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An independent particle model is obtained from the fundamental constrained variational equations for a many-
body system by making certain assumptions. The resulting model contains the attractive feature of the Nilsson
model but has the advantage of a traceable connection to the exact equations and thus is more amenable to
interpretation. In particular, the energy deformation surface is calculated using the new model and is shown to differ

significantly from the one obtained in the usual approach.

E\!UCLEAR STRUCTURE Modified independent particle model proposed a.nd]
compared to that of Nilsson.

I. INTRODUCTION

The independent particle model of Nilsson' has
been widely used in almost all branches of nu-
clear physics. Although the model is extra-
ordinarily simple, it predicts the correct spins
and parities for most ground states and low-
lying excited states and gives reasonable agree-
ment with experimental electromagnetic transi-
tion rates, etc., when combined with a collective
model.? Recently there has been renewed interest
in the model because of the Strutinsky ansatz,?
through which one may combine the macroscopic
liquid drop model and the microscopic independent
particle model.*

In addition to using the Nilsson model there has
been considerable interest in testing the model
within the framework of a more fundamental
theory, such as constrained Hartree-Fock.® These
investigations have pointed out certain theoretical
deficiencies primarily related to the popular pre-
scription for obtaining the ground state deforma-
tion.

Because of its theoretical weaknesses and the
fact that there are instances where the present
Nilsson model does not lead to reasonable agree-
ment with experiment, a modified model is pre-
sented here. This model has its basis in theory
so that the previous difficulties can be eliminated.
By construction, the main virtues of the Nilsson
model are retained but there are differences in
the results of the two models. The differences
are just of the sort that would have a large effect
on Strutinsky calculations.

In order to establish notation, the next section
contains a brief summary of the method of con-
strained Hartree-Fock (CHF). This is followed
by the usual development of the Nilsson model,
and the difficulty of drawing a correspondence
with CHF is demonstrated. Finally the new model
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is developed and the results of the two models
compared for typical nuclei.

II. CONSTRAINED HARTREE-FOCK

The usual Hartree-Fock method consists of
using the variational method on the set of wave
functions consisting of all determinants of single
particle states. Thus, if

&= H al|0)

is the “best” determinant, it satisfies the equa-
tion

6E =5(®|H|®)=0,

where

H= E (a|t|Balta +3 z (aB| V|yd)alalasa, .
aB aBr6

Here a, B can be any representation and the single
particle states A satisfy the equation

(h-€,) |2 =0
or, in the a,B representation,
(a|h|BYBIN) =€,(a | N).

The matrix & is called the Hartree -Fock matrix
and is given by

(|n|B)=(a|t]B)+ 2 (@r|V,|BN)
A
=(a|t|B)+(a‘U|B).
The energy
E=) Qt|n+: 0w v, w)
by Y

and the “single particle energies” €, are related
via
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E=5D (e, +(\[t]N).
A

Since the Hartree-Fock potential U depends on
the solutions to the problem, A, the equations
must be solved by iteration. It is important to
note that this potential is nonlocal and, except
for special situations, not spherically symmetric.
It should be emphasized that the diagonalization
of the Hartree-Fock matrix is equivalent to mini-
mization of E only if 2, and not some approxima-
tion to it, is the matrix diagonalized.

Solving these equations will yield 2 number of
solutions, depending on the starting guess for the
N’s. In'%C, for example, guessing a spherically
symmetric determinant will lead to a spherically
symmetric solution. An oblate solution and a
prolate solution can also be obtained with the
appropriately deformed initial wave functions.

If, instead, one wishes to map out the entire
energy surface, then constraints must be in-
cluded using, for example, the method of La-
grange multipliers. Instead of minimizing the
expectation value of H, it is the expectation value
of H —AQ which must be minimized, where A is
the Lagrange multiplier and @ is the operator
whose expectation value is to be constrained.
There may be many such operators, each with
its corresponding A, but for simplicity only one,
the quadrupole moment E‘.q‘ , will be considered
here.

