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Inclusive breakup reactions of the type d + 4—p + anything require sums over excited states of the unobserved
n + A system. We show that the summed distorted-wave Born approximation cross section can be expressed in
closed form as an elastic distorted-waves expectation of an optical model propagator for the unobserved system. The
contribution of fluctuations to the energy-averaged cross section is automatically contained in the derived identity.
Previous results can be recovered from this identity if corresponding surface approximations are introduced. A new
approximation simplifies the identity by omitting the imaginary part of the optical potential. This approximation
selects the energy-shell part of the propagator and reduces the inclusive cross section to the same form obtained for
the ground state reaction A4 (d ,pn )4, with a modified (real) optical potential for the unobserved neutron.

breakup, DWBA, approximations extracted.
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I. INTRODUCTION

Recent studies of breakup by Baur and collab-
orators! emphasize inclusive reactions, such as

d+A - p+anything ,

which are summed over the states of the unob-
served particle + residual nucleus system. The
technique of calculation® ® is based on unitarity
and a surface approximation of the form factors
of excited states; by this means the sum over ex-
cited states of the residual nucleus is reduced to
a correction factor that multiplies the cross sec-
tion for the ground state (or elastic) breakup re-
action A(d, pn)A. The correction for excited
states substantially increases the inclusive (d, p)
cross section and allows good fits to experiment.!

The present article describes a new procedure
for summing the distorted-wave Born approxi-
mation (DWBA) (d, p) cross section over the ex-
cited states of the residual nucleus, without mak-
ing explicit use of the properties of those states.
An identity is derived which expresses the in-
clusive breakup cross section in closed form as
an expectation of an optical model Green’s func-
tion for the unobserved system. Two derivations
are given. A wave function analysis in Sec. II
leads to an equation of flux conservation and from
this to an expression for the total breakup flux.
The same result is obtained in Sec. III by a for-
mal sum over excited states, which leads to a
ground state expectation of a projected propaga-
tor. A further analysis in the Appendix shows
that the summed cross section expressed by our
identity correctly incorporates fluctuations of the
inclusive cross section as a function of energy
transfer.

An analysis of the formal identity and sugges-
tions for practical evaluations are given in Sec.
IV. It is shown how the previous result can be
recovered if corresponding approximations are
introduced. A new approximation is suggested,
whereby the identity is simplified by omitting
the imaginary part of the optical potential. This
approximation selects the energy-shell part of
the propagator and reduces the inclusive cross
section to the same form obtained for the ground
state reaction A(d,pn)A, with a modified (real)
optical potential for the unobserved neutron. An
application of this approximation is presented.

II. WAVE FUNCTION DERIVATION

We begin with a simplified Lippman-Schwinger
equation written in terms of the Green’s function
for breakup channels,

¥(g, T,,T,)=[E*-H, - Hy(§,n)] "'V, ¥, (1)

where E*=E +i5, 7~ 0(+). In our model H, des-
cribes independent-particle motion of the
proton (it includes a distorting potential), and

Hy(&,n)=H,(8)+K, +V(&n) (2

is the Hamiltonian for the interacting neutron-
nucleus system, with K, the neutron kinetic en-
ergy operator. The notation of Pampus et al.3 is
adopted as far as possible. The final -state inter-
action V,, in Eq. (1) is the residual interaction
not otherwise used in the Green’s function. [ Al-
though the homogeneous Lippmann-Schwinger
equation for rearrangement channels does not
have unique solutions,* it is suitable for our pres-
ent application which is based on an explicit ap-
proximation for ¥ on the right hand side of Eq.

1847 © 1981 The American Physical Society



1848 N. AUSTERN AND C. M. VINCENT 23

(1).]

Projection onto a definite energy eigenstate
x4 for the outgoing proton gives a corresponding
neutron-nucleus outgoing wave function

Z,(&,F,)=(E* =E, —Hg) "1V, ®),  (3)

which still retains the entire set of excited states
of the residual nucleus and their associated out-
going neutron wave functions. The round bracket
on the matrix element indicates integration only
over the coordinates of the enclosed wave function.

