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Two-pion-exchange three-nucleon potential: Partial wave analysis in momentum space
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We present the complete momentum space three-nucleon potential of the two-pion-exchange type in the partial

wave decomposition needed for the Faddeev equations of the three-nucleon bound state. The potential arises from

an off-mass-shell model for mN scattering based upon current algebra and a dispersion-theoretical axial vector

amplitude dominated by the 4 (1230) isobar. The potential is manifestly Hermitian and defined for all three nucleon

momenta. We display some matrix elements of the potential in the five three-body partial waves corresponding to
the 'So and 'S,-'D, states of the two-body subsystem. These matrix elements show a striking contrast to those of an

older three-body potential mediated only by the 4 (1230)p-wave resonance.

NUCLEAR STRUCTURE Three-body potential; few-nucleon system, Faddeev
approach, partial wave decomposition in Jacobi variables.
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FIG. 1. The Feynman diagrams for the two-pion ex-
change three-nucleon potential. The shaded oval repre-
sents anything except a forward propagating nucleon
state.

The discrepancy between theoretical and ex-
perimental binding energies of light nuclei may
be partly due to the neglect of three-body forces.
The most studied of these forces is the two-pion-
exchange type, illustrated in Fig. 1. If one takes
the diagrams in Fig. 1 to be Feynman graphs and

attempts a nonrelativistic reduction to obtain a
potential, then the nucleon legs are on their mass
shells, but the pions are off the mass shell and
spacelike. Thus, one needs an off-mass-shell
parametrization of the mN scattering amplitude.
Current algebra and PCAC constraints can be
used to determine this off-mass-shell extra-
polation' ', on shell the model agrees very well
with the data below, "at and slightly above
threshold. A three-body potential based on this
extrapolation was constructed in Ref. 5, which
will be called, in the following, I.

In this paper we prepare the three-body potential
of I for use in a Faddeev calculation of the triton.
In doing so, we found a defect in that potential —a

defect shared by the often used' ' Fujita-Miyazawa
(FM) potential, ' the potential derived by Yang, "
and more recent extensions" of the FM potential.
In all these potentials the middle nucleon was
assumed to be at rest, that is, fixed in one place.
This could arguably be a resonable assumption
for three-body force effects in nuclear matter
or in the effective interaction of shell model the-
ory, "but is surely intolerable in the three-body
problem where there exist methods for numerically
exact solutions of a nonrelativistic Hamiltonian.
This assumption, in general, causes a non-Her-
mitian potential matrix. The non-Hermiticity
was not detected in Refs. 6-12 because of the
restricted nature of the mN scattering amplitude
used there. It did happen to occur in a numerically
small portion of the potential of I.

Thus, before proceeding to the triton calcula-
tion, it is first necessary to sketch the derivation
of the three-body potential of I for the case in
which all three nucleons are allowed to move
freely. Also, we carry out a consistent expan-
sion in powers of IpI/e~ of the diagrams in Pig.
1. This paper should be read together with I,
where the physical ideas were discussed.

To include the three-body force nonpertur-
batively in a Faddeev calculation of the triton,
one needs a partial wave decomposition. This
turns out to be highly nontrivial since the Jacobi
variables do not occur naturally in the potential
of Fig. 1. Another main part of this paper is to
carry through that partial wave decomposition.

In Sec. II we rederive the three-body potential
matrix in momentum space. The transition to
coordinate space is worked out for the dominant
parts of the force in Sec. III. In Sec. IV we present
the expressions of the three-body force in a par-
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tial wave decomposition. Finally, in Sec. V we
compare our results based on the general off-
shell mN amplitude as given in Hefs. 1-5 with the
specific model of & dominance of Ref. 6, and give
a summary and outlook in Sec. VI.

II. THE TWO-PION EXCHANGE THREE-BODY
POTENTIAL IN MOMENTUM SPACE

We consider the general expression for the
three-three scattering amplitude corresponding
to the first diagram of Fig. 1 with particle 1 in
the middle. The nonrelaticistic reduction of the
Feynman diagram with pseudoscalar coupling
yields the potential matrix

momentum and m is the nucleon mass. We shall
assume

~
p

~

to be of order p, , the pion mass.
The S matrix for w~(Q)+N(p, ) w-'(Q'}+N(p,'} is

(Q p IS —11Qp.) =-i(2v)'5'(p'+Q' -p- Q}

x (2p„2p~~2Q, 2Q,') '~'(2m)

x T,*'(~, f; Q', Q"), (2.2)

and the transition amplitude has the structure

7"=-u(p's') 5"(z"- a"t'v 0])
1

4m

+it' 7' J'' — B' '1
4m

(Plsp2tp31 1lplp2P3}

= const 5 (px+pg+P3 pf pg P3)
x u(p„s, ), (2.3)

2

X 2 g2 03 ~ T2T34'.
where uu=l and (p~p')=(2v) 5 (p-p'). We may
decompose the amplitudes in (2.3) into a nucleon
pole term plus a background term:

N@"} T'~ NR.Q+i" 0"+u'
(2.1)

y 4) y (+)+p(k)
9

g() g() pc+)
P

(2.4)