The single particle matrix which must now be
diagonalized is

(a|k|B)y=(a|t|B)+(a|U|B) - Aa|q|B),
where A is a constant for each calculation. Since
it is

E=H-AQ)=E -A@)
which is minimized, one has

a8 __ dE

dQ aQ
so that the Lagrange multiplier is related to the
derivative of the energy and, naturally, the minima
in E(Q) correspond to A =0. Furthermore, the
relationship between the single particle energies
and the total energy must be corrected for the

presence of the constraint in 7. Thus, when con-
straints are added,

E=1D (€, +(\|t]n) —=AQ|q|N).
by
II. THE NILSSON MODEL

In the independent particle model of Nilsson
one considers the deformed harmonic oscillator

potential with an 1+ § and an 12 term added to it:

— 72
2

- 2 1 2.2 2,2 2,2
hy= VZ+zm(w,2x? +w,%y* +w,%2?)

+C1-5+D1-1.
The potential normally considered is axially sym-
metric so that

wx = wy
and the usual parametrization of these oscillator
parameters is in terms of 6 and w:

wr=w?=w}(1+35), wl2=w?1-%5).

The frequency w is then made a function of the
deformation because of the assertion that the
nuclear volume must be a constant. This follows
from the postulate of nuclear incompressibility.
Thus one sets

w,w.w, = constant
so that
w =w(6) =w0(1 - ;—52 - -;.g 53)-1/6 .

One then diagonalizes the Nilsson single par -
ticle Hamiltonian,

-

Ry =t+5mwr? +6mw?r?Y, +C1-8+D1- 1
=t+U,+06yq,

and obtains the Nilsson single particle energies
€(8). The parameters w, C, and D are adjusted

to reproduce the single particle spectrum for the
spherical nuclei. The prescription for calculating
the equilibrium deformation for a nucleus with A
particles is to sum the lowest A eigenvalues ¢ as a
function of 6 and minimize.

IV. CORRESPONDENCE WITH CHF

It is quite tempting to consider the Nilsson model
to be an approximation to constrained Hartree-
Fock. In particular, one may write the CHF po-
tential as a spherical part plus a deformed part,
assumed to be of a quadrupole character,

Uchr=U,*&q.
Then the CHF one body Hamiltonian
h=t+U ,+tq-Aq=t+U +(£ -A)q
and the Nilsson Hamiltonian
h=t+U,+0byq

are, indeed, of the same form.

From this point of view the main difficulty with
the Nilsson model would be the inability to se-
parate the Nilsson deformation parameter & into
its two components: £ representing the deformed
potential generated by the single paraticle wave
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functions and A, the external constraint. Without
such a separation one cannot compensate for the
presence of the constraint in the Hamiltonian
generating the €’s and thus cannot calculate the
energy. Thus one must use some prescription,
such as the summation of the €’s, and these have
been tested and found to be unsatisfactory,® both
for determining equilibrium deformations and
for reproducing the fluctuations in the energy,

as needed in the Strutinsky procedure.

There are other difficulties with the Nilsson
model in addition to those associated with the
Lagrange multiplier. The idea of constant nuclear
volume is, at best, imprecise. It would be pre-
ferable, therefore, if the results were not par-
ticularly sensitive to the form of the functional
dependence of w on 6. However, if one performs
Nilsson calculations with

w(b) =wo(1 -Q g— 5 - ;_;5 53)-1 /6

instead of the usual form a =1, it is found that
the location of the minima in €(5), for example,
is quite sensitive to the value of . This is
shown in Fig. 1 where the sum of the single par-
ticle energies is shown as a function of 6 with a
having different values. Furthermore, the pro-
perty that the density of the nucleus should not
be a function of deformation, or not depend
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FIG. 1. Family of curves of € versus 6 for 44 parti-
cles with a as the parameter. The curves illustrate the
strong dependence of the energy surface on the precise
formulation of volume conservation.

strongly on it, should be expected to come out of
a calculation and not be an input to it.

V. AMODIFIED INDEPENDENT PARTICLE MODEL

In this section a model will be developed which
retains the advantages of the Nilsson model but
has the Lagrange multiplier appearing explicitly
and, to some extent, eliminates the need for
imposing the constant volume condition.