The wave function Z, for the unobserved par-
ticles has a spectral expansion

: l‘l’“’)@’acx.l l‘I'>
)= Z ke e @)

Z,(g T

in terms of energy eigenstates &g, ) of the neutron-
nucleus Hamiltonian H,. The amphtudes

T, pe={2G XS Vinl ¥, (5)
together with a DWBA replacement of ¥ by the
entrance-channel wave function,

V=@ ,x¢ g » (6)

are the starting point of previous analyses.? %%

A complicated sequence of approximations is
needed to sum the associated cross sections over
the excited states ¢, to reach a calculable result.
However, the outgoing neutron-nucleus wave
function Z, already contains a sum over c. We
only need to compute the inclusive cross section
directly from Z, without any expansion. We go
first to the Schrtdinger equivalent of Eq. (3),

(E-E, -Hg)Z,= (X5 | Vol ¥) . (7
In DWBA approximation this reduces to

(E=E, —Hp)Z, =% ,(£)p, (F,) , (8)
with

Py (Fn)EderpX(p-)*Vpnxy)‘pa . 9

Equation (8) resembles the “source term method”
of Ascuitto and Glendenning.® It expresses the en-
tire multichannel breakup wave function Z, (£, T,)
in DWBA in terms of a single, known inhomogen-
eity in the ground state channel, c=A.

Equation (8) is converted to coupled equations
by use of projection operators P, @ that select the
ground state or excited states of H,, respectively.
The ground-state projector selects the neutron
relative wave function

V(F,)=(2,lZ,), (10)

which is of primary interest. The excited-state
projection of Eq. (8) is solved formally in the usual

fashion and the solution is substituted in the
ground state projected equation to yield a reduced
equation for ¥(F,),

[E,-K, - u]¥(F,)=p, (F,), (11)
in which
En =E _EP —€,, (12)

UL Y(F,)=(@,| V(E,n)
+V(E,n)(E*—E,=Hog) 'QV (£,n)|@ ,4(F, ),

(13)
and Hgq is the Q-space projection of Hj.

The effective interaction U, is the familiar form-
al operator whose energy average with respect to
E or E, gives the ground-state neutron-nucleus
optical potential,

U, =Ur,)==-V(r,)-iw(r,) . (14)

We take advantage of this identification to develop
a theory of energy-averaged inclusive breakup
by going over to the simplified equation

(E,-K, -U@)]FE,)=p,(F,) , (15)

in which 3(¥,) is defined as the scattering solution
of Eq. (15), based on the slowly varying potential
U(r,). Obviously, loss of flux to the open-channel
excited state parts of Z, (£, ¥,) contributes to the
imaginary part of U(»,); by this means the ground
state optical potential in Eq. (15) implicitly con-
tains the requived sum over breakup to excited
states. We show in the Appendix that the energy
averaging of U, also implies that the breakup
cross section calculated from Eq. (15) correctly
includes fluctuation contributions.

Equation (15) leads to an equation of flux con-
servation by the usual procedure in which (15) is
combined with its complex conjugate by cross
multiplication and subtraction. This yields

L [ a8.@rop-popn =- 21 [ &or, (mos T+wIT )

(16)

Here the left hand side is a surface integral over
a large sphere that encloses the interaction vol -
ume and the right hand side is an integral over the
interior of this sphere. If the sphere is chosen
sufficiently large, the outgoing wave property

of (F,) allows a reduction of Eq. (16) to the form

ﬁ—:“-deW(?,,)l%[d’r,,W(r")l'yf|2=—Imfd“'r"p;w_

17)

By construction the surface integral in Eq. (17) is
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the outgoing flux in the elastic breakup channel and

the integral over W(r,) is the flux transferred to
excited breakup channels by optical absorption
from the elastic channel. We therefore recognize
the quantity

= —1m [ a%r,p5 (5,05 F,) (18)

as the fotal neutron flux transferred from the
deuteron channel into all varieties of breakup.

