PHYSICAL REVIEW C

VOLUME 23, NUMBER 4

APRIL 1981

Relativistic generalizations of simple pion-nucleon models

R. J. McLeod

Physics Department, Texas A & M University, College Station, Texas 77843
and Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309*

D.J. Ernst
Physics Department, Texas A & M University, College Station, Texas 77843'
and Institute for Nuclear Theory, Physics Department, University of Washington, Seattle, Washington 98195*
(Received 27 May 1980)

A relativistic, partial wave N/D dispersion theory is developed for low energy pion-nucleon elastic scattering. The
theory is simplified by treating crossing symmetry only to lowest order in the inverse nucleon mass. The coupling of
elastic scattering to inelastic channels is included by taking the necessary inelasticity from experimental data. Three
models are examined: pseudoscalar coupling of pions and nucleons, pseudovector coupling, and a model in which all
intermediate antinucleons are projected out of the amplitude. The phase shifts in the dominant P, channel are
quantitatively reproduced for P,,, < 1.2 GeV/c with a pion-nucleon vertex of range 1110 MeV/c. We find that there
are large (not of the order of the inverse nucleon mass) kinematic corrections to Chew-Low models, and that the
Chew-Low model is successful because a reduction in the pion-nucleon cutoff provides a remarkable compensation
for the large kinematic corrections. The intermediate antinucleon states are found to provide a significant fraction of
the interaction in both S and P waves, and the model which explicitly removes them is incompatible with the P,
phase shifts. Thus a model of the pion-nucleon interaction which does not include antinucleon degrees of freedom is

found to be unphysical.

NUCLEAR REACTIONS Pion-nucleon scattering, kinematic corrections,
role of intermediate antinucleon states.

I. INTRODUCTION

The construction of pion facilities has generated
a renewed interest in the pion-nucleon interaction
at low energies. This interest has centered about
constructing pion-nucleon models!~® which could
be used as input to pion-nucleus studies. In
order to be useful these models must satisfy
several criteria. First, they must be consistent
with the known on-shell data. Second, if they are
to be used in a many-body problem, a prescrip-
tion of how to continue the model off-shell must
be provided. Third, the model should be moti-
vated by what is understood to be the underlying
physics of the interaction. Finally, for prag-
matic reasons, the model should be as simple
as possible.

The first of these models was the separable poten-
tial model of Landau and Tabakin.! This model was
generalized in Ref. 2 to include the effect of the
coupling of the inelastic channels to the elastic
channels. In Ref. 3, this model was shown to
arise from quite general arguments. This model
provides an off-shell extension of the pion-nucleon
amplitude which is consistent with off-shell uni-
tarity. The separable potential model does not,
however, derive from any underlying physical
mechanism for the interaction of a pion with a

nucleon.

In the P-wave channels, the elastic scattering
of the pion is dominated, near threshold, by the
absorption and emission of the pion. This basic
physics is incorporated in the Chew-Low®* model.
The original model could reproduce only quali-
tatively ® the dominant P,; channel at low energies.
Extending the model®” beyond the “one-meson
approximation” to include the effects of the coupl-
ing of the inelastic channels to the elastic chan-
nels produced excellent quantitative * agreement
in the P,, channel for pion laboratory energies
below 1.2 GeV.

Recently a model which combines the Chew-Low
model with the separable potential model has been
proposed.® The model uses the separable poten-
tial of Ref. 3 in the S, D, and F-wave channels.
Simple analytic form factors are found which are
capable of reproducing the elastic scattering data
for laboratory pion kinetic energies below 1.2
GeV. In the P, Py, and P,, channels, the Chew-
Low model in the no-crossing approximation is
used. In order to fit the data in each channel
and to approximately account for the neglect of
the crossing cut, the pion-nucleon coupling con-
stant and form factor are varied independently
in each of these channels. In the P, channel,
the phase shift changes sign at low energy. The
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model combines an attractive separable potential
with the repulsive Chew-Low interaction to re-
produce the data in this channel.