In order to reproduce the fit to single particle
spectra at equilibrium deformations the model is
required to predict the same equilibrium deforma -
tions. This implies that the deformations at
which Ze has minima are to be characterized
by A =0 in a constrained variational calculation
or that, at these points, the single particle po-
tential has been generated only by the single
particle wave functions. This requirement alone
is not consistent with the identification of the
Nilsson Hamiltonian with the CHF Hamiltonian.
One may, for example, attempt to incorporate
this requirement into the Nilsson model by
writing

hy=t+U,+06,,,q+(6-5_,.)q,

where the constant ¥ has been set equal to one and
where 6, characterizes a deformation at which
Ze has a minimum. Since it has been demonstra-
ted that the total CHF energy is well approxima-
ted, in the region of a minimum, by keeping the
nuclear potential fixed and varying only the La-
grange multiplier, it is reasonable to identify

the fixed potential U, +6_,,q9 as the nuclear po-
tential and (6 —5,,,,) as the Lagrange multiplier.’
Having thus identified A one can “properly” cal-
culate the energy as a function of deformation via

E@Q)=(T) +(V)
=1 Y (6, +(A[t|N) -AQ),

X
where

5=; alg|n).

This energy is approximate because the €, are
not the eigenvalues of the matrix that results from
minimizing H —AQ but rather of a matrix in
which the nonlocal, self-consistent potential has
been replaced by the local harmonic oscillator
potential. But because the relationship between
E and €, is now not exact, the approximate ex-
pression for E(Q) does not satisfy the condition
that

dE__

Q
and, more specifically, the minimum in E(Q) does
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not correspond to the deformation 6_,,. Thus

one has an inconsistency. The points §,, are
supposed to correspond to the deformations at
which there is not a Lagrange multiplier. The
energy E(Q) is not, however, a minimum at these
points. Numerically the shifts in the minima are
large so that the inconsistency is practical as
well as theoretical.

The inconsistency can only be removed if the
quantity being minimized and the single particle
matrix being diagonalized are in exact corres-
pondence. Thus, instead of minimizing the exact
expectation value of a Hamiltonian and then ap-
proximating the potential part of the resulting one
body Hamiltonian, one should approximate before
minimizing. The approximate energy and the
resulting one-body Hamiltonian would then have

-

for a general, nonlocal, two-body interaction

V. It is a rather extreme approximation to re-
place this complicated, wave-function-dependent
operator by a deformed harmonic oscillator po-
tential, but that is essentially what is done in the
usual Nilsson model. There, however, the re-
placement is made after minimization of (H) with
respect to the single particle states |>\), i.e., in
the single particle Hamiltonian. Here the approxi-
mation will be made in the expression for the
energy itself. Thus, calling the local deformed
oscillator potential U(5_, ) one writes

min

()~ 3 [ [0 + AU, | W] =(H),
A
where 6, is used to characterize the deforma-
tion at the minimum.

If one wishes to obtain an energy-deformation
surface then, of course, a single calculation will
not suffice. Instead one may use the method of
Lagrange multipliers and minimize, instead of
(}'1), the expectation value of a constrained Ha-
miltonian

3=H +AQ .

Then, keeping U(5) fixed in accordance with the
aforementioned approximation,

(30 = 2 [+ UG ) |V +ACA g | V]
by

is to be minimized for all values of A. This is
equivalent to diagonalizing the one-body matrix

the correct correspondence, and relations be-
tween E and the €’s could be retained.

One thus begins with the expectation value of
the Hamiltonian, in a determinantal wave func-
tion,

(H)=(T +V)
=20 e +5 20 0w [V, )
by Al

= At+U|y.

