear wave functions ne-
cessary for our model, we can evaluate the transi-
tion matrix element for absorbing a scalar boson
of momentum k. For simplicity, and to allow
comparison with Noble's calculations for a one-
channel potential, we have used the transition op-
erator

O yeBr. r (2. IO)

This would correspond to absorbing an undistorted
scalar meson of momentum k. With this choice
for the transition operator and our assumptions
for the nuclear system, Eq. (2. 5) takes the form

&„lk) = f z,~i Ii)l '"(p+)i)(,(p)

(2. 11)

We can further break this down by noting that Eq.
(2. 8) can be rewritten as

(„' '(P) =-(2v)P5(P- k,)5., p+ 4.'.).(P); (2. 12)

that is, the scattering wave contains a component
of the plane wave in the ground state of the residu-
al nucleus, and scattered spherical waves in all
channels. Substituting this into Eq. (2. 11) gives

In Eq. (2. 7), Ea is the bound-state energy, E„(p)
is the kinetic energy corresponding to the nth state,

E„(p)=p'/2V „,
and N is the normalization factor for the bound
state. In Eq. (2. 8), the asymptotic momentum of
the nucleon is k&, and D, (E ) = lim D, (E —iq) is the

77 no+Jost function for this interaction. The details of
the solutions are given in Appendix A. For sep-
arable interactions, we have used the Yamaguchi
form factors

+f ()i) = i) ()i, —&)+ J,i)i) .', ()i+ k)i), (p)

+
( )p

(()(',.'. (p+ k)((~(p) . (2. 13)

The three terms of Eq. (2. 13) have a, straight-
forward physical interpretation. The first term
of the transition amplitude is what would be ob-
tained by calculating the full bound state wave
function, but using a plane wave for the outgoing
nucleon. We call this term the PWIA for the re-
action. Note that the first and second terms of
Eq. (2. 13) also include the equivalent of a "spec-
troscopic factor" for the bound proton wave func-
tion. The normalization condition for the full
bound state wave function can be rewritten as

S=- 3 pop =1 —
3 p& p

(2. 14)

Since the single-particle wave function Pp (where
the core IB) is in its ground state) is not normal-
ized to unity, the first term of Eq. (2. 13) is equi-
valent to calculating the transition amplitude using
a plane wave for the outgoing proton, but renor-
malizing the bound wave function to account for the

coupling of other nuclear channels.
The first plus second terms of Eq. (2. 13) give

the transition amplitude for transitions from the
bound state leading to the ground state of the re-
sidual nucleus but including final-state interac-
tions. In diagrammatic terms, it includes initial
and final state interactions such as those shown in
Fig. 1(b) to all orders in the potential. In a dis-
tor ted wave impulse approximation for this reac-
tion, the transition operator would be evaluated
between a bound state wave function and a scatter-
ing wave function calculated from an optical poten-
tial which reproduced the elastic scattering of the
nucleon. Since that is just what is given by the
first two terms of Eq. (2. 13), we denote these two

terms as the DWIA for the reaction.
The third term in Eq. (2. 13) is a dispersive cor-

rection; in this term, the boson is absorbed by the
system while the residual system is in its excited
state, and the final state interaction eventually
takes the nucleus back to its ground state. This
corresponds to the graph of Fig. 1(c) calculated to
all orders in the potential, and provides the addi-
tional contribution to the reaction required by the
multichannel nature of the system. It is this addi-
tional piece which must be added to the DWIA in
order to preserve orthogonality between the bound
and scattering states.

For a one-channel potential V, Noble~ showed
that the final-state interactions V produced signifi-
cant cancellations in the transition amplitude rela-
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tive to PWIA calculations, which neglected these
interactions. In our model, some of the cancella-
tions will be provided by the DWIA amplitudes and
some by the dispersive corrections.

In the next section, we will set up three repre-
sentative models for the nucleon-core interaction,
and we will discuss the types of physical systems
to which these models correspond.

