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An antisymmetrized second-order microscopic calculation of the imaginary optical potential for *°Ca(n,n) is made
using random-phase approximation transition densities to the intermediate excited states. An optical Green’s
function is used for the intermediate projectile propagator. Both inelastic and (n,p) charge exchange intermediate
states of the nucleus are included and a finite range effective projectile-target nucleon interaction is used. The local
approximation to the calculated imaginary optical potential is surface peaked but at a smaller radius than most of
the phenomenological potentials, and the depth is somewhat smaller. Collectivity and intermediate charge-exchange

states are shown to play an important role.

[NUC LEAR REACTIONS (n,n) scattering, calculation of optical potential;]
E=30MeV.

1. INTRODUCTION

The microscopic calculation of the optical poten-
tial for elastic nucleon-nucleus scattering com-
prises one of the most challenging and most basic
problems in nuclear physics. From the point of
view of the many-body theory the optical potential
has been identified with the mass or self-energy
operator of the one-particle Green’s function.!
The mass operator is the so-called generalized
optical potential which is nonlocal and complex and
which depends on the incident energy E of the in-
coming nucleon. The mass operator automatically
includes the exchange effects between the projec-
tile and the nucleons in the target, and it allows
for a diagrammatic expansion of the optical poten-
tial in terms of the (A + 1) many-body correla-
tions. The optical potential, being an operator
which allows the replacement of the (A4 +1) many-
body scattering problem by a one-body problem,
cannot be calculated exactly since it would mean
solving the many body problem itself. Therefore
one always has to rely on certain approximations
to the mass operator in real calculations.

Basically two different approaches have been
formulated. One is the so-called “nuclear matter
approach” of Jeukenne, Lejeune, and Mahaux?®®
and Brieva and Rook* in which they consider the
large target limit (A — «, A=nucleon mass num-
ber) and calculate either the optical potential®*® or
the two nucleon ¢ matrix* in nuclear matter. They
then obtain the optical potential for finite nuclei
by making either a local density approximation on
the potential itself?s or on the two-nucleon ¢ ma-
trix,* which is then folded into the target ground

state density distribution to get the optical poten-
tial. This approach has the advantage that it
starts from a realistic nucleon-nucleon interac-
tion and allows for a more or less parameter-free
calculation of the optical potential in nuclear mat-
ter, but, on the other hand, it does not take into
account any specific effects which are due to the
finiteness of the nucleus, such as the possibility
of collective shape oscillations, rearrangement
collisions, etc.

Another approach is the so-called “nuclear
structure approach” of Vinh Mau and Bouyssy®:®
and Bernard and Van Giai’ in which one assumes
that the effective nucleon-nucleon interaction is
basically known, but in which the inelastic excita-
tions of the finite nucleus are taken into account.
While the nuclear matter approach includes inelas-
tic excitation effects of a finite nucleus only in an
average way (via the local density approximation),
the nuclear structure approach treats them ex-
plicitly and therefore includes specific features of
the target nucleus in detail. The correct treat-
ment of the energetically open reaction channels,
however, should be especially important in deter-
mining the imaginary part of the optical potential,
since the absorption should be quite sensitive to
the nature and number of the energetically open
intermediate channels. The authors of Ref. 5 per-
formed a fully microscopic, antisymmetric cal-
culation of the optical potential using a phenomen-
ological effective interaction of 6-function type,
the random-phase approximation (RPA) vectors of
Gillet-Sanderson® for the intermediate target
states, and a free-particle propagator for the in-
termediate projectile. Similar in approach are
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the calculations in Ref. 7 where the RPA is solved
in coordinate space and a Skyrme force has been
used for the effective interaction.

Calculations of the optical potential have also
been performed on a somewhat more phenomeno-
logical basis by Rao, Reeves, and Satchler® who
start from Feshbach’s formalism'® and evaluate
the optical potential in second order perturbation
theory using collective form factors for the excita-
tion of the intermediate states and an optical model
propagator. Exchange effects are assumed to be
implicitly included in the collective form factors.
These authors have to postulate artificial open
channels at low excitation energies in order to ex-
haust low multipole sum rules. Also Coulter and
Satchler™ have found that pickup-stripping (p-d-p)
processes contribute appreciably to the absorption.

The purpose of this paper is to present a fully
antisymmetric, microscopic calculation of the
imaginary optical potential for “°Ca(n,n) calculated
to second (the leading) order in a finite-range pro-
jectile, target-nucleon interaction. The Eikemei-
er-Hackenbroich potential'? is used for this inter-
action and the RPA wave functions of Krewald and
Speth!® are used for intermediate states. The cal-
culations are similar in approach to those of Refs.
5-T and to a large extent corroborate the results
of the latter, calculated with similar approxima-
tions. The additional features of our calculations
are the use of the optical instead of the free-par-
ticle Green’s function for propagation of the inter-
mediate projectile, the larger (up to 3% w) basis
for the RPA wave functions, and the explicit inclu-
sion of charge exchange intermediate states. All
open RPA particle-hole states are included, so in
leading order no nuclear states are neglected. We
make the double-counting correction® ® which oc-
curs due to the identity of the projectile and target
nucleon in the leading order (noninteracting parti-
cle and hole) RPA graphs.

It is well known®#° that the imaginary optical
potential is, in principle, nonlocal (see Sec. II).

It will be shown in Sec. IO that the nonlocality can
be very large. We nevertheless follow the usual
practice and take a local approximation using the

formula of Perey and Saxon.'* In Sec. II a brief
J

review of the theory of the optical potential is
given along with some illustrations of the double
counting problem. Section III gives a discussion
of the calculational ingredients and procedures
used in obtaining the optical potential. Section IV
presents some sample cases in order to illustrate
the dependence of the calculations on assumptions
or parameters of the theory. Also the principal
result, the calculated optical potential for 30 MeV
“°Ca(n,n), is discussed. Section V contains a
summary and conclusions.

II. THEORY

In second order the generalized imaginary opti-
cal potential for a nonidentical projectile is®**°

W(E,T)=1m 2 (0| V| N}z g, (F,F'XN| V0. ,
N
(1)

where the matrix elements are over the nuclear
coordinates only, and g, is a projectile optical
Green’s function (see Sec. III) evaluated at an en-
ergy E -E,, E, being the excitation energy of the
target nuclear state N. Obviously W is nonlocal.
Because of the restriction to second order, only
the intermediate particle-hole strength is directly
excited. Since the RPA gives a good description
of the particle-hole strength including collective
effects, it is advantageous to use available RPA
transition densities for the intermediate excita-
tion.

