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The width I' and the potential well depth —Vs of the S hyperon in nuclear matter are calculated with the help of
the Brueckner theory. Results obtained for I and V~ with model D of the Nijmegen baryon-baryon interaction and

simple estimates of I' in terms of the cross section for the S p~An process are consistent with empirical estimates.

It is shown that the exclusion principle and dispersive effects strongly suppress the XNAN process in nuclear

matter and are capable of reducing I' to values suggested by recent (K,n ) experiments.

NUCLEAR STRUCTURE Energy and width of Z hyperon in nuclear matter calcu-
lated; gN interaction with ZA coupling.

I. INTRODUCTION

Hypernuclei with Z particles have been recently
observed at CERN in the (K, v) reaction. ' The
shape and position of the observed pion spectrum
suggest that the width of the Z states I ~ 8 MeV,
and that the nuclear potential well depth of Z,
-V~, is approximately the same as that of A,
-V~, i.e., -20-30 MeV. Most surprising is the
narrow width I" of these states which are expected
to undergo a fast decay via the strong conversion
process NZ -NA.

In the present paper, we estimate the energy
Ec = Vc —iT/2 of the ground state of Z in nuclear
matter (NM). We apply the Brueckner reaction
matrix method, applied previously' in calculating
the energy EA of the ground state of A in NM. We
show that the exclusion principle and dispersive
effects strongly suppress the NZ -NA process in

NM, and are capable of reducing I' to values sug-
gested by the (K, w) experiments.

The sensitivity of I' to the dispersive effects,
i.e., to the momentum dependence of the single
particle (s.p. ) potentials in NM, makes a precise
calculation of I' difficult. Namely, the proper
form of s.p. potentials remains an open problem
of the Brueckner theory. In this situation, we ap-
ply two limiting forms of s.p. potentials, and ob-
tain upper and lower bounds for I' and V~.

The plan of the paper is as follows. Section II
outlines our theoretical scheme of applying the
Brueckner theory in calculating V~ and I . Op-
tical theorem type identities satisfied by the reac-
tion matrix lead to a connection between I and
the cross section 0 for the Z p - An process. Sec-
tion III discusses the reduction of the phase space
available to nucleons emerging from the ZN-AN
process in NM, caused by the exclusion principle.
This reduction is strongly enhanced by dispersive
effects, estimated for two limiting choices of the
s.p. potentials. Section IV gives simple estimates

of I' in terms of 0. Section V outlines a calcula-
tion of V~ and I' with the Nijmegen baryon-baryon
interaction. Section VI summarizes our results
and discusses previous estimates of I'.

II. FORMALISM

To describe the YN interaction (Y = Z, A) we use
the two channel approach' with a 2 x 2 potential
matrix

fv(ZN- ZN) v(AN- ZN)) (vcc vc~)

(v(ZN- AN) v(AN- hN)] E, v~c v~„j
The ZA conversion occurs only in the T =-,'- state,
and only in this isospin state is the two-channel
approach necessary. In the T =-,' state, the only
nonvanishing component of v is v«, and only the
ZN channel exists.

To calculate the ground state energy E~ of Z in

NM, we apply the Brueckner reaction method (see
Ref. 2, and references quoted therein). In the
case of two channels (T= »), the reaction matrix
K" for YN interaction in NM is a 2 ~ 2 matrix,
with four components denoted by K', K~~, KA'~,
K'A'A', similar to the four components of 8, Eq.
(2.1). In the T= —,

' state, the only nonvanishing
component of K" is K'„'.

The reaction matrix equation is

K"(z) = v+ vG "(z)K"(z), (2.2)

where G" is a diagonal matrix with the diagonal.
components

G "(z) c =Qc/(z —h„-bc+is),
G "(z)~~=Q~/(z+ n-h„-h+ia»).

(2 2)

h» = (h '/2M») n»+ V», (2.4)

We denote by Q~ the exclusion principle operator
in the YN channel (a projection operator onto nu-
cleon states above the Fermi sea); A= (hf„—M„)c'
and h» (X=N, Y) are s.p. Hamiltonians in NM
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where Vz* is the s.p. potential of X in NM (in an
intermediate excited state).