III. MODELS FOR TWO-STATE SYSTEMS

relatively weak coupling to the core excited state.
The elastic coupling parameters n, for the lth par-
tial wave are 3-6 times larger than the corre-
sponding inelastic parameters P, . The resulting
elastic scattering phase shifts for this model are
shown in Fig. 2. We can write the S matrix for
elastic scattering of a nucleon from the ground
state of the core as

S,'0'(E) =q, e'"'

We have used separable Yamaguchi potentials for
the nucleon-core interaction so that we can solve
analytically for the bound and scattering wave
functions. With these potentials, the interaction
is specified independently for each partial wave.
We have chosen s and p waves for the nucleon-core
scattering, and we assume that the absorption of
a boson knocks out a nucleon from an s-wave bound
state. For our calculations, we varied the param-
eters so as to produce an s-wave bound state of the
nucleon with a binding energy of 30 MeV, and a p-
wave bound state with binding energy of 12 MeV.
The excitation energy of the core excited state was
chosen to be 30 MeV, and the range of the poten-
tials [see Eqs. (Bl) and (B2) in Appendix B) were
fixed at 250 MeV/c for the coupling to the ground
state of the core, and 400 MeV/c for the coupling
of the nucleon to the core excited state. We then
had two parameters, the strength of the elastic
and inelastic interactions, for each partial wave.
We have varied the parameters so that they repro-
duced the same bound state energies but gave rise
to three different types of scattering phases. The
values of the parameters for these three cases are
given in Table I. In Table I we also include the
spectroscopic factor S for the three cases —that is,
the square of the normalization of the elastic chan-
nel component of the single-particle bound state
wave function, given by Eq. (2. 14). The closer
the spectroscopic factor is to 1, the larger the
amplitude of the full wave function relative to the
ground state of the residual nucleus.

The first case, which we have called "mostly
elastic, " is characterized by a strong coupling of
the nucleon to the ground state of the core, and

where S00' is the elastic scattering S-matrix ele-
ment for par tial wave l and kinetic energy E, q, is
the magnitude of the scattering amplitude and &, is
the phase shift. As can be seen from Fig. 2, the
magnitude of the elastic scattering amplitude is
always relatively close to 1, and the elastic cross
section is never less than —, of the total cross sec-
tion for this system. Since the mostly elastic
model is characterized by weak coupling to the in-
elastic channel, we might expect results for
knockout reactions in this system to be close to
results calculated ignoring the coupling to the in-
elastic channel.

The second case we have examined is called the
"strongly inelastic" case. This is characterized
by strong coupling to the excited state of the core.
The elastic scattering phases corresponding to
these parameters are shown in Fig. 3. Above in-
elastic threshold, the reaction cross section is
large and becomes about twice as large as the
elastic cross section.

The third case we have examined is called a
"strong absorption" model. This system exhibits
very strongly inelastic resonances which are fre-
quently observed in elementary particle reactions
(for example, the pion-nucleon phase shifts in the
D~3 and F&~ partial waves). In these coupled sys-
tems, there is a very strong attraction producing
a resonance in an inelastic channel; in the elastic
channel, such a resonance appears as a sharp de-
crease in the magnitude of q, and a corresponding
rapid change (either increase or decrease) in &, .
In Fig. 4, we show the elastic S-matrix elements
for our strong-absorption case. For the parame-
ters we have chosen, the system displays an s-

TABLE I. Range and strength parameters for separable interactions, as given in Eqs. (B1)
and (B2). Spectroscopic factor S for each potential as defined in Eq. (2.14).

Elastic channel
Ckp

Inelastic channel
Pp P(

Spectroscopic
factor

Mostly elastic
Strongly inelastic
Strong absorption
Range

3.10 0.87
1.21 0.63
1.77 0.48

a = 250 MeV

0.50 0.30
2.20 0.54
1.70 0.70

b =400 MeV

0.922
0.513
0.666
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FIG. 6. Differential cross section do/dQ (pb/sr} vs
c.m. scattering angle 8, for absorption of a massless
scalar boson. The nucleon-nucleus interaction is cal-
culated with the mostly elastic parameters. Solid
curve: boson c.m. energy E= 40 MeV. Dashed curve:
E= 120 MeV. Dot-dashed curve: E=200 MeV.