(2.5}

In this paper we will reserve the three-vectors
p and q for three-body Jacobi variables and, there-
fore, let Q=p, -p,' and j be the three-momentum
and isospin components of the initial pion, and
let Q'=p, '-p, and i describe the final pion. "
Then, T,'~(NR) is the nonrelativistic reduction of
the amplitude which describes the scattering pro-
cess w~(Q)+N(p, ) —II'(Q')+N(p, '). This amplitude
can be written as a sum of s- and u-channel
nucleon poles plus background terms. The for-
ward propagating Born term (FPBT) is already
included in the Schrodinger equation as the iterate
of the one-pion exchange two-nucleon potential
(OPEP). Therefore, it must be explicitly cal-
culated and subtracted from the covariant pole
term which includes both the forward propagating
and backward propagating intermediate nucleons.
We fix the overall multiplicative constant in (2.1)
by requiring that the FPBT of T['(NR) yield the
iteration of OPEP. The form factor HgP) =K'(Q'),
where K(Q') is the pionic form factor of the vNN

vertex when the nucleons are on the mass shell
and the pion is off the mass shell [i.e., g(Q')

gK(Q') and g(p') ~g]. The correction terms
neglected in (2.1) and throughout the paper are
of order O((~p~/m)'), where p is a typical nucleon

v =[pl- pl'+pl'-p. '- (p, +pl) (Q+0'))/4m

= O(p. '/m) . (2.5)

Using the general forms of the background terms
as given in I, we find"

&"=&+4 4'+ ~(Q'+4"), (2.7)

with

=2/u'[olf, ' F"(o, i '; i ', u')1-,

e = —o/(p'f, ') .
(2.8}

Once the FPBT's are subtracted from the pole
terms, the numerically dominant part of T'~(NR}
comes from the background. The nonrelativistic
reduction of the background terms is carried
through, keeping terms of order O(p, /m). It turns
out that the background combination to (2.1} is
basically unchanged from I, even though we cal-
culate (2.3)-(2.5) for any frame and do not restrict
the mN amplitude to the rest frame of the incoming
nucleon. Thus we have to assume that all three-
nucleon momenta p„p2, ps in (2.1}are of the same
order of magnitude, which leads, for instance,
to the following estimate for the pion lab energy. '

1F =p(-)
2f,

g'(Q')z*(Q") .( 4 &.'+Q Q'
(2.9)
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E&+)( t QB Q iB)Vy 2 23m Vg V
(2.10)

with PB =E, —3 '(M+ m —E,) —Q ~ Q'. One easily
estimates fT"= (1/t}&O [( )tF&(/M )(t&/m)]. Since
it is multiplied according to (2.3) by a term of
order O(p, '/m) we have to neglect it.

Finally, since B' ' goes together with a term
of order O(t&'/m), we end up just with the constant
value

where v is explicitly written in (2.6), M is the
~ mass, and g* the N&m coupling constant. The
expression E, as given in 1 is of the order O(t&}.
We note that the constant B,= —0.1 p,

' from this
expansion is not the same as the constant co-
efficient (f,=-0.6t& ') of the on-shell expansion
in v' and t in Appendix A of I. This discrepancy
is an indication that the cancellation of the current
algebra, and nucleon contact term allows the &

contribution tn control I" ' ' and the further can-
cellation between the pole and nonpole parts of the
isobar is delicate. On the other hand, since v

is O(t&'/m), the term F' ' is of O(t&'/m') in the
three-body potential and will in the end be dropped.

Thirdly,
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FIG. 2. Time-ordered diagrams corresponding to the
g-channel [(a) and (c)) and gg-channel f(b) and (d)j nucleon
pole terms.

conventions for the y matrices. To make the inter-
mediate formulas more readable we suppress the
Q dependence of g. Equation (2.13) can be written
in the form of (2.3) as

Thereby the nucleon electromagnetic isovector
form factor [FBF(0)=)&"=3.70] is approximated by

F&F(t}+FBF(t)= 1+3.70+0(p.B/mB). (2.12)

ppBT FPBT + ppB f
ij (+) if (-) ' i)&g

where

(2.i4}

We note that C, agrees with b,' ' of Appendix A of
I; here the current algebra term is large and the
isobar pole and nonpole terms add.

Next, we turn to the time-ordered forward
propagating nucleon pole terms of Fig. 2 and write
down the s-channel [Fig. 2(a)] plus u-channel
[Fig. 2(b)] T matrix as in 1,

m ~ u(p')iy, T'u(p. ,s)u(p. ,s)iy, T'u(p)
FPBT g E(p )M P +Q E(p )

m ~u(p')iy T'u(p„s)u(p„, s)iy T&u(p)'g E(p )~ p. Q; E(p.)--
(2.13)

))„,'„[O', ())) ()', s),

(2.16)

and where the amplitudes A»» and 8 p pBT
given in I.