The parameter z, which determines the "start-
ing energy" of the interacting RZ pair, is nega-
tive. However, z+ n ((((=80 MeV) may become
positive, and singularities are expected to appea. r
in G~~. In other words, real energy conserving
transitions ZN —AN are expected to occur. The
infinitesimal parameter +i& guarantees that only
outgoing waves appear in the AN channel. The
appearance of real ZN- hX transitions leads to
a complex value of E~. We identify its imaginary
part with -I"/2.

For E„we have

1/2+ 2E 3/o
E 3 Z (2.5)

where

E~ = k~k~ =0 K'~~ z k~ k~k~ =0 .

(2.6)

To simplify the notation, spins are suppressed
here. Notice that in the ground state of the non-
interacting 5+ NM system, the Z hyperon has zero
momentum, kz =0. (All momenta are in units of
k. ) The Fermi momentum of symmetric NM (N=Z)
is denoted by k~, and

z(k») =5~k» /2M»+ V»(k»)+ V„, (2. I)

where V»(k») is the nucleon s.p. potential in NM
for k~(k~, and V~ is the s.p. potential of zero mo-
mentum Z in NM. Notice that we distinguish by an
asterisk s.p. potentials in excited states, Eq. (2.4),
from those in occupied states.

So far, we have not specified the s.p. potentials
Vx. We only assume that Vx are real. Notice
that with V~ = BeE~, the denominators in the prop-
agators, Eqs. (2.3), are reaL (except for the para-
meter +is)

To simplify the calculation of E~, we apply the
approximate procedure used by Shaw' in the prob-
lem of the nucleon optical potential. We introduce
the propagators G'~~' which differ from the propa-
gators Gr'„', Eqs. (2.3), by the PrescriPtion of tak-
ing the principal value (instead of the +i&). We
denote the corresponding reaction matrix by K'~'.
Equation (2.2) and the corresponding equation for
K'' ' imply the following equation for K" in terms

K"(z) =K' '(z)+K'~{z)[G"(z}—G' '(z)]K "(z)
(2.8)

If we approximate K"(z) on the right-hand side of
(2.8) by K(»'(z), we get, in the first iteration of
(2.8),

K(+)(z) K(P)(z)+K(P)(z)[G(+)(z) G(P)(z)]K(P)(z)

(2.9)

With the help of the relation

1/(x + i & }= P(I /x) —i v 5{x),

we obtain from Eqs. (2.9) and (2.6)

(2.10)

V~=ReE~=, k~~ K'~~~ z k~ k~~
(g 2(l

F
-I'/2 = ImEz = ImE z'~'/3

dk»
(3) 43 - (1/8(('g') v»»k»~Q~{k»k»„)

(((F
x )t dkm) &4~ IK(~ (z{k»))l &»dl ',

(2.12}
where k„~ is determined by the energy equation

a'k,„'/2| „,=g'k„, '/2i „z+A+V„(k„)
+V~ —V„* —Vq .

[In our nonrelativistic treatment, the term
[kk»/-g2»+M)z] A/ (M»+M)((c' is neglected on

the right hand side of Eq. (2.13).]
Here we have introduced relative momenta

(2.13)

%»z/L(, »„=fi»/M» -Rz/Mz =%»/M»,

%„,/q„, =k„/M„-k, /M, ,

(2.14)

(2.15)

where p» =M»M„/Q» +M„). The conserved total
momentum is fi » ebcuaes$z =0), and the final
momentum%»' of the nucleon in the AN channel
(after the ZA conversion) is

~N i »((~N~» ~»A ' (2.16}

The exclusion principle operator Q~ depends on
the total AN rnornentum k„, the relative momen-
tumk~» and the angle betweenk~andk«. Here, we
approximate Q~ by the angle averaged operator'.

Q&(k»k„&) =0 for k»~&k» —g»((k»/M&

=1 for k»(, )k„+L(,»„k»/M((

=[(k + L(, „„k /M„) -k ]/(4L(„k„k„ /M(()

otherwise . (2.17)

In the following sections, we assume constant
values of the s.p. potentials V~ and V~. For this
reason, the dependence of these potentials on k~
and k„has been neglected in (2.12).