These models are capable of reproducing the
pion-nucleon elastic scattering data and aiso
provide methods for continuing the amplitudes
off the energy shell. The validity of the off-shell
behavior of the amplitudes remains a question.

One of the purposes of this work is to investi-
gate the validity of these models. Specifically,
we generalize these models to include relativistic
kinematics and pion-nucleon couplings. We are
thus able to study the size and nature of relativis-
tic corrections to these models. We also inves-
tigate the possibility of describing the low energy
pion-nucleon interaction in terms of pion and
nucleon degrees of freedom only; we do this by
suppressing explicitly the contribution of interme-
diate antinucleon states. None of the models
examined here are sufficiently general to re-
produce quantitatively the low energy pion-nucleon
data. However, the basic theoretical framework
developed here is sufficiently general that it can
hopefully be extended to produce a dynamical
relativistically invariant model consistent with
pion-nucleon data.

The relativistic generalization of the Chew-Low
model is not unique; there are many models which,
in the limit of an infinite nucleon mass, reduce
to the Chew-Low model. We examine here three
of these models. Each uses partial wave N/D
dispersion theory to generate unitary amplitudes
and to include the effects of the coupling of the
inelastic channels to the elastic channels. We
treat crossing symmetry approximately; we re-
tain the crossing relation to lowest order in the
inverse mucleon mass M but retain relativistic
kinematics. The models differ in the choice of
the underlying basic interaction. The first model
assumes pseudoscalar coupling between the pion
and nucleon. This model has the advantage that
the coupling is relativistically invariant and yields
a renormalizable® field theory. We also consider
the pseudovector coupling of pions to mucleons.
Although this coupling does not yield a field theory
which can be renormalized, it is sometimes used
because it, in some sense, suppresses the contri-
bution of the intermediate mucleon-antinucleon
pairs. Finally, we examine the pseudoscalar
coupling in a model in which we completely re-
move the contribution of intermediate nucleon-
antinucleon pairs. This is an extreme version of
pair suppression and is motivated by the Chew-
Low model. The Chew-Low model, besides begin-
ning with an interaction which assumes an infinite
nucleon mass, contains no coupling of antinucleons
to pions and nucleons. A consequence of these as-

sumptions is that the Chew-Low model produces
no scattering in S waves. A model which assumes
pseudoscalar coupling but removes the contribu-
tion of intermediate antinucleons is thus a natural
relativistic generalization of the Chew-Low model.

We find that our version of the partial wave
N/D approach and either the pseudoscalar or
pseudovector coupling can reproduce quantita-
tively the scattering in the dominant P,; channel
for pion laboratory kinetic energies of T, <1.2
GeV. This was not true of earlier versions'® of
partial wave N/D approaches which yielded very
poor agreement in the dominant P,; channel. This
success here is not surprising because the non-
relativistic version”® of our approach was found
to work quite well.

Contradictory claims exist in the literature
concerning the size and nature of kinematic cor-
rections to the Chew-Low model. Several au-
thors!!~!® have argued that the infinite mass model
was a reasonable approximation to a relativistic
model, particularly in the P-wave channels. In
Ref. 14, however, it was shown that there are
substantial corrections to the nonrelativistic
theory, at least in Born approximation. In Ref.

15 it was shown that the static theory can be
derived as an expansion in inverse power of the
nucleon mass (M~!) of a relativistic dispersion
theory. There, they reach two conclusions: first,
the corrections to the static limit are found to
be small; and second, the static theory repro-
duces the P4, resonance essentially because the
dispersion relation is prinicipally an internally
consistent expression—i.e., if one inserts a
resonating amplitude under the dispersion inte-
gral, it will generate a resonating amplitude.