(2. 10), is absorbed by the nucleus, knocking out a.

nucleon and leaving the core in its ground state.
In the initial state the ejected nucleon is bound in
an s-wave state with a binding energy of 30 MeV,
and we consider s and p waves in the final nucleon-
nucleus scattering. The solid curves represent
absorption cross sections for a scalar boson c. m.
energy of 40MeV, the dashed curve for 120MeV, and

the dot-dashed curve for 200 MeV. Figure 6 gives the
results for the case of mostly elastic scattering, as
discussed in Sec. III; Fig. 7 gives the results for
the strongly inelastic scattering case; and Fig. 8

10

FIG. 8. de/dQ vs 8 for absorption of a massless
scalar boson with the strong absorption scattering
parameters. Notation is that of Fig. 6.

represents the case of strong absorption in the nu-
clear interaction. In all three cases, the s- and P-
wave final state interaction terms interfere and
produce a minimum in do/dQ at about 60' ai 40
MeV, but this minimum is not present in the reac-
tion at higher energies.

%e are interested in whether what we have
termed the DULIA provides a reasonable fit to the
exact knockout amplitude. If the nuclear i.nterac-
tion were a single-channel local interaction V(V),
then Noble derived some very useful relations
which showed the persistent influence of orthogo-
nality constraints on the transition amplitudes.
%e will use some of these relations to compare
and contrast with our own coupled-channel results,
so we recapitulate Noble's arguments here. The
results are most easily derived in a coordinate-
space representation, where the desired transition
amplitude has the form

10 .— (4. 1)

I

15
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0
l l

45 60 75
e (~eg}

FIG. 7. do/dQ vs 8C for absorption of a massless
scalar boson with the strongly inelastic scattering
parameters. Notation is that of Fig. 6.

If we insert a plane wave at this point for the out-
going scattered wave with asymptotic momentum

kf, then we obtain

TP %IA (k) ~ (k)' (4. 2)

ln Eq. (4. 3), the binding energy of the single nu-

using wave functions which manifestly violate or-
thogonality. Using the fact that the bound and
scattering wave functions are eigenfunctions of the
nuclear HamillonianX, then Eq. (4. 1) can be re-
written as
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(4. 4)

On the other hand, if we use the "eikonal approx-
imation"

Vg ' (r)= —ik&[k& —2MV(r)] I}I&
' (r), (4. 5)

cleon is xI/2M. If we approximate Pz I(j}by a
plane wave in Eq. (4. 3), and we take the limit of
large k&, we find the "modified plane-wave" limit

2k 'kq
(TMPw(k) 1 I I TPWIA(k) t ~ ~f '

Q +K
l

l

1

\

then Noble showed that for large k&

k 'kq
Tw~(k) =, ' TP„,A(k), )I«k~.

k~
(4. 6)

}
) r-

I

tpw I TpwIAIT I an«Dw I TDwIAIT I (4. 7)

vs the c. m. momentum of the scalar boson. Tp~gA
is the first term of Eq. (2. 13), Tn„,„is the sum
of the first and second terms, and T is the full
amplitude including the dispersive corrections and
hence satisfying the orthogonality condition. The
results of Fig. 9 are for the mostly elastic scat-
tering parameters. As was predicted by Noble,
the PWIA amplitude is considerably larger than
the exact result, and the plane-wave result does
not approach the exact result at large energies.
The distorted-wave result is considerably closer
to the exact result; however, the DWIA cross sec-
tion for this reaction will still be a factor of 2
greater than the exact cross section (which in-

The difference of roughly a factor of 2 between the
MPW expression of Eq. (4. 4) and the eikonal re-
sult of Eq. (4. 6) points out the importance of the
final-state interactions and shows that the correct
amplitude will be very sensitive to the inclusion of
the final-state interaction. Both of these approxi-
mate results indicate that the plane-wave impulse
approximation result should give a considerable
overestimate of the exact result at all energies.