Particle identity, however, introduces some es-
sential complications, which have been treated by
several authors®™ using the Green’s function for-
malism, in which the optical potential is identi-
fied' with the mass or proper self-energy opera-
tor'® S*(x,x’). The operator S* is the sum of all
proper self-energy graphs connected to the pro-
jectile particle line.

By comparison with Eq. (1), Villars!® gives the
following expression for the exact optical potential
? (in momentum space)

V= Uyp(k', k) + ) S™ (k' F) (2)

with

S — E

<0\(V 1 >pJ(k') 1 (V 1 rJ'(k)( ! V)’
Wit E,-H, E-H,+in\' E-H,+in E,-H,

‘<°\ (VEO iH), J "’”(E e in)(VE ey rn

where the subscript LC means linked cluster, E
is the total energy, E, is the ground state energy
of the target nucleus, |0) is the Hartree-Fock
ground state, H, is the unperturbed Hartree-Fock

)

9)
LC

°>LC , 3)

I
Hamiltonian, and

It =[ay V1= 2 a} (kB| V|6 aya, (4a)
:34.]
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TN =[V,al]= D ala’(xu|V|kvya, . (4b)

Apy
The diagrammatic perturbation expansion then in-
cludes only connected diagrams which cannot be
separated into two parts by cutting only the pro-
jectile particle line. J(k) is a potential for inter-
action of the projectile with the nucleus and there-
fore plays the role of the projectile, target-nu-
cleon interaction in Eq. (1). The independent sum
over s or p operating on the [0) with the LC re-
striction gives the exact target ground state wave
function, and the independent sum over ¥ gives for
the operator between the J' and J the exact
Green’s function, making the connection with Eq.
(1) more apparent.

For nuclear scattering or in any case where the
potential is strong or singular, the potential V
may not be used directly in Egqs. (3) and (4).
Rather one must take the antisymmetrical Schr6-
dinger equation used by Villars as a starting
point, apply a projection operator P onto a rea-
sonably tractable model space with the comple-
mentary projection operator @ projecting onto
states of very high energy and momenta of two
particles. These two-body states are important
both because they are excited by the strong short-
range part of the two-body potential, and because
they must be eliminated in the projection process
in order to leave a reasonably well behaved effec-
tive interaction in the P space. Such an effective
interaction need no longer be of two-body charac-
ter, but will be approximately so if only two-body
states were important in the eliminated @ space.
From here on it will be assumed that such a pro-
jection has been possible and that the V remaining
in Eqs. (3) and (4) is a well-behaved effective in-
teraction, a ¢ operator.

Equation (3) has been evaluated approximately
by Vinh Mau by treating target nuclear states in
RPA and allowing only second-order interactions
with the projectile, which occupies independent -
particle states. Although Eq. (3) is exact, when
intermediate states of a product type like this are
used there occurs a double counting®® due to the
identity of projectile and target nucleons. It is
present, however, only in leading order diagrams,
for which certain intermediate states of the A+1
system are counted twice when all intermediate
states of both target and projectile are summed
separately. It is essentially a nonorthogonality
correction due to the fact that configurations con-
sisting of a projectile particle and a target parti-
cle-hole state may not be orthogonal to the same
sort of configuration when the particles are ex-
changed by antisymmetrization.

In the Appendix the imaginary part of Eq. (2) is
evaluated to second order in the projectile, target-

nucleon interaction, including the double counting
correction. The target states are, in principle,
treated to all orders of V, resulting in the follow-
ing expression for W:

1

Wi, B=tm 5 o] S, 0%) 5o
N

N,>f

X (|G, K)[ ¥, ) = 3@ TR, Doy )

1 -
Xmﬁ%lJ(q,k)V&o)],

—-€-
(5)

where
J(q, k)= 2 a}aB|V|ky)a, 6)
By

is a Hermitian one-body operator representing the

effect of the scattering of the projectile, including

exchange, on the target nucleus. In Eq. (5) ¥, and
¥, denote the exact ground state and the exact ex-

cited states of the A-nucleon system, respectively,
while ¢, and ¢, denote the corresponding states of
the uncorrelated system.

It is, of course, inconsistent to treat target nu-
cleons and projectile nucleons differently. We
have simply considered the interaction with the
projectile in the lowest order in which an imagi-
nary potential appears. Some justification for the
inconsistency can perhaps be given by the follow-
ing considerations. It is known from coupled-
channel calculations that at very low projectile
energies the effects of multistep processes are
very large, while at higher energies although per -
haps not negligible, they are much less important.
One can in many cases calculate reliably with dis-
torted-wave Born approximation (DWBA), and
where DWBA is not good enough the multiple scat-
tering nevertheless converges quite rapidly. Thus
at several tens of MeV we expect that the lowest
order in the projectile, target-nucleon interaction
gives meaningful results.

III. DETAILS OF CALCULATION
A. Optical potential

In Eq. (5) the function

<'I'N!J(q’k)|‘l’o>= <¢IN\ ZVO‘(I = Poy)
i

)

=(q|Fyol k), (1)

where F,, is an antisymmetrized first-order nu-
clear matrix element for the excitation of state N
from the ground state. It contains the exchange
operator, which operates on the projectile wave



182 F. OSTERFELD, J. WAMBACH, AND V. A. MADSEN 23

function of Eq. (5) exchanging the target-particle
index with that of the projectile. It is calculated
according to the formulation of Wambach et all™!®
using the nonlocal form for the antisymmetrized
interaction V(1 - P,):

FNO_FD +F§0, (8a)

FO, = 6%(F, — ¥ <N“‘[, V(%, -n)\o), (8b)
Ffm=<N\Za(?0

i

~1))6(F, - F)o( T, —ﬁ)\ 0> s
(8c)

where D and E stand for direct and exchange, re-
spectively, and where

(0, 4) = (0, 9)P,(0, )P, (0, ) )

is simply a two-body potential with an exchange
mixture generally different from that of V(0,3).

Equation (5) may then be written in »-space
representation as

W(Yoaro)—lm[zf_[FNo(ro:", ) gy(T5,%5")

X F (R, ) r oy
—3like sum for particle -hole state s] .