The inclusive breakup cross section is a'multiple
of N. Equation (17) resembles the optical theorem
for scattering cross sections.

The source term p, (¥,) used above is not short
ranged, therefore the convergence of mathemati-
cal expressions based on p, must be questioned.
Indeed p, is defined in Eq. (9) as an overlap of
proton and deuteron distorted waves, hence it is
approximately proportional to the product x;’*
(¥,)x§’ (F,), which oscillates with constant mag-
nitude as 7,~«. Fortunately the long range of p,
is not a problem for the derivation of Eq. (17),
which is based on integration over a large, but
finite sphere; however, the long range does com-
plicate the subsequent analysis of the integral ex-
pression for N (see Appendix and Sec. IV). Indeed
it is seen in Sec. IV that the real part of the p}J
integral diverges strongly as the volume of inte-
gration becomes infinite. The imaginary part,
which we require, is evaluated in terms of ener-
gy-shell, scattering wave functions whose asymp-
totic momenta never sum to zero; therefore it
does converge (in the Césaro sense). This behav-
ior of the imaginary integral is familiar from pre-
vious analyses of breakup’ and stripping to un-
bound states.® Techniques to improve the conver-
gence of such oscillatory integrals are available.

Although p, also appears as a long-range source
in Eq. (15), that equation is correctly solved by
using an outgoing Green’s function, as already
noted in connection with Eq. (1).

Our new calculation of the energy-averaged in-
clusive breakup cross section is now based on the
expression N of Eq. (18), which contains only
ground state functions J and p,. This expression
becomes more symmetrical if we solve Eq. (15)
for P in terms of p, and substitute in N. Then

_f da*r, pfIm(E; -K, -U(r,)]%p, , (19)

an expectation of the anti-Hermitian part of the
Green’s function for the unobserved neutron, with
respect to the source function for ground state
breakup. Further discussions of the properties
of this expression and suggestions for practical
approximations are given in Section IV and in

the Appendix.

III. OPERATOR DERIVATION

This alternative approach to the derivation of
the inclusive breakup cross section begins with a
general formal expression® for breakup to a range
of outgoing proton momenta Ap,

2r)¢ -
Aa=(v"—)2 | T4, po|20(E =E, =Ep,)AD, (20)
d c

in which T, , is the amplitude defined previously
in Eq. (5), and v, is the velocity of the incident
deuteron in the center of mass coordinate system.
The sum (integral) over ¢ extends over all the
outgoing states of the neutron +target nucleus sys-
tem. However, the energy-conserving § function
restricts the sum over states and relates it to the
observed range of proton momenta.

The 6 function is expressed in terms of an en-
ergy denominator, so that

AE_.=_ Z _l_t._mlz_ (21)

AP ‘"”d E*-E,-Eg, °

It is now straightforward to insert Eq. (5) for
T4, s in Eq. (21), to replace the energy denomina-
tor by its operator equivalent, and to employ com-
pleteness for the sum on ¢. As a result,

—(21r) -
Ap Tro, (X" e 24V | x57)
1
E+ _E —Hs(gfn)

X(Xp )l Vnpl X 4’4 4)] (22)

X

Taking the ground state expectation of the full
final state Green’s function in Eq. (22) and aver-
aging with respect to energy recovers the optical
Green’s function of Sec. II, so that

Ap T4

A_g = (2r)* Im(P;' (E; —Kn_Un)-ll pP) ? (23)

as before. The coefficients needed to relate the
previous quantity N to the observed inclusive cross
section are now apparent.

IV. APPROXIMATIONS AND APPLICATIONS

Let us define M as the entire integral, say,
from Eq. (19), whose imaginary part is N, thus

Msf‘ d3v,px(E} -K,-U)""p, . (24)

Because the convergence difficulties of M arise
only at asymptotic radii, where U is negligible,
they are very easily isolated by separating the
Green’s function into a free part plus a part that
contains U, using the identity
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m=[ @ pp(E} K,

fd3r J(E, -K,)'U(E, -K, -U)""p,.