By expanding the square roots occurring in the
expressions for AppBT and BppBT in powers of
(vs + v)/m =O(t&'/m') and using (2.6), we find to
lowest order

g&+) g 2 2P& +2P& 't))+()) —2P& '4'+4'
F PBT 2~ 2~2 )I y

where E(p) = (m'+p')'~', p, =p+g, p, =p-g', and
the sumisovernucleonspins. This follows the no-
tations of Refs. 2 and 5. We use the Bjorken-Drell

2

FPBT 4mB (Pl+ P&) 4+4 ) )

(2.16)

(2.17)
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B(+) g v g {P(+P(}' 4+ t&I'}

FPST m p 2 p2 4m 2
B m

2
V

2

VB P

{2.18)

(2.19)

On the other hand, it is well known that the co-
variant nucleon pole terms of (2.4) and (2.5) ob-
tained in the dispersion theory sense are"

pF(i)( t} g B
m vB -v (2.20)

F&-)(„ t) g vvs
P j -m V2 V2j

B
(2.21}

B(+i(v t)
m

2

Bv( '(v, t) = g

V
2 2

PB -P
PB

2 2
VB -P

(2.22)

(2.23)

Now we make the subtraction of the forward
propagating Born term

t(.F'" =F' ' —(A"—' y +vBvv' },
6B =—Bp Bppgy

(2.24)

(2.25)

y (2.26)
4m m2 0

~( &
g(Q')g(Q'*)

sm

P,'- P,'*+P,"-P,*+(P,+P,') (Q+Q')
m2

(2.2V)

g(Q')g(Q'*) (p, +pl) (4+Q')LkB' =-
g(Q')g(Q'*)

2m2

(2.28)

(2.29)

where we remember that ~~' are multiplied by

It is a straightforward exercise to find from
(2.16)-(2.23) that the expansion in powers of t(/m
yields

a term of order O(t(,'/m'} according to (2.3).
If we compare (2.26) with (2.29) of I, we note

that in (2.26) there is an additional term 2P, p,
which could not appear in (2.29} of I because there
the amplitude was evaluated in the rest frame p,
=0 of the incoming nucleon. Although this term
is of the same order in t(/m as the t(}*+@"term,
the entire 4F" makes only a small. contribution
to the nuclear matter results of I [see (2.32} and
Table 2 of I] because gs/4m' (&.15t( ') is much
smaller than (&.'= —1p, ') of (2.8). Thus, the neglect
of this p-dependent term in I should not matter
for nuclear matter calculations.

Expressions (2.2V) and (2.28), however, show
a more interesting disagreement with the corres-
ponding expressions for ~' ' and hB" in Appen-
dix B of I. There the unnecessary rest frame
restriction plus the assumption that i&}0

=
&&),

' could
best be set equal to zero led to [instead of (2.6}]
v(rest frame) = (t()s —Q~)/4m, from which followed
the AF", etc. , of I. As we shall see, that unsym-
metric combination of CP' —@' in T(~(NR) of (2.3)
leads to an anti-Hermitian three-body potential.
This part of the potential has never been used in a
calculation; its nature was noted while preparing
the complete potential for a three-body calculation.
Finally, the amplitudes F' ' and B"will be drop-
ped from the potential in any case. As another
exampl. e of non-Hermiticity caused by setting p, =0,
we mention the second term in (2.29) of I. The
correct form of that term is anyhow of higher
order in t(/m and has always been dropped.

The next step in the nonrelativistic reduction of
T,'~ in (2.3} is to note that

u(p,', s,')[&{)',&|)]u(p„s,}=2t a, (Q x g'), (2.30)

u(pf, s,')u(p„s, ) =1, and y =1 to lowest order in
t(/m, results which hold whether or not p, is set
equal to zero. Finally, we insert (2.V), (2.9),
(2.11), (2.26)-(2.29), and (2.30) into {2.1), re-
membering from (2.3) and (2.5} the relative factor
(-}between the T matrix and the invariant ampli-
tudes A, and B, and get

W@*) &(0'*)
(O'O'P'~II y P P ) const 5'(P +P +P —O' —O' —P')

4m ~+@. ~ +p,

x(T~' T~I72'@(7, Q'(-+-Ng Q'-[ 6+g/4m —K'(0)&T/f, '](Q'+g~) —(g'l2m')p, p'}

+tTBx T~ ~ T,o~ ~ Qos g'[(-g /Sm')[P~ —Ps +Ps —Ps +(P~+P~) (@+g')]

-(B,/4m)[P *-Pl'+P."-P '- (P, +P,') (Q+Q')]}

+T~x Tm' T,(r~'Q(r~ Q'o, (QxQ')( g/4m' —-C,/2m)) . (2.31)

Clearly the three body potential of (2.31) is manifestly Hermitian. If we exchange primed and unprimed
nucleon momenta, then Q- -g and Q' --Q'. Then the momentum dependent part multiplied by T, T, is
invariant and 72 ~ T3 is of course Hermitian. The second term is multiplied by the Hermitian T2 x Ts 'Ty.,
because of the factor i, the momentum dependent part must be antisymmetric, which is the case. Finally,
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the momentum dependent part in the last term is symmetric.
The momentum dependence of the NNw and Nr1s coupling constants is assumed to be the same, g(Q')

=gK(Q2). Then much of the off-pion-mass-shell extrapolation in (2.31) arises from the products [g(Q2)]2
g2H(Q'), etc. In the (as we shall see, dominant} F" amplitude, however, the momentum dependence of

the o term is not given by form factor effects on g, see (2.7) and (2.8), so we insert a term proportional
to K'(Q'=0) in the i' part of the potential to undo in lowest order the effect of surrounding T" (NR)
with form factors. We do not make the same correction to F~+F~ in B' ' because it is multiplied by a
term of order O()12/m2).