(10)

The spin and angular integrals can be evaluated in
closed form, leaving the d»jdr}’ radial integrals
to be evaluated numerically with a computer. The
final form of W(¥,,¥/) is given by

W(F,, )= Im[‘z( 17AA (S gk — my | S =35 )(=1)/ 2% “Ts(gom son ] e —om )

X(IyMyd s =My If‘)ms (1) '”""Z |z Y, (v)d be () ‘.c 9n323£us'5JN(yo 'ro)] (11)

1oy

with the nonlocal radial form factor

J _ilg+lpad Z
51407 W, 1) = 35
S1L171S2L 272
cscl,_-.glgz

X Byl S ojos LoSaTzs So) WleS1,557.8) | Ju s

X fdrg’r{,'zfdro 7

where )
B(lalcs cj,;: Lllel ) §1) = (—)J ! m la‘ic‘; cjci’ls‘lglz

[ )UWMLO

(=) NW(Iy 1Ty Tz, Iy P(=Y ¥ 2Byl S o L1191, S1)

Jy S

h.E’J'.gﬂl

g s

m
N’A Lzsa"z(ro

FE 7 ’V’"
I 4 LaSad oyl c( 0s 7o

, 0(v, —7l)
x 81,4079 [P 00| LOFE 1,00, 70

_F‘fN"A-Llsl'rlvlalc(’ro’ 7(;’)] ) (12)

W15\l ;5 L)W(I,S,S,s,, L,s,) (13)

and j=(2j +1)*/2. The quantity 81,4, (ry’,7§) in Eq. (12) is the radial part of the optical Green’s function
describing the propagation of the {nfermediate projectile, and the quantities F° and FF are defined by

F?N"A-Ls" 7y =z:, (=)E> nJW(L)\SS,nJ)fdr'rszg’, A7, (75, 7) (14a)
n,

and

F% 77 arsaig (Fo,78)=(= )f-”a 1 LIZ > (o @,a \*W(LASS, nJ)(1,0a,0|1,0)(1,0a,0|1,0)

a,azn
13052

a,
x |1,

I,

JJ
plll\l’zfs.l (70’ rt;,)v:wz(’rm 7(;') > (14b)
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respectively. In Egs. (14) the coefficients V3,0, arise from the multipole expansion'® of the central (n=0)
and tensor (n=2) parts of the effective direct (V) and exchange (v) two nucleon interactions, and the local
and nonlocal nuclear transition densities are defined by

) lo 3 Ja
N _ Inda I J 1 An A ana .
Prssy (VO)"U‘:-;‘ (Xh)gz +Y152A)m ES 1]2J)\l1(110)\0]l20) I % 1 anlzlz(ro)Rullll(To) (15a)
natad2 A S J
and
N l 3 Ja
77 Jd Tyday 1l aa aa .
¥ s s (o, ré)zgl (X 5 A+ YJINJZA)ES]IJZA L3 Jy| Ruy,s,(rolRyy, 4,(r0), (15b)
nadp A S J
r

where the X, ,,
hole amplitudes® and the R,
single -particle wave functions.

Note that we have two terms in Eq. (11), namely
one with §=0, £=0, $=0, and the other with
g=0, £=1, $=1. Here only the J=£=8=0
term is calculated, the §=0, £=1, $=1term
corresponds to a nonlocal spin-orbit potential.

A program has been written to evaluate the im-
aginary part of the nonlocal optical potential of
Eq. (11) given in detailed form in Eqs. (12)-(15).
The calculation of the nonlocal form factor in Eq.
(12) is a nontrivial problem since it involves for
EE a 6-dimensional integration over a 12-dimen-
sional function. Four integrations are in angle,
which can be done in closed form, and two are in
¥ space, which have to be performed numerically.
For this reason one has to be very careful in
choosing the right methods for the evaluation of
Eq. (12). In our problem we make extensive use
of the fact that the nonlocal form factors F&(v,, 7))
are rather slowly varying functions of 7, and 7.
Therefore it has to be calculated at points of rather
large stepsize (of typically 0.4 or even 0.8 fm) and
the intermediate points are obtained by using
spline-function interpolation methods. The form
factors are interpolated onto the mesh of the
Green’s function which is oscillatory and which
therefore is calculated on a small mesh (0.1 fm).

Note that the DD, DE, and ED terms in Eq. (12)
involve either no integration or a single integral.
Otherwise the calculation is the same as described
above. Finally we want to mention that by using
these interpolation methods the time for the cal-
culation of the form factor in Eq. (12) can be
shortened enormously, so the calculation of the
contribution to the absorption of one intermediate
state, described by a 3Zw RPA wave function,
takes less than 30 sec on the IBM 3033.

and Y, , are the RPA particle-
denote the radial

B. Nuclear RPA wave functions

The RPA vectors obtained by Speth and Kre-
wald'® were used for the description of the inter-
mediate nuclear states. In Ref. 13 the ph-residual
interaction strength was chosen to match the ener-
gy and transition rate for the 3~ collective state as
well as possible and to obtain the giant dipole and
giant quadrupole resonances approximately at the
right energies. The spurious 17, 7 =0 state was
brought nearly to zero excitation energy and has
not been included in the calculation of the optical
potential. The 17 strength agrees with the dipole
sum rule and the 2* giant resonance strength at
18 MeV seen in (a, a’) and (e, e’) is reproduced.
The basis consists of all shell model states from
0s,,, to 5h,,,, including all 17w, 27w, and most
37 w strengths.

Since only energetically open channels can con-
tribute to the imaginary potential, all RPA inter-
mediate states are summed up to the energy of the
projectile, 141 states in all for 30 MeV neutron
scattering. In the case of the 3~ state, the low-
lying collective state has most of the strength (40%
of the energy weighted sum rule), but for other
multipolarities the strength is distributed over
many states.

In order to show the relative contribution of dif-
ferent multipolarities A" to the imaginary potential,
the value of W(7,#) is shown in Table I for »=3.6
fm, where the peak occurs. Since the nonlocality
length of W(7,7’) does not vary greatly from one
A" to another, W(r,¥) gives a good account of the
relative contribution to the equivalent local poten-
tial W(»). As expected and as is seen in the
table, the 3™ multipoles have the largest effect but
2*, 4*) and 5” states also make essential contribu-
tions. Table I also gives for the 2* and 3™ multi-
polarities the contribution of pure particle-hole
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TABLE I. Contribution of various multipoles to the
diagonal nonlocal imaginary optical potential at the peak
position.

AT W(3.6, 3.6) MeVim™®
o* —0.009
1~ —0.067
ot -0.329
3” —-0.503
4% -0.170
5~ —-0.112
6* —0.041
2% ph? —0.07
3~ ph? —0.142
3~b —0.329

2 Pure particle-hole states.
b Lowest lying 37 state only.

states to the optical potential. Although not neg-
ligible, they are rather small compared to the
corresponding RPA transitions. The ground state
correlations and the collectivity push strength to
lower energies and increase greatly the absorption
into states lower than the 30 MeV projectile ener-
gy. A comparison of the contributions to RPA and
ph states to the local potential is given in Sec. IV.