(25)

The integration indicated in the second term of
Eq. (25) has no convergence problems because U
limits the volume of space that contributes to the
integral. The first term of Eq. (25) separates
uniquely, under the decomposition

(Er-K,)'=

K -in8(E,-K,) , (26)
into a principal value integral that is real and
divergent plus an on-energy-shell imaginary inte-
gral that converges. The principal value integral
diverges because it contains a mixture of mo-
menta, which in part match the asymptotic mo-
mentum of p,; this introduces a nonoscillatory
part in the integrand. This part of M is avoided
when the imaginary part is taken. It is thus clear
that approximations of N can be more trustworthy
if they are based on the expression

N:wfd v,y 6(E, —K,)p,

—Imf d*vp}(E,-K )'U(E;, -K,-U)"p, ,
(27)

from which the real part of the free Green’s
function has been entirely excluded.

Use of a plane wave expansion for the 6 function
in Eq. (27) gives

Ne Z‘Ika fdkl(e“‘"’"!ﬂ)lz

—Im f 43,01 (E: ~ K, 'UE, - K, - U)p, .

(28)

In the limit where the distorted waves in p, also
are plane waves, the integrand of the first term
in Eq. (28) becomes zero by orthogonality be-
cause energy conservation prevents momentum
matching, as noted in Sec. II. Evidently the first
term of Eq. (28) tends to be small; it is omitted
in some of the subsequent analysis.

An exact numerical evaluation of Eq. (28) in
partial waves expansion would be straightforward
and not prohibitively time consuming. Values of
such functions as

w(F,,)=(E;—K,,—U)"p,=f a*r,G,, T)p, (F))

are needed. For a given T,, this integral has the
same convergence properties as the distorted
waves breakup matrix element.

A. Surface approximation

Previous approximate summations®3 over
target nucleus excited states rely on surface
approximations for projectile wave functions.
We can now see that use of corresponding ap-
proximations in our closed form expression for
the inclusive sum restores the previous result.
We omit the first term? of Eq. (28) and we insert
partial wave expansions for the two Green’s
functions in the second term to obtain®

G, ) =(F|(E,-K,- U*|F)

2m £, (or h, (r,) ~,
T L pyy . Yim @Yy, @) 29)

Here f, and h, are regular and outgoing radial
wave functions, respectively. A surface approx-
imation!! is introduced in Eq. (28) by the stipula-
tion that p, (¥,)#0 only if 7, is external to the
interaction U. This stipulation selects one ar-
rangement of the two radial arguments in Eq.
(29), with the result that the remaining radial
Green’s function factors. The second term of
Eq. (28) then reduces to

N=+Im zmk E (TGIFW e (TF) (30)
in which
T )F= fd3 [h, )/ R JY 0, () (31)

while (T$;)F)* is calculated from the corresponding

free Green’s function, and
t, ————"fdr,,fo, (r)Ulr )f, (r,) (32)

is the amplitude for neutron scattering by the
potential U(r,). Finally we recognize that the
contributions of the radial Hankel functions

h,(r,) and hy, (r,) in the amplitudes T{*'F and T{;'F
tend to be dominated? by the irregular functions
n,(r"), and under the surface approximation these
functions are identical and real. Therefore Eq.
(30) reduces to

(zmk) Z Ime, | THF|? | (33)

in agreement with the previous analysis.? It is
of course easy to repair the neglect of regular-
function contributions, and so recover the result
of Ref. 3.

We note that Eq. (33) is a linear function of ¢,.
Surface approximation would lead to this property
even if the energy averaging of Eq. (14) had not
been introduced. For this reason, surface ap-



23 INCLUSIVE BREAKUP REACTIONS 1851

proximation allows a very easy alternative
treatment of fluctuations, as already noted in Ref.
().

The ease with which the surface approximation
result is recovered from Eq. (28) suggests the
use of Eq. (28) to generate corrections to this
approximation. This might be done by using a
modified version of Eq. (28), in which K+ U is
split into (K +Ug) + (U - Ug), where U, is an
auxiliary real potential and only (U -U,) is
treated by the surface approximation.