It remains to fix the overall constant (2.31). We first do it formally by calculating the three-body S ma-
trix of Fig. 1(a) and defining IV by

(Plp2P3 IS —I IP1P.P3)NR ( } (p10 p20 p30 p10 p20 p30)(plp2P3 I& IP»2P3} (2.32)

(-ig)'u(p, 's')iy, u(p, s)

Since the calculation must be the same for any two-body T matrix, we then verify that the forward propa-
gating Born term TE»r when inserted into (2.1) yields just the iteration of the OPEP. In the notation of I,
the Feynman rules for Fig. 1(a) yield

2m' - x/a

(Nu'IS —Ilp1pu. )=(2s)'5'(»1-»1')
2p 2p 2p,p 2p. ,p.

(2.33)

where T,'& is related to the two-body S matrix by (2.2) . Using

u(p's')y, u(p, s) = o' (p —p')/2m,

Q'- i '=-(Q'+)3'),
to lowest order we get

,1 g(Q')g(Q")-
( — )NR-- ( )' (P, +P. +P. P, P. P„---

(2.34)

(2.35)

(2.36)

Now the first nucleon propagator in (2.37} is

p,0+Q0 —E(p, ) = p, 2/2m+ (p22 —p2")/2m —(p, + p, —p,'}2/2m

=(2m) '(p, 3+p22+p32) —(2m) 1(p2+p, +k2) 1&a; „- &

The second form is just the denominator of the nonrelativistic propagator G, =(E-H, ) in V»G0V». Sim-
ilarly, the nucleon propagator in the second term of (2.37) corresponds to G0 in V21G0V». Finally, re-
membering the OPEP in momentum space is

(2.38)

Comparing (2.32) and (2.36) we find that the constant in (2.1), with the normalization (p Ip') = (2s)35(p- p')
of I, would be (2E)3." In this paper, we prefer to normalize the momentum space wave functions to the
Dirac delta function so that we can more easily take over the technology of momentum space three-body
codes. In that case, since (p1p2'p'31p, p, p, ) =(2s)3(p,'p2'p'31p, p,p, ), the constant hereby adopted in (2.1} is
+(2E) '.

Now we check the consistency of the derivation by letting T," in (2.1) be TE11ssr of (2.13}. We find by using

p, =p+Q, p, =p-Q', and (2.34) that

{P,'P,'P,'IIV, IP P P ) =+const ~'(P +P +P —p' —p' —P'}

X
o', Q'o', 'O'-. - H(Q")H(Q') g' &. Qo, Q -.-

4m2 QI2+ i12 3 1 p + Q E(t) ) 4m2 Q2+ }12 2 1T -T ~ T

g' o Qo Q-. - H(Q')H(Q") g' o Q™Q'-. -
(2.37)+

4m2 Q2 + )12 2 1 p Ql E$ ) 4m2 f3'jl2 + )12 1 3T 7 T ~ T

mzEx 1 g H(Q )
31 (2s)3 4m2 3 1 3 Q 1 Q QR+)12

we get indeed

(p,'p,'p.' IIV', "'
Ip,p.p. &

= const &'(p,'+ pl+ p.'- p, —p. —p.}(2s)'

~(plp2P31 31 0~12 IP1P2P3) {Plp2P3 I 21 0 13 lplp2P3) i

(2.39)

(2.40)
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Again we find the constant in (2.1) to be

const =+(2x} ' . (2.41)

We note that (2.37}-(2.41) are all in the p-space 5-function normalization adopted. One can repeat the
above steps, realizing that, in the normalization of I, V ~sr has no factors of (2w) ' and Go has a factor of
(2v) in the numerator, to find that the identification of Tr»r with iterated OPEP still holds, only in that
normalization the constant is (2v)' greater than (2.41).

As the constant in (2.1) has been shown to be a positive number and the negative strength factors in the
potential amplitudes F and B, it is convenient to define new strength parameters associated with the two-
body T matrix itself. This will facilitate comparison with earlier work. So we define

a = -8, b = -8, c =-8 -gm/4m'+K'(0)o/f, , d = g/-2m',

d, =-g /8m~, d2 = B,/4-m, d, =-gm/4m', d4= C,/-2m,

in terms of which the three-body potential matrix element is given as1,- - . . . g' H(CP) H(Q")
(P1PRP3 I 1 Iplp2P8~ (2v}6 (pl P2 p& pl P2 PS) 4mm g~ + p~ @~2+

(2.42}

x f, r,o, ~ Qo, Q'[a+bQ Q'+c(Q'+Q")+dp, p', )+is, x7; ~ r,o, ~ Qo, Q'

x[d (p, ' —p' +p,"—p (p +p ) ~ (g+g')}+d (p, ' —p' +p" —p
' —(p +p') (Q+Q )}]

+7, x r, r,o, Qo, Q'o, (Q xQI)(d, +d,)j . (2.43)

HI. TRANSITION TO COORDINATE SPACE

As an example of the coordinate space representation of the potential and in order to point out correc-
tions to I, we present the form for the abc terms accompanying rm

~ r, and for the final term going with (d,
+d, ) in (2.43).