C. Nonlocality and local approximation

The characteristics of the nonlocality are pre-
dominantly a result of the single particle projec-
tile Green’s function. For a free particle it has
the form

- 2mk sinks
Imgf°)(r,“f')=-—ﬂ—2———]z9——, (16)
where s is the nonlocality coordinate
s=|F-%]. (17)

Equation (16) has a characteristic structure with
a large central peak and small positive and nega-
tive oscillations at large values of s. The non-
locality length b is defined as the value of s for
which the function in question drops to e™ of the
value at s =0. For Eq. (16) » ~2.20/k fm. Thus
one would expect the local approximation to be
best at higher energies and the nonlocality length
to be larger outside the nucleus, where the wave
number is smaller. For 30 MeV neutrons we can
expect a nonlocality length of 2.20/1.36 ~1.6 fm.
This is a good rough estimate, as described be-
low.

Although the optical Green’s function (OGF)

- = 2mk .
Img(¥,7')=- ;’; Rez R, (v )R{? (7,)
1

X 2 Vi (M YE,G)

(18)

with
R (v) = 1, M (k) (19)

is much more complicated than (16) and depends
on R=(T +T')/2 as well as on s, it retains the
characteristic peaking at »=%’. The nonlocality,
however, depends on the direction as well as on
the magnitude of §. The direct-direct contribution
to the optical potential contains a summed product
of Green’s functions and form factors. The sum
over intermediate states N of Im F, g ,F¥,
sharpens the nonlocality (makes W more local than
Im g, alone). When exchange is included, these
simple arguments do not apply unless the range of
the two-body interaction is very small. However,
the characteristic behavior of a peak at »=7' and
oscillation as a function of s still applies when all
amplitudes DD, DE, ED, and EE are included.
Inside the nucleus at small radii, the behavior of
W(r,7’) is sometimes peculiar, the positive oscil-
lations being rather large. In this region the local
approximation does not make sense, so we have
simply ignored it, knowing that this inner region
is also not very important for the scattering.

The local approximation is made as in Ref. 5
neglecting cross-derivative terms in the formula
of Ref. 14, generalized slightly to include dif-
ferent contributions to the § integral from dif-
ferent directions. For £ =0, Eq. (11) is indepen-
dent of the directions of ¥, and T} for a given angle
6 between the two vectors. Since, for spin trans-
fer S=0, W(T,, T} is a spatial scalar, it cannot
depend on the direction of the vector R= (¥, +7%})/
2. Thus W must depend on only three coordinates,
R=|R|, |5]|, and the angle between R and § (or
alternatively #,, 7, 6). Since the radial form fac-
tor is symmetric in », and »;, W is also symme-
tric with respect to a reflection of § through the
3, R plane. We therefore use a symmetric Gaus-
sian form to approximate the nonlocality,

W(7y,75)=W(R,R) exp{—[sn2 /b,*(R)
st R, (20

where s, =s *R and s, = (s? -s,2)!/2 ~R6. This
form neglects the difference between cord and
arc, which can make differences of 5% for the
largest nonlocality angles. Figure 1 shows the
parallel and perpendicular width functions b, and
b, for W. The nonlocality increases steadily from
small values of R within the nucleus to the largest
values required. The perpendicular nonlocality
is somewhat larger than the parallel nonlocality
at larger radii. The nonlocality angle is more
nearly constant than the b,. The rough value of
b=1.6 fm from the free particle Green’s function
is seen to be relevant. The local approximation*
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49Ca(n,n), En = 30 MeV
———~——perpendicular nonlocality
parallel nonlocality

2
T |
—
L0
l —
Nuclear Radius
| | | * | | | |
(o] | 2 3 4 5 6 7 8
R

FIG. 1. The nonlocality length arising in the local
approximation to the optical potential. The parallel non-
locality is in the radial coordinate for zero angle between
T and ¥’ and the perpendicular nonlocality is for »=»’
but nonzero angle. In each case b is the e~! falloff dis-
tance.

is then made to Eq. (20) giving the equivalent local
form

W(R) = W(R, R)*/b,(R)b,*(R)
xexp(-[5,2(R)+2b2(R) {2m[E -V(R)]/%?}/12),
(21)

where V(R) and E are the potential and total ener-
gy of the incident projectile.

IV. RESULTS AND DISCUSSIONS

A calculation of the imaginary part of the optical
potential has been performed for the *°Ca(z,n) re-
action at an incident energy of 30 MeV. Before
presenting the final results, however, we first
describe some illustrative examples, where we
have limited the intermediate states to be either
the low-lying 3~ collective state or to be all the
energetically open 3~ states.

We discuss these illustrative examples in order
to describe important physical effects which are
somewhat independent of the nature and number of
intermediate states.

A. Some illustrative sample calculations
1. Effect of optical Green’s function
As in the work of Satchler et al.® we have used

an optical Green’s function for the intermediate -
projectile propagator. Neglecting spin-orbit and

imaginary potentials, one may write the Green’s
function of Eq. (18) in an eigenfunction expansion

E-Ey —€, +i¢’

(+)

gy r,v')=

imn

(22)

where ¥,, is a single-particle eigenstate, E, is
the energy of the intermediate nuclear state, and
€,; is the single-particle eigenenergy. The sum
includes bound single-particle states as well as
unbound ones. Because of exclusion of the pro-
jectile by nucleons in occupied states, a subtrac-
tion of these states should be made from g}, of
Eq. (18). However, because for bound states the
energy denominator can never be zero, the sum
over any bound states is always purely real.

(The numerator is also real.) Therefore, the ex-
clusion of occupied bound states affects only the
real and not the imaginary parts of the Green’s
function and optical potential.

When a real potential is used, this Green’s
function resonates sharply,? resulting in corre-
sponding peaks in the optical potential. Because
of absorption in the intermediate channel, not ex-
plicitly included in our calculation, there should
be some imaginary part to the optical potential in
which the intermediate projectile propagates. As
in Ref. 7, as a matter of taste, we would prefer
to use a Green’s function for a real potential so
all imaginary potentials which come out of the cal-
culation are clearly a result of the theory and not
of the parameters used. We therefore take the
point of view that we use an energy-averaged in-
termediate Green’s function consistent with the
idea that optical potentials are energy-averaged
quantities. Using the eigenfunction expansion
form Eq. (22) and folding a Lorentzian of width T"
and E we get simply g evaluated at the complex
energy E +iI'/2. Inside the nucleus, the wave
equation for this complex energy is identical to
that with an absorptive optical potential W= I'/2.
Because our Green’s function code can use only
real energies and an absorptive optical potential,
we use an absorptive potential of depth ~2 MeV to
achieve qualitatively the same effect as in an en-
ergy averaged Green’ s function, to smooth out the
intermediate single-particle resonances.