B. Use of real potential

An alternative approximation for N is derived by
simply omitting the imaginary part of the optical
potential from the Green’s function for the un-
observed neutron. The imaginary part of the
Green’s function then simplifies, so that from
Eq. (23), say, we obtain

Ap (2”) f d%r,pt8(E, - K, +V)p, (34)

o ol A AP (35)

Here the 6 function has been expanded in terms of
scattering eignfunctions Xi, that are normalized
asymptotically to modulus umty and are governed
by the equation

(E,-K,+ V()] =0 . 36)

We recognize Eq. (35) as having the form of the
familiar angle-integrated DWBA cross section
for ground state (elastic) breakup, except that
in the present discussion the Xk, are calculated
with a real neutron optical potential.

A principal motivation for the above approxima-
tion emerges from the observation that in the
original flux conservation analysis of Eq. (17)
the imaginary potential for the unobserved neu-
tron accounted for transitions to excited channels.
But the consequence of that analysis was to estab-
lish the meaning of the quantity N as a measure
of the total flux into all breakup channels, ir-
respective of their individual physical nature.
Because the neutron imaginary potential primarily
rearranges some of this flux among different
kinds of breakup channels, it should not have much
effect on the total amount, and it should be rea-
sonable to omit this potential from the calcula-
tion of the total breakup flux. Of course, our
flux argument is rough—the channels through
which the breakup flux emerges must have some
influence on its creation.

Although the real potential approximation is not
equivalent to the surface approximation discussed

in A, it is to some extent supported by the pre-
vious discussion. Thus, under the surface ap-
proximation, Eq. (33) expresses N as a weighted
sum of partial wave total cross sections Im¢, .

We find by direct calculation with the Becchetti-
Greenlees neutron optical potential'? that the
distribution of these partial wave cross sections
with respect to [ is rather stable against omission
of the imaginary potential. Therefore N should
be stable against omission of this potential.

Thus it is plausible that under some conditions
of practical interest the omission of the imaginary
potential for the unobserved particles can produce
simplifications of useful accuracy. In any case
the simplifications obtained by this approximation
are substantial; therefore, the approximation
must be of interest for this reason alone.

Figure 1 shows an application of Eq. (35) by
Baur'? for the breakup reaction ®*Ni(a ,%He) at
the energy E_ =172.5 MeV, c.m. The inclusive
Cross sectlon for ejectiles of energy E, =120
MeV, c.m., is plotted as a function of ¥he angular
momentum of the incident projectile. (It is sum-
med over [,). The cross sections obtained from
Eq. (35) are seen to agree well with previous
results obtained by use of the surface approxima-
tion to sum explicit inelastic DWBA cross sec-
tions.

Other authors have suggested omitting the im-
aginary potentials for unobserved particles in
inclusive reactions. For example, an application
of real optical potentials in inclusive (p, p’) reac-

T T T T

0.0016 . With Full )

nA
Interaction

0.0012

0.0008

"‘“" (a,%He), Mev ™'

= 0.0004

FIG. 1. Breakup probability (Ref. 13) for the reaction
62Ni(e, *He) as a function of the o angular momentum.
The solid line is calculated with the full Becchetti-
Greenlees potential for the 7 -62Ni system, with breakup
to excited states of ®2Ni taken into account by surface
approximation (Ref. 3). The calculation of the dashed
line follows from Eq. (35); the ground-state breakup
probability is evaluated without the imaginary part of
the optical potential.
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tions was discussed by Kroll and Wall.!* A
Green’s function formula like Eq. (23) has also
been developed for inclusive (e,e’) reactions;
however, the use of real optical potentials is
not considered sufficiently accurate for this
case.!® Statistical reaction theories that deal
with inclusive breakup from different starting
points have also been developed recently.!¢

One condition under which the omission of W(r,)
may be a questionable approximation is that the
real potential V(r,) may have single-particle
resonances'’ at low values of E,. Such reson-
ances, for example, would interfere with the
stability of the Im¢#, distribution when W is omit-
ted. Although it might be possible to use Eq.
(35) even in the presence of resonances, and to
energy average the calculated cross sections, it
would be difficult to claim much value for such a
procedure. The omission of W may also cause
incorrect threshold behavior'? at E,=0.