(x,'x,'x,' ~W;~'+ W, &4 g,x,x, )

= 5'(x, —x,') 5'(x, —x,') 5'(x, —x',)(g p, /2m)' ),

x [Tq ' r~(0'q ' Vmo'3 ' V~((a —2 p c}Z~(x,~)Z, (x„)+c[ZO(x~z)Z~(x, ~) +Z~(x~z}ZO(x, ~)] + 5 V~ V3Z, (x,~)Z, (x,~)))

+ Tq x rq ' Tqoq ' Vqcr~ ~

V~oq
'

V2 x Vq(d3+dq)Zq(xqq)Zq(xqq)]

where, as in (3.11}of I, we have defined

4v dQ e'~' *~''5H(Q2}
n( jj ~ (2v)3 ($2+ ~2}n

(3.1)

(3.2)

The terms in (2.43) which depend upon nucleon momenta are small and have a more complicated coordinate
space representation; they will not be displayed here.

Equation (3.1) agrees with (3.9) and (3.10) of I, but disagrees in sign and constants with (3.12) of I. The
nuclear matter calculation in I was not made with a three-body potential, but rather an effective two-body
potential obtained by summing over nucleon 1 of W;~'. The effective potential of I has been checked to be
consistent with (3.1) and the numerical results and conclusions of I are correct, up to the small factor d
=-g'/2m', which was neglected in I (see discussion of 4F" in Sec. II}.

IV. PARTIAL WAVE DECOMPOSITION

In a standard Faddeev calculation in a three nucleon system, one needs a partial wave decomposition o.
the three-body force. We shall provide it in this section. We introduce the standard Jacobi momenta

P 2(P. -P,}, q=l[p -k(p, +P3)1 (4.1)

which single out particle 1 and are adequate for the first diagram in Fig. 1, which was considered in the
two previous sections. We have in terms of p and q when the total momentum is zero,

pg=q p =p-~q p = —p-2q (4 2)
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and the same for the primed quantities; furthermore, the pion momenta are

Q p p 2(I-II'), 9'=p-p'+2(II-i'} (4.3)

From now on, p, Q, etc. , shall refer to the magnitude of the three-vectors, i.e. , @=~Q~, etc. , and not
to the four-vectors. It is straightforward to rewrite the expression (2.43) in terms of Jacobi momenta with

the results

g' H(Q') H(Q")
R&= (2.}.4

x(r, .7, o, Qa, Q'(a +b[p' +p"-—,'(p+tl"} —2p p'+ —,'q g']+c[2(p~+p")+-,'(|I2+g")

-4P p'-&7 4']+4 i')
+ f(v, x v, ~ v, )a, .Qa, Q' [2(d, + d,)(p' q' —p. q) + 2(d, —d, )(g +q' }~ (p —p' )]

+~,x~, 7.,c, ~ @r, Q'o, ~ (p —p')x(|I —tl')(d, +d, )) . (4.4)

Thus we have to deal with the following types of forces

p'p

q q'
H(Q') H(Q"); .-, .-,i -, .-

p 'q. -p'q
p'q

$, ~ (p-p')x(q-q').

(4.5)

The three-body states with respect to which we want to present our force will be

I pq~& =
I p(fs)i q(~k) ~ (i~) & (~k)T &, (4.6)

where Isj t are the orbital, total spin, total angular momentum, and total isospin of the 2-3 subsystem,
and ~2 J& are the corresponding quantum numbers of particle 1; finally 8 and 1' are the total three-body
angular momentum and total three-body isospin. For a standard Faddeev calculation, the first five partial
wave states dictated by the two-nucleon forces are given in Table I.

The partial wave decomposition is quite tedius but straightforward. " %e quote only the results for the
main terms. Let us define

H(Q')f(Q') =-g,

and the three-fold integral

(4.7)

1 1 1
H g, g, = d», d», d», P, (»)P, (»2)P, (»3)A~~&A~~'f(A, 2+~A2' A, A2», )f(-A,2+~A2'+A, A, »,)

1

with (4.9)

A, = (p'+ p" —2p p'» )' ', A, = (q'+ q" -2qq'» )' ' (4.9)

then

&
p'q'~'I a. Qa. .Q'f(Q')f(Q") I pqa&

2
2

ata
Hgc & & & (pp qq)Z cfzr & 'pi & II'(pp )4&l xk'(qq } (43412 1 32 4 312312
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with

$2222 ~ (&& ) = g & 1& 2 ( lal l, 00)(lag l, 00)T(2t+1)1 " '/' ' l t

a+0 =t1 2
i2a, ! 2a,)!.