The previous results have assumed a single-
channel potential V, and the eikonal result has as-
sumed the validity of the "local WKB approxima-
tion. " Clearly, neither of these approximations
is valid for a multichannel reaction with separable
interactions for the nuclear potential. Neverthe-
less, we compare our exact results with these ap-
proximations in order to see how the one-channel
results are modified by the presence of coupled
channels, and also to see whether a distorted-
wave calculation will successfully reproduce the
exact results, despite the failure of the plane-wave
approximation.

From the results of Eqs. (4. 4) and (4. 6), we see
that it is useful to compare the ratio of the plane-
wave (and distorted-wave) results with the exact
amplitude. In Fig. 9, we graph the ratios of the
amplitudes

0
0

I I I } I I I

40 80 120 160 200 240 280 320
E scalar (MeV/C)

FIG. 9. Ratio of the plane-wave and the distorted-
wave approximations to the exact result for the mostly
elastic case. pp and &D+ [see Eq. (4.7)j vs c.m. energy
of the scalar boson, for 8 =30'. Solid curve:
Short-dashed curve: +D1)lt. Also shown are the same
ratios plotted with the monopole term removed from the
amplitude. Dot-dashed curve: &pz (without monopole).
Long-dashed curve: RDz (without monopole).

eludes the dispersive corrections}. Near the
threshold for this reaction, and at the threshold
for the opening of the inelastic channel, there are
strong energy dependences in the DWIA amplitude
relative to the exact result. The calculations
shown here (and all further results} are given for
a c.m. scattering angle of 30' between the incident
boson and the outgoing nucleon; if we repeat the
same calculations at 0' we find the discrepancy be-
tween the approximate values and the exact result
becomes somewhat smaller at all energies, al-
though the qualitative features remain the same at
both angles.

In Fig. 10, we compare the ratio &pg with the
ratios of plane-wave to exact amplitudes estimated
by Noble using Eqs. (4. 4) and (4. 6). We see that
the suppression of the plane-wave amplitude is
even larger in our model than was predicted by

Noble using single-channel forces. However, as
seen from Fig. 9, the dis tor ted-wave approxima-
tion for this particular case gives reasonably good
agreement with the exact result.

In the model which we have used for the scalar
boson absorption, a large contribution to the non-

orthogonality can come from the monopole part of

the meson wave function. Since our absorption op-
erator is just 0 =e+ for the meson, we could ex-
pand the exponential in a series to obtain

Ty;=&@x Io I4';)= & +y Il+ik 'r+ ' ' '
I e;) ~ (4. 8)

Because of the orthogonality of e& and +„ the con-
tribution of the "1"term in Eq. (4. 8) should give



WAVE FUNCTION ORTHOGONA LITY IN COUPLED-CHANNEL. . .

10 10
I)
I (i)

v'

I

1

I

I ) I I I I I

40 80 120 160 200 240 280 320
0
0

FIG. 10. Ratio of plane-wave approximationation to the ex-
foract amplitude vs the scalar boson c.m. energy,

e~ ~ = 30 . Solid curve: Ppz (includes the monopole
t but' }. For comparison, the "modified-plane-

wave" ratio estimated by Noble fEq. (4.4) o - as e
curve), and the eikonal ratio [ Eq. (4.6)]: the dashed
curve.

zero. Consequently, a formally equivalent way of
writing T&,. could be obtained by subtracting off the
1 or monopole term, i. e. ,

T„=(~,l{e"-Ill ~;).
Equation (4. 9) is of course identical with (4. 8) for

roperly orthogonalized initial and final states,
but using nonorthogonal approximations for the nu-
clear wave functions will give different results for
the two equations. In Fig. 9, we have also plotted
the ratios Rp„and RD+ after the monopole term
has been removed. We see that removing the
monopole part of the transition operator brings the
approximate results somewhat closer to the exact
results, and in the case of the DWIA approximation
it makes the ratio between the approximate and ex-
act results almost independent of energy. In this
ins anc,ta ce once we remove the monopo e term from

n thethe transition amplitude, the ratio between e
DWIA amplitude and the exact result is roughly in-
dependent of energy. As a consequence, we could
adjust the DWIA result to the exact amplitude with
an energy-independent renormalization factor.