Figure 2 shows a comparison of the local-ap-
proximated optical potential W for 9 MeV *°Ca(x, )
scattering using only the low-lying 3~ state as an
intermediate state calculated with both the optical
Green’s function (OGF) and free-particle Green’s
function (FPGF). The two results are very simi-
lar, which to a large extent gives justification for
the use of FPGF in Ref. 5. The OGF is larger
in the nuclear interior, particularly for the higher
partial waves at this low energy. As a result the
OGF tends to give a ﬁVpeaked at a slightly smaller
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FIG. 2. The local equivalent potential W(r) of the non-
local optical potential W(r,r’) for neutrons of 9 MeV in-
cident energy. The two curves, which compare W(r)
obtained with an optical Green’s function to that using a
free-particle Green’s function, are calculated including
4aolosorption only from excitation of the first 3~ state in

Ca.

radius than FPGF. Calculations were also made
in which the imaginary part was increased to about
one half the Becchetti-Greenlees value.?? The re-
sulting W(R) was essentially identical to that used
in Fig. 2 and in the rest of the calculations pre-
sented in this paper. It is remarkable how little
the final result depends on how much the inter-
mediate particle is absorbed. To the contrary,
the use of plane waves in the initial or final pro-
jectile state of any direct reaction calculation
would badly overestimate the scattering or reaction
amplitude.

2. Effect of exchange

The effect and importance of exchange is shown
by the comparison of Fig. 3. Because the Eike-
meir-Hackenbroich interaction is spatially even,
the exchange and direct contributions are con-
structive and, because there are three exchange
contributions ED, DE, and EE, the effect of ex-
change is very large. It should be noted that the

1. 2 3 4 5 e 7 Rlfm]

“caln,n)
Einc=30MeV

all 37 -interm . states
===~ direct only
direct+exchange

-2k

FIG. 3. A comparison of the locally approximated
optical potential calculated with and without exchange
contributions for 30 MeV incident energy neutrons with
all open 3~ states as intermediate states.

purely direct 1774 peaks at a slightly higher radius
than the full potential. This effect is probably

due to the fact that the nonlocal, one-step form
factor for exchange contains a nuclear single-par-
ticle wave function factor not folded with the finite
range potential. Both curves peak at points small-
er than the nuclear radius, which is 4.00 fm in

the Becchetti-Greenlees real potential. 2

3. Effect of density dependent forces

Mahaux et al.?® have calculated the imaginary
optical potential in nuclear matter using the local
density approximation to obtain the optical poten-
tial for finite nuclei. Any surface effects must
then come from the local density approximation.
The imaginary potential which they have obtained
is peaked at the nuclear surface, due to the densi-
ty dependence of the interaction. The results ob-
tained here and in Refs. 5 and 6 also peak at the
surface but at too small a radius. As a test of the
effects of density dependence, we have used the
singlet and triplet factors from Green’s paper, *
used there with the Kallio-Koltveit force, and
multiplied them instead by the Eikemeier -Hacken-
broich singlet and triplet central factors in order
to get some idea of how much a reasonable density
dependence can alter the peak position. Figure 4
shows that this particularly density dependence
does increase W substantially in the region beyond
the nuclear surface and shifts the peak position by
about 0.4 fm to larger radii.

B. Full calculation of 4°Ca imaginary optical potential

1. Contributions to the imaginary potential from different
classes of intermediate states

In the calculation of the imaginary part of the
optical potential we include all energetically open
intermediate states, i.e., all inelastically excited
natural and unnatural parity states and also the
corresponding natural and unnatural charge ex-

, rlfm]

N

0
“Calnn).Einc=30Mev
37(373MeV)-intermediate state

/
/ fostm

WIMeV]

density dependent force

-2+

FIG. 4. The solid curve shows the effect on the locally
approximated optical potential of including the singlet
and triplet density-dependent factors of Green (Ref. 23)
in the projectile, target-nucleon interaction.
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change states. In a double closed shell nucleus
such as “°Ca most of the states in the low-excita-
tion energy region are of natural parity, while the
first unnatural parity states open up at higher ex-
citation energies (~10 MeV). Therefore a large
fraction of the absorption is due to the natural
parity states, particularly the low-lying 3~ and 5~
states. At an incident energy of 30 MeV, however,
the giant dipole, the isoscalar giant quadrupole,
and also an appreciable fraction of the hexadeca-
pole strength are excited and contribute substan-
tially to the absorption. On the other hand, the
unnatural parity states are less collective and
therefore contribute less. In Fig. 5 we show the
contributions to the imaginary potential which
arise from the different classes of intermediate
states. It is somewhat surprising that charge ex-
change gives such a large contribution to the ab-
sorption. This results from the fact that the
charge exchange states in (z,p) reactions are
shifted down in energy by the Coulomb energy dif-
ferences of the nuclei (Z,N) and (Z -1,N +1) and
to the greater (x2) projectile matrix element for
charge exchange compared to inelastic scattering.
In Fig. 6 we show the total contributions of inelas-
tic excitations and charge exchange reactions
separately and find that charge exchange accounts
for nearly 30% of the total absorption at the nu-
clear surface.

2. Particle-hole corrections

As has been already discussed in Sec. II we have
to correct the RPA results for the contributions
coming from the excitation of intermediate parti-
cle-hole doorway states, since otherwise we would
count these contributions twice. Simultaneously
this particle-hole doorway contribution is also the
result which one would obtain with uncorrelated
particle-hole intermediate states only. It can be
seen from Fig. T that the particle-hole correction

Imaginary optical potential
2 3 ¢ s 6 9 r(fm]

3 -3 “Calnn), Epc=30MeV
_z_ —-——CEX, unn.p.states
02 -4 -- -CEX . nat.p.states
—--=--= [EX, unn.p.states
-5 IEX, nat.p.states

FIG. 5. Contributions to the imaginary optical poten-
tial from various types of intermediate states: unnatural
and natural parity, charge exchange and inelastic scat-
tering intermediate states.

Imaginary optical potential
Pt

~

1
]
~.

~

3o “Ocalnn), E . =30MeV
= — -—-—charge exchange
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FIG. 6. Contribution to the imaginary optical potential
from all charge exchange and all inelastic intermediate
states.

is rather small. This means that a calculation
with pure particle-hole intermediate states would
greatly underestimate the absorption. Thus a
large fraction of the absorption and surface peaked
character must be attributed to the collective ef-
fects of a nucleus, which are reasonably well de-
scribed by the RPA.