1 2

(4.11)

GC 2 (4S)2 9 (jJ'S)l/2 (jlJgl )1/2 ( )9+1/2+S ( }ll l (t t )1/2Q $ (
1

34121 I

s j
s )QLS)!1 —,

' J
IS

S $ p

l' l t3 SS' I S' I,'LI Sl ( )sys ~ +L] l 1 j Jf })gl
Lt St s' s —' I S

1.' S' 8 1

2'+~ t g 5„+~
r +r =1 a1+~2 =1

1 2

1 X2 1
2 1 1

x g (t, t,)' '(r, s,t„00) (r,s,t „00)(s, s, 1 t (t,l,t„00)(t,l,t„00) .
t1t2 3 4 1

tl t2 "ll

&p'q'sl'I c2 Qcg'Q'f(Q')f(Q")4'q'Ipqa)

(4.12)

with

Z Z E &g,g 2,1,1,(pp'qq')Q f;,~ g, @ 2 2222(p2p')$2, 1„.(qq') (4.13)
t t 4 3123 1 3 4

b1 6, b, t A. t
$A ~ (qq')=l M q'q' F(tb b) ~ '

()~) / (b1b1+ b2 t '+4 & & 13 4 3 4

x (b21%9, 00) {Tt22A, 00) (12b. V, 00) . (4.14)

The expression for p p' is analogous to (4.13) and (4.14) with only the changes qq' pp, $(pp') $(ppl )
and $(qq') p(qq'). As one may easily verify, the expressions (4.10) and (4.13) are symmetric under
exchange of primed and unprimed quantities. Moreover, they vanish between states 1 and 2-5. This had
to be expected since S', is symmetric under exchange of particles 2 and 3 can therefore not change the
subsystem spin. The same is of course true for the accompanying isospin matrix element (T = 2}

1 1

&(t'-')&I2. 2. I(t-')»=-6 ~ 6(-)' ' '
11 1

2 2

(4.15)

(4.16)

We continue with the last term in (4.5) and get

We skip the case for p' q, p.q', and (p"q' —p q) accompanying the coefficients d„ d, since they will
be neglected anyhow (see Sec. V). Finally the case o, ~ (p-p')x(q-q') goes together with an isospin ma-
trix element which switches the two-body system t between 0 and 1:

2
J1 1

&(tl }Tt 2 x 2 y ((t —)T )——i 36(t t l)l/2( )2 +1/2+ r(
t y 1

2 2
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(p'q'es'I o, Qo,q'&, ~ (p-p')x(q- j')f(Q')f(Q' }Ipqa)

with

a„.. . p -„,„
i~&ele e~=-t-r'+1 ee=-&-&'+x» & 2 3 t&e Ge & e e & 4t i Il& (pp )p&, i zx' (qqI ) (4 ~ 17)

G (4&)& e7 (j js)&le (~If i p)lie f ( )&1 (t t )1/e

r r
1 1 l

xg k, (-,.' —,
' s )gk, giS(~

S L

S

1 g ) Q f IS/
L, 'S'

S g

l' s' j'
( }e +S+J( gi 1

I.' S'8

x g (-)".(-,')" g (-,')'e5, „„,
1 1 2

L

1 k, ~l

)(s -,
' S

S '& &s' e S'J

l'
3

r
r, r, 1

(r,s,t„pp)(r, s,t»00)(s, s, 1 )(t,t,}'~'
tj t2

t, t,

(4.18)

1 2 j. k4 3 2xQ] 1 1 1 )(t 1k„pp) (t,lk„pp)($, $,)'~'( ) (k,l,t, pp)(k, f, t„PP) .
3 4 2

One verifies easily the antisymmetry of that expression and again the matrix element is nonzero only for
s4 s'. Thus, only state 1 couples with states 2-5.

We would like to remark that all the sums in (4.10), (4.13), and (4.17) are finite. The calculation of the
purely geometrical coefficients G and G need be done only once and takes much less time than the calcu-
lation of the threefold integral in (4.8}.

V. QUANTITATIVE REMARKS AND COMPARISON
WITH OTHER WORK

The potentials given in (2.43) and (4.4) of Sec.
II and IV, respectively, contain strength parame-

TABLE I. Quantum numbers of the first five partial
wave states of the three-body system. See text for defi-
nitions.

ters. They are expressed in terms of the physi-
cal constants in the mV amplitude which we take as
follows: olfe'=1. 13tl, ', F"'(0, p, ', p', p, ')=
—o18 u

' g*'(p')=332 t ' g'(u')=178 7
M=8.825 p, , m=6. 726 p. , and p, =139.6 MeV.
Then we find the strength parameters in the first
part of the potential which is associated with
r, r, (and F"'as

No. a=+1.13 p,
x y 2 58 p-3

c=+1.00 p. ', d= —0.295 p,
3 .

(5.1)

The second part (from F' ') of the potential will
be neglected, since

d, = —0.074 P, ', d2 =+ 0.003 P,
' (5.2)

which is of the order O(p'/m'). We have already
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shown that any contribution from B"'is of or-
der O(p, '/m') and has already been neglected in
(2.31) of Sec. II. Finally, the strength of the third
part [from B' '] is

d, = —0.148 p, ', 64= —0.605 p,
' . (5.3)