We have repeated the same knockout calculations
for the other two-channel models described in Sec.
III. For the parameters which describe the
strongly inelastic two-channel model, we have
plotted the ratios R» and RD+ vs the scalar energy

Fi . 11. For this case, both the plane-wavein ig.
iderableand distorted-wave amplitudes give a consider

overestimate of the exact result: for large meson
energies the distorted wave cross section (which
goes as the square of the amplitude) will be a fac-

0
0

I I I I I l I

40 80 120 160 200 240 280 320
E „(MeV/cj

FIG. 11. Ratio of plane-wave and distorted-wave
a roximation to the exact result for the strongly in-
elastic scattering parameters. Notation is tha ig.
9.
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FIG. 12. Comparison of the ratio Ap~ of Eq. . )f E . 4.7)
'th the ratios estimated by Noble from single-channelWl e

considerations. The strongly inelastic parameters a
used here, and the notation is that of Fig. 10.

tor of 12 greater than the exact result. Removing
the monopole part of the transition operator again
makes the PW and DW approximations close to en-
ergy-independent multiples of the exact results,
but both of these approximations give results which
are much larger (e. g. , factors of 6-15 in the
cross sections) than the exact results. In Fig. 12,
we compare the ratio Rp with the one-channel
predictions from Noble, and we see that the differ-
ence between the plane-wave and exact result is
much larger in this particular two-channel case
than for the one-channel situation.

For the strong absorption two-channel model, we

plot the ratios Rp+ and RD» in Fig. . g
'13. A ain, we
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FIG. 13. Ratio of plane-wave and distorted-wave
approximations to the exact result for the strong absorp-
tion scattering parameters. Notation is that of Fig. 9.

see that both the plane wave and distorted wave ap-
proximations seriously overestimate the exact re-
sult, and we see that while removing the monopole
part of the transition operator takes away the en-
ergy dependence of these ratios, the PW and DW

approximations are still considerably larger than
the actual amplitude.

In all the model calculations shown here we have
observed the same qualitative conclusions reached
by Noble from considering a one-channel descrip-
tion of knockout reactions: the plane-wave impulse
approxima, tion (PW) seriously overestima. tes the
exac t result for this reac tion, and the discrepancy
between the PW and exact results does not improve
even for very high energies. In addition, we have
been able to compare the exact results for our two-
channel model problem with results from an ap-
proximation which uses a distorted-wave treatment
of the outgoing nucleon together with a spectro-
scopic factor for the bound nucleon (the DW

curves). We find that the DW results are also con-
siderably larger than the exact values, and that
these discrepancies also persist even to high ener-
gies. Even for the case where the DW results are
closest to the exact value (the mostly elastic two-
channel model), the DW results still give cross
sections at least 40/~ greater than the exact re-
sults. When the monopole part of the transition
operator is removed from the amplitudes, then the
ratios of the PW and DW approximations to the ex-
act amplitudes are very nearly independent of en-
ergy, but the factors needed to renormalize the
approximate values to the correct answer are dis-
turbingly large.

Our models are very simple-minded in describ-
ing both the transition operator and the complicat-
ed particle-nucleus system. However, even these

simple systems may be able to illustrate effects in
realistic knockout reactions. We have attempted
to choose the parameters in our nucleon-core
model in order to simulate effects seen in realistic
systems, and we find that the dispersive correc-
tions which would not be included in a standard
distorted-wave treatment of knockout reactions
might be quite important in determining the over-
all normalization of these reactions. In our cal-
culations, the dispersive corrections always tend-
ed to cancel parts of the DW results, and it was
possible to fit the DW results to the exact results
with an (approximately) energy-independent renor-
malization factor: it is not clear whether such
qualitative results would also occur in more re-
alistic systems or if they are merely a feature of
the specific model we have used.