Notice that real elastic scattering in the entrance
ZN channel is prohibited by the exclusion principle
(the Qz operator), and no terms with Kzz appear
in expression (2.12) for I'. Consequently, only
the interaction in the T =-,' state contributes to I'.
The obvious index 7 = —, at K« is not indicated in
(2.15).
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Expression (2.12) for I' involves approximation
(2.9). To avoid this approximation, we may intro-
duce G I(z)rr by Eqs. (2.3) with +i@, replaced by

-i&, and the corresponding reaction matrix K' '

=[A "]t. Proceeding similarly as before, we get

r =-', , "„(I/2nk)2) „,k„,q, (k„k„,)

(2.18)
Let us consider the situation in which we com-

pletely disregard the effect of NM on the PA inter-
action. That means, we disregard the exclusion
principle (Jr =1) and dispersion effects (V = y*
=0) in the reaction matrix equation, which then
becomes the scattering matrix for an isolated FN
pair, denoted here by Eo'. In particular, we have
for the Z p-An total cross section 0.

~

a'= 3 v " =3 (pc»k»~/&A»k»c)(p~»/2nh')'

dkm

(2.19)

k'~, u
=k»~ + &»~k»/M~

kN L

(3.1)

and are shown as functions of the initial nucleon
momentum k„ in Fig. 1.

Now let us consider the exclusion principle ef-
fect of NM on the ZA conversion. For k „=0,
k p kp 1 .42 fm ' is slightly bigger than k~ = 1.35
fm '. However, as is seen in Fig. 1, for k„
& 0.1k+, an increasing part of the final nucleon
momenta k'„ is smaller than k~, and is thus pro-
hibited by the exclusion principle. The situation
for an average value of k„, k~= $0.6k~, is shown
in Fig. 2. The value of Q~ here is Q~[k», k„„(k„)]
= 0.76.

To estimate the dispersive effect of NM on the
pA conversion, we have to specify the s.p. poten-
tails which appear in the energy equation, Eq.
(2.13). We replace the nucleon s.p. potential
V»(k») by its average value in the Fermi sea,
(Vg, and assume that it leads to the empirical
energy per nucleon in NM, -&„„:

(2.22), with ko =1.42 fm '. The magnitude of the
final nucleon momentum, k~, depends on the angle
between k& and k„„. The upper and lower limits of
k», k'» n, and k» ~ follow from Eq. (2.16),

In this simplified situation, Eq. (2.18) takes the
form zen+ k Vg =-e„„, (3.2)

I', =-,'p(8'/M )(k~), (2.20)

(2.21)

where [see Eqs. (2.13) and (2.14)]

k» = k»A(k») = (&»h &»c k» /M» +"o )

where p = 2k»'/3n' is the density of NM, and ( )
denotes the average value over the nucleon mo-
menta in the Fermi sea. Since the Z hyperon is
at rest in NM, one should use in (2.20) the cross
section 0 for Z laboratory momentum k~
=M, kgM„.

Now let us consider the case when we take into
account the exclusion principle while disregarding
the dispersive effects. We denote the correspond-
ing width by I z. If, in this case, we approximate
fC'~c' in (2.18) by If'~", „we get

r, = ,' p(n'/M—„-)(q, (k k„,)k„&&,

where e» = h'k»'/2M» is the Fermi energy. For
z„„=15.8 MeV, we get (Vg =-77 MeV. For V,
we assume the value of Vc- —(20-30) MeV which
follows from the interpretation of (K, n) experi-
ments in Ref. 1, and which is consistent with the

k, = (2 p. n/8')" ' (2.23) 0.5-

III. KINEMATICS OF ZA CONVERSION IN NM

Here, and throughout this paper, we use for
Mc the average value Mc =1192.5 MeV/c', and
the corresponding value of 6=76.9 MeV. For
k», we use the value k»=1.35 fm ' (p=0.166 fm ').

First, let us consider the Z%- AN process for
an isolated ZN pair in the relevant case when k~
=0. The relative momentum k» is given by Eq.

0
0 0.5

k~/4
1.0

FIG. 1. Ranges of final nucleon momenta in ZA con-
version in NM, k~, as functions of initial nucleon mo-
menta k~ without (0) and with dispersive effects (B).
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FIG. 2. Final nucleon momentum in ZA conversion
in NM, %~ for an average i,nitial nucleon momentum

k =k„without dispersive effects {ko is the length of
„for k„=O}.

atomic-data analysis' and also with our own
estimate in Sec. V.