Loiseau" has recently remarked that the s-
wave component (due to a and c) considered here
is in good qualitative agreement with an earlier'
s-wave component arising from a "direct" s-wave
wN interaction (already appearing in Fujita-
Miyazawa's work} and from a t-channel pole (the
e or c meson) first considered by Harrington. "
Although the remark referred to the effective
two-nucleon potentials shown in Loiseau et al.'
and in I, we can compare s waves already at the
level of the ~N amplitude in (2.1) and (2.3) of Sec.
II. The & pole appears only in the 7"'amplitude
and has the form [(Q+Q'}'+ m, '] '. Loiseau
et al. attempted to find the strength of this contri-
bution in terms of the effective ranges of s-wave
~N scattering. One can expand their ~ pole to
O(p, /m) and find that their potential has the fol-
lowing strength parameters (in our notation)

a, =0.043 p, ', a, = —0.046 p, ',

b, =-0.0037 p. ', c, =-0.0018 p.
'

(5.5}

which are not in good qualitative agreement with

(5.1). This disagreement is weaker at the effect-
ive 2N potential level when we compare Fig. 12
of I and Figs. 10 and 11 of Loiseau et al. ' at, for
example, t'= 1.5 fm and see that V, + V, =+ 0.8
MeV and V, + V, =+ 0.13 i~ the central part and

V, + V, = -1.96 MeV and V, + V, = -0.27 in the ten-
sor part. The type of extrapolation from s-wave
scattering lengths and effective ranges ignores the
current algebra ("soft-pion"} constraints and can-
not be considered realistic nowadays. On the
other hand, the ~N amplitude which yields strength
parameters (5.1)-(5.3}does successfully predict

At this point, it is instructive to compare the
potential discussed here with other three-body
potentials. The oldest is the Fujita-Miyazawa
force, which is based on a theory of Ref. 18.
According to Bhaduri et al. ' (BNR) one ends up
with almost the same form for the potential, ex-
cept that the second part, multiplied by d, + d»
is altogether absent. The choice of C~ =+ 0.61
MeV leads to

aBNR p yBNR 1 39 3 BNR p

(5.4}
BNR 0 QBNR p dNR . p y BNR p 347 3

~1V scattering lengths and effective ranges. '
Yang" has derived a three-body potential from

a model of the ~N amplitude obtained from a chir-
al invariant Lagrangian of interacting ~'s, p's,
N's, and b, 's. He, in contrast to Refs. 6-10, finds
a nonzero result for the subtraction of the forward
propagating Born term, but his quoted result dif-
fers from (2.26}-(2.29) of Sec. II. His 6 contri-
bution is of the same form as that of (5.4) and he
claims strength parameters similar to theirs.
In order to arrive at this result, he must evaluate
his s-channel 6 pole in the frame in which the
middle nucleon is at rest. This is easily seen by
comparing (2.14) and (2.20) of Ref. 11.

Yang also considers a p-meson t -channel pole
in the ~N amplitude which ultimately acts, in the
triton, to oppose the effect of the 6 with about
one sixth the strength. It is difficult to compare the

p part of Yang's potential with (5.1)-(5.3}as his
final form is different. We remark, however,
that in the vector dominance model of electro-
magnetic form factors of the nucleon, the terms
E"(f)/2f ' of 7' 'and (Ev(t)+E2v(t)/2f„' of W ' in
(2.12) of Sec. II) correspond to a p pole in the t
channel. It would seem from (2.13) of Ref. 11
that Yang's p contribution corresponds only to the
charge coupling E~v(t )/2f„' of 7' '. We have seen
in Sec. II that this current algebra term is largely
canceled by the 6 isobar and the nucleon pole al-
ready at the level of 7' ' and was therefore drop-
ped in this paper. On the other hand, the Pauli
moment coupling of the p, which is not in Yang's
Lagrangian, makes a sizable contribution to 3' '
[see (2.11) of Sec. II]. That is, the term [E~(t)
+E2(t)] /2f„' contributes —0.4 p,

' to the strength
parameter d, = —0.6 p ' of (5.3}. Thus, Yang's
potential is about half as strong in b and d„has
no a or c terms, and seemingly has a stronger
d, than the strength parameters of (5.1)-(5.3}.

To calculate the potential matrix elements of
Sec. III, we have to evaluate the threefold inte-
gral (4.6) numerically. For large values of P and
p', the integrand varies strongly with x, because
of the small pion mass. Thus, it is necessary to
subtract the poles in x, which lie close to x, = 1.
It is convenient to choose a monopole form factor
so that

(5.6)

The value of A as determined by the observed
Goidberger-Treiman discrepancy of 6% is A
= 6 p, . Such a small value, although indicated by
the data and theoretical determinations (see Ref.
23 for a discussion), would necessitate a second
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subtraction. For illustrative purposes only, we
have made calculations with A = 7.1 p. (or A'= 25
fm '). In that case, a second subtraction turned
out to be not necessary. A typical number of
Gaussian quadrature points is 10 for each dimen-
sion.