Here U is the nonlocal potential given, in co-
ordinate space, by

U(r,F’)=Z[ [an, [ asraca@ | vIFEw ) - [aor, f darzzp:(ﬁ)(x"f'l]V|1’-21"')zp“(?2)]

r

(i) |5y =i t|5) +<i| UG i) |5) +AC ] g |5

for all values of A. The (approximate) energy
E is related to the eigenvalues of & via

E=) (6, -AA[g|n).
A

Since the sum of the eigenvalues,

Zeng,
A

is the quantity minimized for each A, 38/3Q is
everywhere zero. Thus
8E _
0Q
and the minimum in the “energy” does indeed

correspond to no Lagrange multiplier. To com-
plete the model one writes

A =7(6 - 6mln)

-A

thus defining a new deformation parameter 3.
The single particle Hamiltonian to be diagonalized
then has the form

(| r|5) =4[ t|7) + | UG pa) |7
+7(8 = 8,,,,)¢i| q|7)
and since, by hypothesis
U(Bp10) =700108 +Us

this becomes



Ci| 3y =i |¢] ) +<E| U, |5) + 0¥ |q |5 -

This is just the original Nilsson Hamiltonian.
The resulting energy-deformation surface is not,
however, the same as that obtained in a Nilsson
calculation. Here one knows the Lagrange mul-
tiplier and can thus calculate the (approximate)
energy and does not have to rely on an ansatz that
has proven incompatible with theory.

VI. RESULTS

In order to calculate the energy of a nucleus
as a function of deformation, one first performs
the usual Nilsson calculations. This includes
the determination of the free parameters so that,
for the nucleus in question, the fit to the ground
state deformation and the single particle spectrum
at that deformation is optimized. Volume con-
servation is imposed as an integral part of the
parameter determination. The ground state de-
formation is associated with the minimum in the
function Ze(5).

For each configuration, the internal part of the
one-body potential is then assumed to have the
fixed deformation 6 =5,,,. The condition of volume
conservation is then dropped with, instead, w
being given by w(dmm). The energy as a function
of § is then calculated from

E(6) =3,€, +A(Q).

The comparison of £(5) and the usual Nilsson
energy surface for systems containing 42, 44, 54,
56, and 64 particles is shown in Figs. 2 through
6. These particular systems were chosen be-
cause they contain enough particles so that the
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FIG. 2. Comparison of the energy surface obtained
from the calculation of £(5) and the energy surface ob-
tained from the calculation of $€(8) for 42 particles.
The two energy surfaces are different, but the energies
and deformations at the minima are the same for both.
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FIG. 3. Comparison of the energy surface obtained
from the calculation of E(5) and the energy surface ob-
tained from the calculation of T€(6) for 44 particles.
The two energy surfaces are different, but the energies
and deformations at the minima are the same for both.

energy surface has a degree of structure but, few
enough so that the computing time is still small
for any calculation. In each graph the solid curve
is the result of the modified calculation and the
dotted curve is the usual Nilsson result. First,

it is clear that the “equilibrium deformations”

or minima in the energy surfaces coincide in the
two calculations. Since the new model was con-

1822
1820
18I8
B
[}
s 186
&
; 1814
w
812
1810 L
—E(®)
- Ze(d)
1 1 1 1
B8 04 <z 0 o0z o4

8

FIG. 4. Comparison of the energy surface obtained
from the calculation of £(6) and the energy surface ob-
tained from the calculation of $€(6) for 54 particles.
The two energy surfaces are different, but the energies
and deformations at the minima are the same for both.
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FIG. 5. Comparison of the energy surface obtained
from the calculation of £(§) and the energy surface ob-
tained from the calculation of $€(6) for 56 particles.
The two energy surfaces are different, but the energies
and deformations at the minima are the same for both.

structed specifically to reproduce this feature

of the Nilsson model, this is hardly surprising.
Second, since the Lagrange multiplier is

(6 -5,,,)r, for each configuration, the minima in
E(5) all occur when A is zero, as they must in a
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FIG. 6. Comparison of the energy surface obtained
from the calculation of £(5) and the energy surface ob-
tained from the calculation of T€(6) for 64 particles.
The two energy surfaces are different, but the energies
and deformations at the minima are the same for both.

valid constrained variational calculation.