The most difficult problem is the specification
of the s.p. potentials V~ in excited states. First,
let us consider the nucleon s.p. potential V~gk'»),

k~&k~. Since in calculating 1 we deal with real
energy conserving transitions, a continuous s.p.
potential, used by Mahaux and his collaborators'
in the problem of the nucleon optical potential,
appears to be the proper one. The continuous
choice of V*„(k'„), in the relevant range of k»,
is intermediate between two extreme choices:
(A) V»(k'„) =0 and (B) V»(k'„) = V„(k„). Both of
them are calculationally simple. By applying
them, we may obtain lower and upper limits for
I' and -Vc. Choice (A} is usually referred to as
the standard or reference spectrum choice.

We fix the value of V»(kr) by the condition that
at the saturation density the s.p. energy at the
Fermi surface is equal to the energy per nucleon
in NM (Ref. 8},

e»+ V»(k») —-&„,, (3.3)

g'k»»'/2p»» =g k»c /2p, »c+ 6- W,

where for the choice (A)

(3.4)

which leads to the value of Vgk») =-54 MeV.
We apply the same two limiting choices for the

hyperon s.p. potentials: (A) Vc~= V»~=0 and (B) Vc~

= V~, V~ = V~. A continuous s.p. potential of A in
NM, examined by Chong, Nogami, and Satoh, ' is
again intermediate between our two limiting
choices. The behavior of a continuous s.p. poten-
tail of Z is expected to be similar.

Altogether, we may write energy equation
(2.13) as

FIG. 3. Same as Fig. 2 except that dispersive effects
are taken into account with W= W~.

kc =k„(W) = [2 P, »» (d. —W) /52]" ' . (3.7)

With the help of Eq. (3.1), we may obtain the
range of final nucleon momenta k'~ as a function
of k„. The result for choice (B}, W=Ws, is shown
in Fig. 1. For k»=0, k'» =kc(Ws) =1.18 fm ' is
smaller than k~. Only for k~ & 0.2k~, is a part
of the final nucleon momenta k'„bigger than k~,
and thus allowed by the exclusion principle. The
situation for the average value of k„, k„, is
shown in Fig. 3. The value of Q~ is here
q, [k„, k„,(k„}]=0.56.

The value of g» =Q»[kk»(k»»)] is»the measure
of the suppression of the ZX- AN process in NM.
Without dispersive effects, q» =0.76. An estimate
of the lower limit of the dispersive effects [our
choice (B)] leads to g» = g»»=0. 56, i.e., to an al-
most 50% reduction in the conversion rate in NM.
This big reduction is due to an essential decrease
in the final nucleon momentum k'„, because part
of the available energy ~ is used to excite NM, as
visualized by the momentum dependence of the
s.p. potentials. And with decreasing values of
k'~, a decreasing part of the final nucleon states
is allowed by the exclusion principle.

IV. ESTIMATE OF I' BASED ON o

W = Ws= —[(V„)—V» (k»)+ Vc —V»]

= —[(V„)—V»(k„)] =23 MeV. (3.6)

Now, for 6- W&0, the final nucleon momentum
k'„&k~ for all initial nucleon momenta k„ in the
Fermi sea [it may be seen easily from (2.16) and
(3.4)], and the ZN-AN process is prohibited by
the exclusion principle. Hence, choice (A) leads
to zero width l „=0.

The final relative momentum k„~, which follows
from Eq. (3.4), is given by Eq. (2.22) with

W= W„=-[(V») + Vc]-100 MeV,

and for choice (B}

(3.5)
Values of the total Z p-An cross section a fitted

by Nagel. s, Rijken, and de Swart" to the experi-
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mental data are given in Table X of Ref. 10. By
inserting these values into expressions (2.20) and

(2.21), we get

(4.1)I', =22.5 MeV, I"=17. 3 MeV.

If we approximate (k~o) in (2.20) by k~o(k~), we

get I,= I 0 20 9 MeV. A similar approximation
applied to (2.21) gives I'o = I'o=g~F, =15.8 MeV.

If we take into account exclusion principle and

dispersive effects, we may still write expression
(2.21) for F, provided we replace o by an effec-
tive cross section in NM, a„M. For O„M, we
should then use expression (2.19) with the scat-
tering matrix Kp p replaced by the NM reaction
matrix K~„'. However, determining K'~~ requires
solving the NM reaction matrix equation. This is
a hard computational problem with which we deal
in Sec. V.