Since the potential matrix elements depend on
the four variables P'q'Pq and on the quantum num-
bers n'n of the various three-body states, we
present a dependence on one variable which,
however, can give a first feeling for the relative
importance of the various terms. For fixed q, q',
and P' we present the dependence on P and label
the matrix elements between those states of Table
I as (a'~n}. In Figs. 3(a}-3(c)we show some
sample matrix elements from the first (abed) part
of the potential. We remember that for this part
of the potential there is no coupling between state
1 and the states 2-5. It is interesting to note that
the diagonal matrix elements (1~ 1) and (2~ 2) are
identical. That is easily verified by an inspection
of the expressions (4.10)-(4.15). We see from
Fig. 3(a) that the b and c terms are of opposite
sign and strongly cancel each other. The d term
is smaller than the a term and is not plotted. Fig-
ure 3(b) shows matrix elements in the same chan-
nels for a large value of the spectator momenta
q=q'=3 fm '. In this case the b and c contribu-
tions are constructive at low p, destructive at
higher p, and the potential is quite different in
shape from the b term alone (which corresponds
in shape to the FM potential}. Figure 3(c} shows
the very strong coupling [note change of vertical
scale on Fig. 3(c)] between states 2 and 3 which
correspond to 'S, and 'D, partial waves in the two-
body subsystem. Again a strong cancellation oc-
curs resulting in a potential quite different from
that of FM. All the remaining matrix elements of
the first part of the potential are much smaller.
The third (d, + d, ) part of the potential is sketched
in Fig. 4. That part connects only the state 1 with
the states 2-5. It appears to be less important
than the first part.

Clearly there is a striking difference to the FM
force of Refs. 6-10 which according to (5.4) has
no a, c, or d term and the b and d4 terms are
smaller by roughly a factor of 2. This difference
has been repeatedly emphasized at the level of the
underlying ~24 amplitude in the past, ' ' but has
been somewhat obscured at the potential level be-
cause of the common practice of displaying and
calculating with effsctiue ttuo-body potentials.
Figures 3 and 4 give, for the first time, a hint
at the complexity of a three-body potential and
show in a compelling fashion the differences be-
tween the PCAC-current algebra three-body force
and the FM force.

where V, are the pair interactions where i labels
the particle which is not in the pair (i.e., V, =—V»)
and S', is that piece of the fully symmetrical
three-body force with particle i in the middle.
Introducing the two cyclic permutation operators

P~ —P12 P~3, P2 —P~3 P23 (6.2)

together with P Py+P2 and using the antisym-
metry of @ we can write (6.1) as

4= Go(1+P)(V, +W, )4' . (6.3)

VI. SUMMARY AND OUTLOOK

We have examined the momentum space three-
nucleon potential of the two-pion-exchange type
for the purpose of including it in a Faddeev calcu-
lation of the triton. The potential is based on an
off-pion-mass-shell ~N scattering amplitude ob-
tained by a PCAC extrapolation subject to the con-
straints of current algebra with background cor-
rections dominated by the b, isobar. We, in con-
trast to an earlier study, did not evaluate the am-
plitude in the rest frame of the nucleon, but for
general values of p. We did make a consistent
expansion in powers of

~ p~ /m to arrive at a man-
ifestly Hermitian potential. The Hermiticity of
the potential thus derived separates it from other
three-nucleon potentials already included in per-
turbative"' "and variational' calculations of the
triton. The latter potentials were derived by as-
suming one nucleon to be always fixed in place.
This latter assumption, in general, causes a
non-Her mitian potential matrix.

We have made a partial wave decomposition of
the three-nucleon potential and calculated mo-
mentum space matrix elements between the five
lowest partial waves which dominate the triton
binding energy. It turns out that the often used
Fujita-Miyazawa force' "can be cast into the
form of a special case of the potential considered
by us. Therefore we can see that the matrix ele-
ments of the two potentials are in some important
instances rather different. We, at this stage, will
not speculate about the effects of these differences
in the two potentials upon the calculated proper-
ties of the triton.

Let us end with a brief remark about using the
three-nucleon potential in a Faddeev calculation.
One can introduce either a new Faddeev compo-
nent corresponding to the fully symmetrical
three-body force of Fig. 1 or one can keep to
three components and pay the penalty of living with
a more complicated amplitude in the Faddeev
kernel. Let us look at the second possibility.

The SchrMinger equation in integral form is
3

+=G, Q (V, +W, )@, (6.1)
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FKG. 3. Expectation values (p'q'd'I &V ~lpqd) where the Jacohi moments p, q, and q' ere held axed. The three-

body partial wave states of Table I are labeled by & and 0|'. The contributions from strength parameters abc and d of
Ref. 1 are summed to yield the curve labeled Total. The Fujita-Miyazawa force labeled FM) with the strength param-
eters of (5.4) is also shown.

Because G, is symmetric, one can commute 1+P
with G, and define the Faddeev amplitude g, by

g~ = Go(V~+ W~)@ . (6.5)

or

qi=(1+X)p, (6.4)
We get then the Faddeev equation

GOTP$ (6.6)
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alternate form of (6.7) appears to be convenient"

T = t+ (1+ tGc)W, (1+ GcT), (6.6)

O
I

0

C$

T=V, +W, +(V, +W, )GcT . (6.7)

If W, can be considered as a perturbation, the

0 I I I

I 2
p(fm ')

d3+ d4FIG. 4. Nonzero expectation values of W& in the
(n'[ol states labeled as in Fig. 3. The corresponding
FM curves are not plotted; they have about one-half the
strength of those shown.

with

where t is the two-body t matrix corresponding
to V y The calculation of the operators P and Vy
between the states of Table I is by now standard
(see, for example, Ref. 22) and will not be given
here As. olution of the set (6.6) and (6.7) is in
progress and will be reported elsewhere.
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