In our model calculations, dispersive corrections
to knockout reactions are large and do not disap-
pear even for high energies of the absorbed boson.
Although the calculations shown have been carried
out for a massless scalar boson, the qualitative
features would be the same if we used a boson of
mass 100 MeV but the same transition operator.
Our results could be approximately renormalized
to the data by multiplying the DWIA amplitude by
an energy-independent reduction factor, but this
reduction factor would be an additional renormal-
ization over and beyond the spectroscopic factor
which has already been included in our model cal-
culations. It might be useful to carry out model
calculations for knockout reactions using existing
(and more realistic) coupled-channel nuclear re-
actions codes and simple transition operators to)
see whether the large and persistent dispersive
corrections which we have obtained are character-
istic of such knockout reactions, or whether they
are peculiar to the simple two-level models we
have employed.
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APPENDIX A

In this appendix, we review the solution of equa-
tions for constructing continuum and bound state
wave functions for coupled systems when simple
multichannel separable potentials are used to rep-
resent the interactions. We are concerned with
the scattering or binding of a nucleon to a core
which has an orthogonal spectrum of states by
which we represent the kth excited state as I k)
(the ground state of the core being )0)). The full
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wave function of the system can then be expanded
in the set of states of the core times corresponding
sip.gle-particle nucleon wave functions relative to
the excited state, e. g. ,

action. For these model calculations the algebra
is greatly simplified by setting X,'.,'. '= X"'-=+ 1. The
wave functions then obey algebraic equations for
each angular momentum state,

(212 &
=

Q 2. (&2)(12&. (A1) (&) 2'"=(2)+$2"' "'())G"(2)l"'

Neglecting center-of-mass effects, the Lippmann-
Schwinger equation for the nucleon wave functions
is then

where

(A6)

4g —V'g+ ~;~g4a (A2)
(2rj

(AV)

the Green's function G, includes both the relative
kinetic energy E, of the nucleon and the excitation
energy &, of the core. For scattering with an in-
eident plane wave of momentum ko and a core
which is initially in its ground state 10), with out-
going scattered waves in all channels, we must
solve the coupled equations in momentum repre-
sentation

~ )(y) (~)+
d4 (V~I' ~q)4"(q)

(2v)' E- E,.(p) —~,.+iq

-=2,()2)+Q f 2, , &l'(2)(%(l2' l(&&&l (2). '

In order to illustrate the results of our model as
simply as possible, we have used a two-level mod-
el in which the core has only a ground state and
one excited state. This approximation could also
be identified with a "doorway" picture, where one
assumes that a single intermediate channel or
group of states is responsible for connecting the
incident channel with more complicated nuclear
states. In this ease the core levels are restricted
to two states, and the algebraic equations are ex-
tremely simple. We find that the integrals I~ of
Eq. (A7) are related by

(A3)

(A4)

For these boundary conditions, y, is a plane wave
in channel 0;

v &(|)}= (2«)'t)(p- ka) 3„0

I, (~} =1 &&» (» I, (~),(&) ~"'Ai"'(+) (&)

1 —X

where

(At))

These equations ean be straightforwardly solved if
we choose a separable potential for the coupling
between channels,

(A9)

The Jost function for the separable interaction is
then given as

«2(lV„(l()&
= g

(2)+()2,'.)) ',.(2) i(2)2, (j 2).
P, (Z, ) = ) —g 2 "'2,""(+) . (A 10)

(A5} The full scattering wave function then has the form
In Eq. (A5) v', (p) is the form factor in the lth par-
tial wave corresponding to the ith state of the
core, and X,'&' is a coupling constant for the inter-

I

4 "=40'(p) I0)+0,"(p) II),
where

(All)

&t)'5)=(2 )'2(p-kt)+ $ (2)+))——"
D, (E,) E —Eo(p) —2p+ iq

1(&) ~()) ~&&) i
(A12)

The bound state wave functions are found in a
similar fashion by solving the Lippmann-Schwinger
equation (A2) with the different boundary condi-
tions. For the bound state, p, (p) = 0; the bound

energy E» for a given partial wave is determined
by the vanishing of the Jost function for that ener-
gy, i. e. , D,(E») =0 for D, given by Eq. (A10).
Straightforward algebra gives the components of