It is also clear from these figures that there
is considerable difference between the behavior
of the new model energy [ E (5)] and the Nilsson
“prescription-energy” [Z,¢,(5)] between the mi-
nima. Although it is not universally true, in gen-
eral the crossing of the energy curves for adjacent
configurations, shown as cusps in the energy
surfaces, are much higher in energy for E(5)
than for Z€(8). These differences in the effective
magnitude of the fluctuations in the energy surface
could be extremely significant in certain applica-
tions of these models. The fact that these cusps
occur at (slightly) different values of 6 results
from the crossover from one configuration to
another being determined differently in the two
models. In the Nilsson model, one changes con-
figurations when the highest occupied and lowest
unoccupied single-particle energy levels cross.
In the modified model these configurations are
changed when the configuration which leads to
the lowest energy changes. Because of the re-
moval of the Lagrange multiplier in the modified
model, these two deformations will not be the
same.

One other difference between the two types of
curves occurs at the extreme limits of the de-
formation, for either sign. Because of the form
of w(06) mandated by volume conservation, the
Nilsson “energy” goes to infinity at 6 =-3 or
6=+3%. Since volume conservation is not imposed
in the new model, this sharp rise at the “edges”
of the energy surface is not present.

A striking difference between the two models
emerges if one plots the energy as a function of
the expectation value of @ instead of the artificial
quantity 6. This presents no difficulty in the
modified model but in the usual Nilsson model
the cusps correspond to level crossings and at
these points (@) is not continuous. Since there is
no prescription to indicate how the energy should
be calculated except for summing the lowest 2N
eigenvalues, there will be gaps in the energy
surface corresponding to this discontinuity in
(Q). This is seen in Fig. 7, where the energy
surfaces obtained in the two models are compared
as functions of the more natural variable (Q).
This particular comparison is for 44 particles,
but the results are typical. Again, the modified
model results are shown with a solid line while
the Nilsson results are indicated by the dotted
line. As dictated by the construction of the model,
the minima coincide. Now, however, the differ-
ence between the two models between adjacent
minima is even more striking. The Nilsson
curve is not defined.

There is another way to remove this difficulty
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FIG. 7. Comparison of the energy surface obtained

from the calculation of £({Q)) and the energy surface ob-

tained from the calculation of r€({Q)) for 44 particles.
The minima have the same energies and deformations,
but much of the energy surface is not defined in the
curve of T€({Q)).

from the usual Nilsson model and that consists
of adding a pairing part to the Hamiltonian or,
more specifically, to introduce “occupation-
probabilities” via a BCS-type formula. The in-
clusion of pairing smooths out the nonphysical
cusps and is essential for certain applications
of the Nilsson model. Such an extension of the
model is being pursued but because of the ad-
ditional complexities in a theoretical model
containing pairing, this is difficult.

VII. AN ADDITIONAL MODIFICATION

Experience in CHF and other variational cal-
culations, performed in truncated bases, has
shown that there is a “hidden” variational para-
meter which can play an important role. This
parameter is the frequency of the oscillator po-
tential used to generate the basis functions. In
the Nilsson model there is no distinction made
between this and the frequency of the one-body
potential in the Hamiltonian. (Thus the depen-
dence of w on 6, resulting from the imposition
of volume conservation, is built into the basis
functions.) Because the present calculation is
variational in nature, there is an unambiguous
way of determining this parameter. The energy
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FIG. 8. Comparison of the energy surface obtained
from the calculation of £(5) and the energy surface ob-
tained from the calculation of r€(5) for 44 particles
with w, as a variational parameter. The two energy
surfaces are different, but the energies and deforma-
tions at the minima are the same for both.

should be minimized, for each calculation, with
respect to this frequency. The results of such a
calculation are shown in Fig. 8. Here both the
usual Nilsson model and the modified model have
the frequency of the basis w, treated as a varia-
tional parameter. The minima, in either case,
are shifted from the previous positions since
those results, with w, fixed, are really only
valid as the size of the basis goes to infinity.

VIII. CONCLUSION

It has been shown that the Nilsson model can be
modified in such a way that the attractive features
remain while some of the deficiencies are re-
moved. In particular, the modified model con-
tains an unambiguous procedure for calculating
the many-body energy from the single particle
Hamiltonian. It has been demonstrated that the
results of the two calculations have appreciable
differences between the minima and thus may
give rather different results in subsequent cal-
culations, such as those of shell effects in de-
formed nuclei.
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