C. Comparison to other potentials

In Figs. 8 and 9 we compare our calculated po-
tential with various phenomenological potentials
and with the calculated potential of Vinh Mau.®
Our imaginary potential is surface peaked, but the
peak occurs at a smaller radius and is weaker
than the phenomenological potentials by about 2
MeV. The underestimate in depth is perhaps not
surprising since we include only the open inelas-
tic channels explicitly but no rearrangement chan-
nels, which would make an added contribution to
the absorption. A comparison between our calcu-
lation and that of Vinh Mau® shows that our poten-
tial peaks at a smaller radius and is also not as
deep. Clarification of the difference between our

Imaginary optical potential

1 2 3 4 5 g 7 Crlfm]
T T
-2
PR A
>
(] S L0
= -6 S=- Caln.n),Einc=30MeV
=2 —.—-=p-h correction
-8 eeeaa uncorrected RPA
calculated W(r)
-10}

FIG. 7. Effect of the double counting (ph) correction
to the imaginary optical potential. The dot-dashed curve
is also the optical potential which is obtained for 30 MeV
neutrons using all open particle-hole intermediate
states. (It is itself already corrected for double count-
ing.)
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FIG. 8. Comparison of our optical potential with a
similar calculation by Vinh Mau (Ref. 6) and a phenom-
enological potential (Ref. 24) at 30 MeV neutron energy.

result and that of Vinh Mau requires consideration
of the following points.

(i) Our potential is calculated with an optical
model Green’s function, while that of Ref. 6 is
obtained with a free propagator. An optical model
propagator, however, shifts the peak of the po-
tential by about 0.2 fm to the inner region of the
nucleus (see Fig. 2).

(ii) We use the RPA-transition densities of
Krewald and Speth,'® while Vinh Mau uses those of
Gillet and Sanderson.® A comparison of the RPA-
transition densities for the low-lying 3~ collective
state, for instance, shows that the Gillet-Sander-
son transition density peaks at a larger radius
(by about 0.3 fm) than that of Ref. 13.

(iii) The difference in depth, however, is harder
to understand. The RPA calculations of Krewald
and Speth have been performed in a model space
which is appreciably larger (nearly all 3% w ex-
citations are included) than that in the calculations
of Gillet and Sanderson. Therefore a larger
fraction of the total transition strength especially
for states of higher multipolarity is included,
which should also lead to a more strongly absorb-

-20
' -40 _'
2 .
60 ~/
= N, ¥
e __\gf.'}?, % 99Cq(n,n), En=30MeV
-80 |- NS e BG.-global W(r)
calculated W(r)
-100 (RPA)

i —— Ohio U. *°Ca W(r)
ersesmessmns Ohio U, Global W (r)

FIG. 9. Comparison of our calculated potential with
phenomenological potentials of Becchetti-Greenlees
(Ref. 22) and Ohio University (Ref. 24).

ing potential. Moreover, charge exchange in-
termediate states, which are not considered in
Vinh Mau’s calculation, are included in our cal-
culation of the optical potential and actually make
a large contribution to the absorption. From these
facts one would expect that our potential should be
more strongly absorbing than that of Ref. 6.
There is, however, an additional difference be-
tween the two calculations which concerns the ef-
fective projectile-target nucleon interaction used.
In our calculations we use the Eikemeier-Hacken-
broich force'? which in average reproduces in-
elastic scattering cross sections for the low-lying
collective states. This we have checked by per-
forming microscopic, antisymmetrized DWBA
calculations for these states using the RPA wave
functions of Ref. 13. Therefore we may say that
we have calibrated the effective projectile-target
nucleon interaction to inelastic scattering before
using it in the calculation of the optical potential.
Vinh Mau, on the other hand, uses the Reichstein-
Tang interaction®® which gives inelastic cross sec-
tions which are larger by a factor of 1.5 than that
obtained with the Eikemeier-Hackenbroich force.
Therefore we would also obtain a 50% deeper im-
aginary optical potential if we used the Reichstein-
Tang interaction. It would also, however, give
too large an inelastic cross section. The effective
projectile-target nucleon interaction is ambiguous
and has to be calibrated somewhere, for instance
from inelastic scattering, before it can be used

in the calculation of the optical potential.

We have mentioned already that our calculated
potential peaks somewhat below the nuclear ra-
dius, compared with most of the phenomenological
potentials, like that of Refs. 22 and 24. As, how-
ever, has been discussed above already, a densi-
ty-dependent effective projectile-target nucleon
interaction has the tendency to shift the absorbing
potential to larger nuclei. From this we may
conclude that a density-dependent effective
projectile target nucleon force together with the
inclusion of nuclear collectivity will probably lead
to a microscopic imaginary potential which has a
surface form in agreement with phenomenological
potentials. It is important to realize that the real
microscopic potential is nonlocal and that we al-
ways compare the “equivalent local” potential
with the phenomenological potentials. The nonlo-
cality length in the surface region, however, is
rather large, and the local approximation is
therefore not very good.

D. Calculation of reaction cross sections

The imaginary part of the microscopically cal-
culated, equivalent local potential has been used
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in the calculation of the elastic scattering cross
section for 30 MeV neutrons. We have simply
replaced the imaginary part in the phenomenologi -
cal potential of Ref. 24 with the microscopic one
and obtain the result as shown in Fig. 10. The
cross section calculated with the microscopic im-
aginary potential is larger than that obtained with
the phenomenological one by roughly a factor of

2 at large angles. This overestimate is an indi-
cation for too little absorption, as expected from
the results given in Figs. 8 and 9. Note that the
reaction cross section of the microscopic poten-
tial, however, amounts to roughly 71% of the re-
action cross section of the phenomenological po-
tential. We have also calculated the total inelas-
tic cross section to all natural parity, inelastic
intermediate states by performing microscopic
ADWBA calculations. The total inelastic scatter-
ing cross section to these states amounts ap-
proximately to 60 mb. Inclusion of charge ex-
change would probably increase this number by
50%, but we have not calculated it, since we
wanted only a rough estimate of the total inelastic
cross section.

Comparing the latter with the total reaction
cross section shows that only ~10% of it is due to
inelastic scattering. This demonstrates the ef-
fectiveness of inelastic channels as doorways to
other reaction channels.

V. SUMMARY AND CONCLUSIONS

The calculation of the imaginary part of the nu-
clear optical potential W has been made to second
order using a finite range effective projectile -
target nucleon interaction and an optical Green’s
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FIG. 10. Comparison of the differential cross section
for 30 MeV 4°Caln,n) calculated using the phenomenolog-
ical optical potential with that obtained replacing the
imaginary part of the phenomenological potential by our
microscopic potential.

function for the intermediate -state propagation in-
cluding exchange and all open inelastic and charge

exchange RPA intermediate states. Besides the
final calculation of W, the dependence on various

parameters of the theory has been examined.