I

the bound state wave function as

V($ )
q( &)

(p) iv
& 0 (p)

'E22
&

—E, (p) —eo'

(A14)
(1)

q
(& )(p) i&t

~( (p}
' Ea, &

—E, (p) —
e&

In Eqs. (A13) and (A14) the coefficient fi& is given
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r p~ 1(l)
l 1 y(l )P (~l

i
(A 15)

where c, is chosen to normalize the bound state
wave function to 1, i. e. ,

~ It" )( )I'=1.
(2 )P A P

APPENDIX B

(A16)

Here, we apply the coupled-channel formalism
to calculate the knockout amplitude for the ejection
of a nucleon (proton) of momentum k& following the
interaction of the bound system Iproton + (A —1)
nucleons] with a scalar external probe of momen-
turn k. The s-wave interactions in the elastic and
inelastic channels are taken to be, respectively,

and

Qi =—2/i2=

The full amplitude for absorption of a scalar boson
of momentum k is given by

T, (I)) = I ~, (I,' '(p)(ol+(l 'Sl&(l l

xQ, (p —k) IO)+(C), (p —k) I»]

((I)' '(p)() (p —k) + 0' '(p)tt (p —k)]
(2II)

(a4)

where the (I)'s are given by Eqs. (All)-(A14) in
Appendix A. The (2II) 6(p- k~) piece in $p(p) gives
rise to the plane-wave amplitude and is given by

(p)( )
8)Ia np 13 i/2

TpwIA —= gp(k) —k) . (as)

The distorted-wave amplitude can be identified as

The corresponding p-wave interactions are
f/28vao(I p

P =
2~ @2+F2 ~

,(I)I
)vi 'iP

2 p2+ b2

(a2)

D%IA P%IA DW y

where

'. [y,'-'(p) —(2 )'6(p- k )]4 (p- k).
2)I)

1 2@pa op 2pib Pp
N k(k+ a) k'(k'+ 5)

where

(as)

~f P2+ Q2i
Pp

(n, , p,.] and ]a, 5] are the interaction
strengths and ranges in the elastic and inelastic
channels, respectively. As will be seen in Eqs.
(all) and (a12), the numerical factors are chosen
so that the n and P parameters are dimensionless,
and that for the case of a single channel op & 1(o() 1) will guarantee a bound state in the l =0 or l
=1 partial waves, respectively. ' As is well
known, the one-term separable potential can pro-
duce a maximum of one bound state. p. p is the re-
duced mass of the nucleon and the recoil particle
(mass ms) in the elastic channel and 1II the re-
duced mass in the inelastic channel (recoil mass
=m„+SI). We also consider the attractive case
so that X,'&' ———1 with energies E = k&~/2pp, Eps

—= (II/

2 p p, and &p = 0. For the initial state we take only
the s-wave bound state while for the final scatter-
ing state we consider a mixture of s and p waves.

For the bound state, a straightforward calcula-
tion using contour integrations yields for the nor-
malization constant

(a6)

The amplitude T~,& gives the result which we
could obtain if we inserted the full elastic wave
function (I)p "10)for the final state wave function.
Thus, if we ha.d an optical potential U which gen-
erated the wave function for elastic scattering of
a nucleon from the ground state of the residual nu-
cleus, then T»&& would be the result we obtained
by inserting the wave function generated from U

into the knockout amplitude. The full amplitude is
obtained by adding an additional dispersive term
which represents absorption of the incident parti-
cle with the core in its excited state, followed by a
nuclear interaction which deexcites the core. We
may write this result as

Tf I(k;1) = TDwIA + TDIsP —TPwIA + TDw + TDIsP 1

(a7a)

where the dispersive correction is given by

TD~q~ =
2 3 ~i p)$i p- k) (a7b)

is the amplitude arising from the inelastic channel.
If we define ~ as the angle between kf and k, i. e. ,

kf k=cosH, then a tedious but straightforward
calculation, based on the model described above,
gives for the amplitudes
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T
2iI01Vvp" ( Iky k I)