Here, let us assume that (T„M= a, i.e., that the
main factor in reducing I' is the decrease in Q~
due to the dispersive effects. This assumption ap-
pears justified by the results of Sec. V. In this
way, for choice (B) of s.p. potentials we get

I's = q sX', = 11.6 Me V . (4.2)

V. V~ AND A CALCULATED WITH THE NIJMEGEN
INTERACTION

A realistic form of the YN interaction 8 has been
worked out by the Nijmegen group. Two recent
forms of the Nijmegen interactions are models D
(Refs. 10 and 11) and F (Ref. 12). We apply mo-
del D, because model F—within our calculational
scheme —leads to a repulsive Vc [mainly due to
the big repulsive (T= —,', S=1) contribution].

With both models, we face the following situa-
tion. The (T= —,', S=l), (T=z, S=0) contributions
to V, are attractive, and the (T=-„S=O), (T�-,',
=S=) contributions are repulsive The v.alue of

P„ is the result of an appreciable cancellation be-
tween the attractive and repulsive contributions.
Consequently, V, is sensitive to small changes in
the YN interaction 8, allowed by the existing YN
scattering data. The value of Vc ——(20-30) MeV
suggested by the recent (K, v) experiments, ' and
consistent with the atomic level shifts, ' indicates
that model D is more realistic than model F. Al-
so, let us mention that one obtains a slightly worse
fit to the YN data with model F than with model D.

In our calculation of V~~, we use expression
(2.11), and for F, we use expression (2.12).
These expressions require the knowledge of E'~~'
and K„'~c' which are determined by Eqs. (2.2), with

(+) replaced by (P). In solving these equations, we

apply the same method as in calculating V~ in Ref.
2 (see also Ref. 6). There is only one difference:
in calculating the Green's functions, we take the

principal value of the integrals whenever singu-
larities occur (in the AN channel).

The energy denominator of G'~'[z ~(k„)]rr con-
tains the potential part

-W = V„(k~)+ Vc —V~ —V~r, (5 1)

-35 MeV ~ V~ ~ —10 MeV,

0& I'~ I'~=11.6 MeV.

(5.2)

(5.3)

The large range of Vc values in (5.2) and I' values
in (5.3) reflects our schematic treatment of the
s.p. potentials.

Notice that the results for I' in Fig. 4 agree
nicely with the simple estimates of Sec. IV. This
justifies approximation (2.12) [i.e., the approxi-
mation K ~~c' =K~~~' in Sq. (2.18)] as well as the ap-
proximate estimate in Eq. (4.2).

0.5
W/ IEF

1.0 1.5

10

r
[MeV]

30

- -20

Vz

[MeV]
- -40

FIG. 4. VE and I calculated with model D of the
Nijmegen interaction as functions of W (in units of
e& =37.8 MeV).

in which we approximate V„(k„) by (V~). If for
V*„and V*„we apply one of the two limiting
choices (A) and (B) described in Sec. III, W be-
comes a constant (the same in both channels)
whose magnitude for the two choices is given in

Eqs. (3.5) and (3.6). In our computations of Vc
and I', we have treated W as a variable parameter.

Our results for V~ and I' as functions of W are
shown in Fig. 4. Separate partial-wave contribu-
tions to V~ and to I for W= W~ are shown in Table
I. Notice that I" is strongly dominated by the ZA
conversion in the 'Sy+ Dy state.

The results for V~ in Fig. 4 are approximately
consistent with our estimates of W„and W~ in
Eqs. (3.5) and (3.6). For W=W~-100 MeV, we

get from Fig. 4 V~ -10 MeV which, inserted into
(3.5), gives W„-90 MeV. For W = Ws =23 MeV,
we have from Fig. 4 V, = -35 Me V, which roughly
agrees with the equality Vc = V~ assumed in (3.6).

Our results obtained with model D of the Nijmeg-
en interaction, shown in Fig. 4, and our estimates
of W„and Ws, Eqs. (3.5) and (3.6), lead to the fol-
lowing estimates:
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TABLE I. Vz and I' (in MeU) for W= ~& calculated with model D of the Nijmegen interac-
tion.