V. SUMMARY

An identity is derived which expresses the
DWBA inclusive breakup cross section in closed
form as an expectation of an optical model Green’s
function for the unobserved system. The optical
potential automatically takes account of transi-
tions to excited states of the target nucleus,
without any need for surface approximations or
explicit analyses of form factors. The energy
averaging implied by an optical potential analysis
also takes account of any fluctuations of the
breakup cross section as a function of the energy
transfer.

The exact identity is put into a form that is
suitable for explicit numerical evaluation. It is
also seen to be simple to recover the previous
result derived by surface approximation. In an
alternative approximation the imaginary part
of the optical potential is omitted; only the im-
aginary part of the Green’s function then contri-
butes, and the basic identity reduces to a simple
modification of the cross section for inelastic
breakup.
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APPENDIX: ENERGY AVERAGING

An inclusive cross section N(E,) that fluctuates
with respect to bombarding energy or observed

breakup energy is defined if we omit the energy-
averaging step of Eq. (14). Then

N(En)—_——Im<p|(E;—K"—‘HA)-II[)) ) (Al)

where U, is the exact formal effective interaction
of Eq. (13). Equation (A1) is also equivalent to
Eq. (23) of the main text. We now examine the
detailed procedure by which N(E,) goes over to
N, the energy average.

We begin by removing the real part of the free
Green’s function from Eq. (A1), as in Eqs. (25)-
(28), to prevent the averaging process from ac-
cidentally mingling divergent and convergent ex-
pressions. Then N(E,) becomes

N(E,) =—(p,| Im(E} -K,)*|p,)

- Im(pp I (E; _Kn)-l‘uA (E:l _Kn - ‘u'A)-1 l pp> .

(a2)
We see that the first term of Eq. (A2) is a slowly
varying function of E,. Therefore it is not af-
fected when N(E,) is averaged over the compound
nucleus resonances contained in u,.

It is not obvious how the second term of Eq.
(A2) should be averaged, because it depends non-
linearly on the fluctuating quantity w,. Fortun-
ately, any causal analytic function of E_, suitably
bounded at infinity, can be averaged over a Lor-
entzian of width I by simply replacing E, by E,_
+iI. For this type of averaging, it is easy to see
that averaging over E, is equivalent to averaging
first over the energy on which u, depends and
then over the E, that appears explicitly in Eq.
(A2). The first averaging gives

-Im(p, | (E; -K,)* &, (E;-K,-%,)"|p,) , (A3)
where

U, (E,)=U,(E,+iI) . (a4)

Because "ﬁA has an appreciable imaginary part,
Eq. (A3) cannot have resonances, and because
energy conservation prohibits momentum match-
ing, Eq. (A3) has no infinities. Therefore Eq.
(A3) is a smooth function, so that the effect of
the second averaging can consistently be neg-
lected. Thus the average of Eq. (A2) can be
taken as

N=-(p,|m[E; - K,I"*|p,)

-Im(p, | (B}, -K )%, (B, -K,-u,)*|p,) -
(A5)

This may be regarded as the definition of the
formally equivalent but more compact expression
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N=-1n(p,|[E; -K,-,I"|p) (46)

used in the main text.

We still have to verify the familiar result that
a 4 can be identified with the optical potential U,
as in Eq. (14) of the text. This is done by show-
ing that W, generates the energy-averaged T
matrix for neutron nucleus scattering. The
Lorentzian average of the transition operator
generated by u, is

T,=U, +U,(E,+il-K,-%,)"q, . (A7)
As before, this can be replaced by
T, =%+ (B, -K,-u,) ", . (A8)

Finally, taking momentum-space matrix elements
of Eq. (A8) establishes that 4 , generates the energy-
averaged T matrix as required. An energy-
averaged wave function can be constructed from
T, in the usual way.
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