PWIA «2 + (k g)2 t
f

plnfp(p)
Dw 0 p (p2 + a2)(p2 k 2 iq)

P'lnf, (P}+ c) cos~ dp (p'+a')(p'- k, —zI})

(BS) f(P)= ((p+ k)'+ a']((p —k)'+ «'j
((p —k)2+ apj((p+ k)'+ K'j '

((p+ k}'+b'H(p —k)'+ k"j
((p - k)'+ b'H(p+ k)'+ k'I j '

(p+k}2+a' (p- k)'+K' '
(p k)'+ a' (p+ k)'+ K'

(p+k)'+b' " (p-k}'+k' '
(p —k)'+ b2 (p+ k}'+k'~

(B12)

dp plngp(p)
DISP 0 (p2 j b2}(p2 «2 '

)

p'ln g, (p)

where

(B9)

(Bio}

and

n = (p'+ k'+ a')/(2pk),

p = (p'+ k'+ «')/(2pk),

y = (p'+ k'+ b')/(2pk),

5 = (p'+ k'+ k")/(2pk) .

(B12)

q)f 1 y

Pp

—4lV(apnppII0/II)" 2

Do(k&}k(k&2+ a2}(«2 —a2} '

The Jost functions are found to be

O'pa Ppb
Dp(kI) = 1 —

(
. }2

—
(

. }2 (s wave),

nIa(a —2ik~) pIb(b —2i«I)
(a —i') (b —i«, j

(B14)

—12lVa'n2k~(anp}I0/II)" '
D (k }k(k 2 f- a2)(«2 a2) (Bl1)

(B15)

The integrals in Eqs. (B9) and (B10) can further
be reduced by using the principal value technique

—4lV boppII I[apnp/(IIp 0)]"I

Dp(k~)k(k '+ a~)(k" —b')

—12lVb II Ikr[anPP0/(IIII 0)]
D, (k&)k(k&2 + a')(k" —b2)

1 P
E+Hp. ;, EH, '"-'" "0'

This gives [making use of the fact that
J"0 dp/(p'- k') =0]

(B15)

dP Pln fp(P) ~klnfo(k~) iIIlnfp(k~)
(p' —k ') (p'+ a') (k~2+ a') 2(k~2+ a')

dp p ln f, (p) k~'ln fI (k~) iIIk~ln fI (k~)

(p —k 2) (p'+ a2) (k&2+ a'} 2(k&2+ a )

dp plngp(p} «, lngp(«I)
( 2} iwlngp(KI)

(p2 —«2) (p + b2) (K + b2) 2(KI+ b2)

dp p lngI(p) KIlngI(«I}
( 2} iII«IlngI(K~},

( 2)
(p' —K', ) (p'+ b') (K'+ b') ' 2(«II+ b')

(B17}

(B18)

in Eq. (818), 9(x) is the Heaviside step function
1 x&0

&(x) =
0 x&0'

For numerical calculations, we consider the fol-
lowing three cases: (a) mostly elastic, (b) strong-
ly inelastic, and (c) strong absorption for each of
the following scalar masses: (i) 0 MeV, (ii) 100

MeV. We have not plotted the results for a scalar
mass of 100 MeV, but they are qualitatively the
same as the results for the massless case. The
potential parameters used for the three cases are
listed in Table I. The inelastic channel excitation
energy && and the nucleon binding energy were both
fixed at 30 MeV. The integrations were done nu-

merically using Gaussian integration.
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In most resonance cases, the Argand diagram displays
a loop or circle which is correlated with the resonance.
For this particular case, the presence of bound states
for both l = 0 and l = 1 means that the phase shift begins
by decreasing rapidly, and then it increases at the
resonance energy. The resulting phase behavior does
not show a "loop" in the Argand plot but is neverthe-
less indicative of a resonance in the coupled system.
The conditions for existence of a bound state in the
coupled-channel system are o'0+ Pob /(b+ Q~) ~ 1 for
l = 0, 0'g+ bg(b+ 2@))l(b+ Q g)' ~ 1 for l = 1.