The use of an optical Green’s function instead of
a free-particle Green’s function makes a signifi-
cant, though surprisingly small, difference in W,
the main effect being a slight shift of the surface
peak to smaller radii. Exchange is possible at
each step of intermediate excitation and deexcita-
tion and its effects on W is therefore multiplied
compared, for example, to the effect on the real
optical potential V, which results primarily from
a one-step mechanism. For even forces, which
we have used, the direct and exchange amplitudes
are constructive, so inclusion of exchange in-
creases W by a factor of more than 2. Charge
exchange intermediate states are rather important,
accounting for more than 1 of W. The calculated
W tends to be surface peaked due largely to sur-
face-peaked transition densities of the important
intermediate collective states. The position of
the peak occurs at a somewhat lower radius than
that of empirical optical potentials but a reason-
able density dependence increases the radius of
this peak. The collectivity of the dominant inter-
mediate states is very important; a strongly sur-
face-peaked optical potential does not occur when
simple particle-hole intermediate states are used.

The calculated W is also somewhat weaker than
the empirical one, but it accounts for a large
fraction (~71%) of the reaction cross section
compared to empirical potentials when used in the
Schriodinger equation. The total inelastic cross
section, calculated directly with all natural parity
intermediate states, accounts for ~60 mb which is
less than 10% of the total reaction cross section.

The work presented here is closest to that of
Vinh Mau and her collaborators,®” and the theo-
retical formalism is based on her nuclear struc-
ture approach. Our principal improvements are
the use of the optical Green’s function for the in-
termediate-nucleon propagator, and the use of
RPA wave functions which are more complete,
having a larger particle -hole basis and including
charge exchange channels. We would therefore
expect to calculate a more absorptive potential.
The fact that we do not is at least partly due to
different projectile, target-nucleon interactions.
The Reichstein-Tang® interaction used in Ref. 6
gives 50% more absorption than the Eikemeier-
Hackenbroich interaction, which we use. How-
ever, it also gives a cross section for inelastic
scattering to the first 3~ state which is about 50%
too large when used with our transition densities.

The alternative method, the nuclear matter ap-
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proach to the calculation of nuclear optical poten-
tials, has had considerable success. Jeukenne
et al.*? use the local density approximation to ob-
tain W in finite nuclei from that calculated in nu-
clear matter. Brieva and Rook,* on the other
hand, make the local density approximation only
on the effective two-body scattering operator ¢
and then fold the resulting approximate ¢ with the
nuclear density. This approach should represent
a substantial improvement over that of Refs. 2
and 3 in that the nuclear density, which changes
rather rapidly in the nuclear surface, is treated
more accurately.

However, the work in Ref. 2, 3, and 4 treats
nuclear structure only in infinite matter. Both
our results and those of Refs. 5 and 6 show large
effects from nuclear collectivity. If particle-hole
states are used, the resulting imaginary potential
is both too weak and does not have the surface
form expected on the basis of phenomenological
imaginary optical potentials. The fact that im-
aginary optical potentials obtained in the nuclear
matter®?® approach, which also uses sums over
simple particle-hole states, do show a strong sur-
face peaking represents a real discrepancy be-
tween the two theories. In the nuclear structure
approach it is due to the collectivity, while in the
nuclear matter approach it is simply an effect of
the Pauli principle. In this connection it should
be pointed out that the imaginary potential of
Brieva and Rook* was both too weak for low-ener -
gy projectile and has essentially a volume form.
These authors suspected and suggested that the in-
adequacy of a nuclear matter description of the
nuclear spectrum at low energies might be the
cause of their failure to obtain enough strength
for W. This opinion is borne out by the nuclear-
structure approach of Vinh Mau®® and the work
reported in this paper. The residual interaction
lowers the strongly excited states in energy in-
creasing the excitation strength at low energy
and therefore also increasing W.

The nuclear matter approach has two additional
features which will clearly result in erroneous
estimates of the absorptive potential. First,
since the Hamiltonian is translationally invariant,
T=0, 17 states are present in the spectrum. As
the 17 collective translational state is rather
large, it can be expected to contribute consider-
ably to the absorption, while in the finite-nucleus
RPA spectrum such a spurious state is elimi-
nated.

The second point is that in nuclear matter there
is no energy gap, so even at low energies of a few
MeV there will be open particle-hole states con-
tributing to absorption. In the nuclear structure
approach, these channels are eliminated by the

gap, and only the low-lying collective states,
which are pushed down in energy by the residual
ph interaction, contribute to absorption.

There are a number of defects in the nuclear
structure approach to the determination of the
opical potential. The RPA does rather well in
the calculation of transition probabilities, but the
accuracy for the entire spectrum may not be very
good. Different RPA calculations with different
parameters may give different transition densities,
even to particular states where the energies and
B(EX) values are fitted. These differences would,
of course, give rise to differences in the scatter-
ing. Furthermore, states of low multipolarity are
more likely to be accurately described by an RPA
calculation than those of higher multipolarity.

The weakest point is perhaps the use of an ef-
fective interaction instead of a ¢ or G matrix cal-
culated from realistic forces.?® In our work and
that of Ref. 6, the effective interaction used in
the scattering and structure calculations was also
different. With simple effective interactions it is
not always possible to fit inelastic scattering cross
sections for different multipole transitions simul-
taneously.

It should also be pointed out that in both the nu-
clear-matter and nuclear-structure approaches,
the representation of the imaginary potential by a
local equivalent is not expected to be very reliable.
The nonlocality in some regions is rather large
and the applicability of a local approximation is
open to question.

Despite these difficulties and uncertainties we
have, with no adjustment of parameters, been
able to calculate an imaginary optical potential
which is within about 34% of the phenomenological
value and gives ~71% of the reaction cross sec-
tion. The potential is surface peaked, as are ty-
pical phenomenological potentials, but the peak
appears at a smaller radius. The shape in nuclear
surface is, however, remarkably similar to the
Ohio phenomenological potential,** which at 30
MeV has a volume form.
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APPENDIX: DERIVATION OF EQ. (5)

In this appendix several approximations are
made concerning the projectile, which allow us to
treat it and the target nucleus on a different foot-
ing. Starting from the first term of Eq. (3), com-
plete sets of eigenstates of H, are inserted to the
right and to the left of each V factor between J
and J'. These are (N +1)-particle, N-hole
states, where N is arbitrary. The first approxi-
mation is that, when J' operates to the right, it
produces at least one particle state above the
Fermi sea, which will be labeled ¢q. This treat-
ment neglects the refinements in the effects of the
Pauli principle due to the fact that the operator
to the right of J' in the first term of Eq. (3) pro-
duces an exact ground state of the A-particle sys-
tem when it operates on the vacuum state |0).
Our approximation ignores the fact that some
states below the Fermi energy are therefore emp-
ty and some states above it are occupied. Next
we make the second-order approximation for the
projectile. This consists in keeping only terms
in the intermediate states in which the projectile
quantum number ¢ propagates without interaction.
At each stage of interaction by V there is a factor
of N+ 1 due to the (N +1)-like terms in which any
intermediate particle state may be ¢. This factor
N +1 is exactly compensated by a factor of (N+1)
double -counting correction in the (N +1)-particle,
N-hole state.