3$ +3D
Partial-wave contributions

0 i 2 1
3D

2
3D

3 'D, Total

y 1/2

y 3/2
E

-79.7
31.5
-5.6

9.5

11.8
-18.0 -3.8 7.8 -5.6
-8.0
0.4

0.1
0.1

-2.9
0.7

-6.2
0.0

7.9 -24.2 -7.5 -1.2 -6.0 0.0 2.3

-17.7 2.5 -0.8 -1.9
-12.2 -0.3 -0.5 -0.5

0.0 0.1 0.0 0.0

-96.8
-6.1

-36.2
11.6

VI. CONCLUDING REMARKS

Our calculated values of I' decrease with increa-
sing values of W. Changing the s.p. potentials in
our choice (B) to more realistic continuous poten-
tials would be equivalent to decreasing 5', and
would lower the value of I'. Consequently, we ex-
pect I' to be well below the upper limit I'~, in
agreement with the experimental finding of Ref. 1.

Our main conclusion is that the 3 width in NM
is substantially reduced, because the ~N- AN
process is strongly suppressed in NM. Namely,
the ZN- AN process in NM is accompanied by the
excitation of NM, which uses part of the released
energy. This, in turn, diminishes the final nu-
cleon momenta to such a degree that an essential
part of them are smaller than the Fermi momen-
tum, and are excluded by the Pauli principle.

The striking feature of the Z width in NM, I',
is that I' is extremely sensitive to the choice of
the s.p. potentials. This makes the problem of
1 particularly interesting from the point of view
of the theory of NM.

Recently, Qal and Dover" "gave an estimate
of I' in NM with the result 20 MeV & I'~ 50 MeV.
As long as they use the experimental value of v
in their estimate, their result, I'=22 MeV,"
agrees with our value of I;, Eq. (4.1). The point,
however, is that in I'0 the important exclusion
principle and dispersive effects are not taken into
account, and they drastically reduce the width.
Since cr increases fast with decreasing Z labor-
atory momentum, ignoring the nucleon Fermi
motion leads to a serious overestimate of I'0, as
is illustrated by the value of I" =47 MeV in Ref. 13.
The value of I'=28 MeV (Refs. 13 and 14) is the
result of "renormalizing" 0 by a factor of ~4 to
get a fit to the imaginary part of the Z nuclear
potential, ImU =-I'/2, determined by Batty' from
the measured Z atomic level shifts. What ap-
pears incorrect in this renormalization is the as-
sumption that ImU- p. Now, the decreasing role
of exclusion principle and dispersive effects at
low density (at which Z —nucleus interaction in
Z atoms predominantly occurs) as well as the

fast increase of cr with decreasing Z laboratory
momentum (connected with a resonance near the
Z threshold) make -ImU/p increase with decreas-
ing p."

A different estimate of I' was given recently by
Kisslinger. " In his model of plane wave final AN
states, he estimates the width of a ZN cluster in
the lowest, second order in v~~. For v~~, he
assumes the one-pion-exchange (OPE) potential.
He does not specify v«. Instead, he assumes the
existence of a bound pN state described by a wave
function Rc gr) -exp(-ur) —exp(-Pr), where u is
determined by the assumed binding energy of 4
MeV, and P takes care of the short range repul-
sion (not present in the OPE interaction). His
result for I', one to a few MeV, is also obtained
in his model of broken SU(3) symmetry, ""in
which again the function R~ „ is used. It would be
desirable to confirm this result by a more quanti-
tative calculation with a realistic interaction 8,
and with the function R~ ~ determined by this in-
teraction. However, the recent realistic interac-
tions v (Refs. 10 and 12) do not lead to a 5 hi bound
state. The small result for I' is interpreted in
Ref. 16 as the result of short range correlations,
represented by R~~. Now, the short-range cor-
relations are taken into account in our complete
calculation with the Nijmegen interaction 8, out-.

lined in Sec. V. There, we have cal, culated the
relative &N wave function in NM, which has the
property of heal, ing, and is quite different from
R~ ~ used in Ref. 16. Consequently, the connection
between the width of an hypothetical ZN bound
state and the width in NM is not clear. [Let us
notice that the simplest model for the ZN func-
tion in NM with the healing property is R~ „
=9(r- c), where 9 = step function, c =hard core
radius. This function, inserted into Eq. (4) of
Ref. 16, would increase the resulting value of
I' by at least an order of magnitude. ]
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