For example, consider such matrix elements in
zeroth, first, and second orders in the V between
Jand J'. Aside from energy dominators they
would have typical forms such as

(0| J|gmi) gmi|J*t|0), (Ala)
10| | pmiY(pmi| V|nyj) nrj| J*|0), (Alb)
25 (0| |pmi ) pmi| V| rstil)

x(rstil | V|nvj)nvj|s*|0). (Alc)

In Eq. (Ala) it is arbitrary which particle quan-
tum number is designated as belonging to the pro-
jectile but we take it to be ¢. The factor of } is
introduced to compensate for the fact that each of
q and m is allowed to take on all particle quantum
J

numbers. Likewise the factor % in Eq. (Alb) com-
pensates for double counting both between p,m,
and n,7 particle quantum numbers, and the extra
factor (3!)™ in Eq. (Alc) compensates for double
counting among 7, s, t. In Eq. (Alb) one of the
particle quantum numbers p or m will not be in-
volved in the interaction and will be equal to one
of » or . Whichever one it is, we label it as ¢q
and designate it as the projectile quantum number.
Since there are 2 x 2 possibilities for ¢, we get a
factor of 4 times an amplitude with the sequence
of particle quantum numbers gm, gn appearing in
the intermediate states. In Eq. (Alc) there are

2 %X 3 x 2 choices for a fixed quantum number,
which is again labeled as g, leaving a factor of 3
and the sequence of particle quantum numbers
qm qst qu. The remaining factor of 5 compen-
sates for the double counting between the other
intermediate particle quantum numbers st; there-
fore, only in the lowest order, Eq. (Ala), does
the double counting factor involving the projectile
remain. We now add and subtract a term identi-
cal to Eq. (Ala); this subtracted term is the dou-
ble counting correction.

The quantum number q is produced by J' and
destroyed by J, serving as a spectator during the
7 interactions of the intermediate V. The energy
denominator is allowed to operate on these inter-
mediate states to the extent that the ¢ term in
the zero-order Hamiltonian

Hy=2 &34, (A2)
%

is evaluated, producing a term ¢, in each energy
denominator. The only matrix elements to be
evaluated involving g are the creation of g by
J'(k) and its destruction by J(k’); both of these
produce the same type of Hermitian one-body
operator, for example,

("), al)=2 a} (k'8 V|gB),ay=J(k',q), (A3)
By
where
(k'B|V|ad), =(k'B| V|q®) —(k'B| V]5g) . (A4)

The second term of Eq. (3) does not contribute to
the imaginary potential because the energy de-
nominators are always nonzero. With the ap-
proximations described above we obtain the result

Imv(E',k):ImZ[

aof L prs

1
1 ’
_2<0'J(k’q)E—e¢—Ho+in

1\ -, 1 1 r 1 s
2 <0| (VEO“HO) J(k ’E)E‘eu -Ho"'in <VE‘€q ’Ho+i77> J(q’k)(Eo—Ho V>

o)

T, )| 0>], (A5)

where H, and V operate now only on the target nuclear state. The subscript LLC has been dropped because,
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with the approximations which have been made, no unlinked or reducible graphs remain.

The Pauli principle is again violated in Eq. (A5) by intermediate states of the A particle system between
J(k',q) and J{(g, k) in which a particle occupies the state g. Since the projectile degree of freedom has now
been removed, the operator between J(k’,q) and J(k,q) operates now only on the A particle system. It can

then be summed to give

1 1 r 1
ZE—eq—Ho+in(VE—eq—Ho+ie) T E-¢-H+ie’ (46)
but the H operates only on intermediate target states. Equations (A5) and (2) may now be written as
1
W(k’,k)=Im [(‘Il JE T ) =————— (T, |Jlg, k)| F,)
( ’ N#()Z,q>! OI ‘ N E_eq_EN..)_zn N' ’ l 0
1

—%(¢0|J(k',¢1)|¢N>m(¢n|ef(q,k)l%>] , (AT)

where W(k’, k) =Imv(k’, k) and ¥, and ¥, are, in
principle, exact eigenstates, while ¢, and ¢,
are eigenstates of H, for the A-particle target
system. It is perhaps worth mentioning that
the last term of Eq. (A7) can be written as

a sum of four terms, which, when all the ma-
trix elements are evaluated, may be designated
as DD, DE, ED, and EE, where D stands for
divect and E for exchange. The DD term is top-
ologically identical to the EE term, and DE, ED
to each other. We could have written the last
term of Eq. (A7) as a sum without the } of just
the ED and EE terms. Subtraction of this double
counting term then eliminates from the lowest-
order contributions of the first term of Eq. (A6)
topologically identical graphs, thereby satisfying
the rule’s that only topologically distinct graphs
are included in the calculation of the mass or
self-energy operator.

In actual calculations, the single-particle repre-
sentations for target and projectile are usually not
the same. The RPA calculations for the target
use discretized particle states for the continuum,
and the scattering calculation uses an optical
Green’s function to describe the sum over inter -
mediate states. If the ¢ and m sums are com-
plete, this is not a deficiency in the calculation.
The intermediate sum over 2-particle—1-hole
states nmi in an equal basis can be written

1Y |nmiy(umil, (A8)

mni

I

where the factor of 5 corrects the double counting,
so both m and n are allowed to take on all particle
quantum numbers.

We may now transform to a different complete
single-particle basis ¢ for the projectile

Imy=22 Cula). (A9)

Substitution of Eq. (A9) in Eq. (A8) and summation
over n then gives simply

LY |gmiY(qmil . (A10)
ami

We assume that our RPA particle-hole basis for
the intermediate states is sufficiently complete
to include all significant particle-hole strength
and therefore truncate m, while the ¢ sum is al-
lowed to remain complete. With this truncation
the correction factor of £ must be included for all
the second-order matrix elements, and all four
terms DD, DE, ED, and EE are kept as in the
second term of Eq. (5).

An additional important point is that if the
neutrons and protons are treated as identical
the charge exchange intermediate states
42Xy, p); Y (p,n)s X, must be retained as well
as inelastic states. If they are not kept, there is
no double counting when g is a neutron and mi is
a proton particle-hole pair.
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