We find, as was found in Ref. 14, that the kine-
matic corrections to the static model are large
and not of order M~'. This comes about because
the expansion in inverse power of M is, at best,
slowly convergent. Thus the arguments!!~!3:15
which were based on comparing terms of lowest
order to terms of first order in M~! were mis-
leading. We find the statement of Ref. 15—that
the dispersion integral determines the width of
the resonance independent of the model, if the
position of the resonance is fixed—to be valid
within certain limits. However, only if one in-
cludes the coupling to the inelastic channels, as
was done in Ref. 7, does one obtain the experi-
mentally measured width. In our models, we
allow ourselves the freedom to adjust the range of
the pion-mucleon form factor in order to repro-
duce the position of the resonance. For the Chew-
Low model, the pseudoscalar coupling, or the
pseudovector coupling one finds excellent agree-
ment with the data in the P,; channel for pion
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laboratory kinetic energies of less than 1.2 GeV.
The form factor required for the pseudoscalar
coupling is found to have a cutoff of 1110 MeV,
while the Chew-Low model was found to require
a cutoff of 764 MeV. The large kinematical dif-
ferences between the static model and the rela-
tivistic models can be remarkably well compen-
sated for by an adjustment of the form factors.

We have found that this ability of the theory to
compensate for changes in the basic theory by
a readjustment of the form factor is true over a
large but limited range. The model in which we
explicitly remove the contribution of intermediate
antinucleons produces a much weaker interaction
than the other models. In order to have the posi-
tion of the resonance correct, the range of the form
factor must be extended to 2550 MeV. With this
large cutoff, the resulting resonance is too narrow.

Another interesting question which we are able
to investigate is the size and nature of the contri-
bution of the coupling of the pion to nucleon-anti-
nucleon pairs. One might infer from the success
of static models in P-wave channels that a reason-
ably consistent theory could be developed which
would include only pions and nucleons. A similar
inference could be drawn from Refs. 11-13, 15,
and 16, while in Ref. 14 it is pointed out that the
elimination of nucleon-antinucleon pairs greatly
reduces the P-wave Born amplitude. We remove
the intermediate antinucleons by using projection
operators!” to project intermediate states onto
the subspace of on-mass shell nucleons and
eliminating completely the contributions which
arise from the other half of the space which cor-
responds to on-mass shell antinucleons. This
approach is preferable to using a Foldy-Wolthuy-
sen transformation to generate a model which
eliminates coupling to antinucleons. The trans-
formation will generate a model which is an ex-
pansion in M ~! and we have found that such ex-
pansions are not very rapidly convergent.

We find, in agreement with Ref. 14, that the
removal of intermediate nucleon-antinucleon
pairs greatly weakens the interaction in the P,,,
P,,, and P,, channels. The reduction in the P,
channel is so dramatic that one can no longer
adjust the form factor and quantitatively produce
a model which is consistent with the data. From
this, we conclude (in contradiction with what one
would infer from Refs. 11-13, 15, and 16) that
a model of pion-nucleon scattering which includes
only pions and nucleons, but not antinucleons, is
unphysical. The success of the Chew-Low model
lies in the fact that it is not a totally unreasonable
approximation to a relativistic dispersion theory
and that, although there are large kinematic cor-
rections, these may be compensated for by an ad-

justment of the pion-nucleon form factor.

By examining the various models in S wave in
a no-crossing approximation we can arrive at the
following conclusions. The well-known difficulty
of pseudoscalar coupling (without some form of
pair suppression) producing much too large S-wave
phase shifts is found. The pseudovector coupling
will suppress the intermediate nucleon-antinucleon
pairs only in the vague sense that it produces
significantly smaller S-wave phase shifts. It
cannot, however, form the basis of a physical
model for the pion-nucleon interaction as it pro-
duces phase shifts in the S-wave channels of the
incorrect sign. Complete pair suppression, how-
ever, produces S waves which are too small in
magnitude, although the two channels do possess
the correct sign.

None of the models—the pseudoscalar coupling,
the pseudovector coupling, the pseudoscalar
coupling with removal of intermediate antinucleons,
or Chew-Low—is sufficiently general to form a
dynamic model of the pion-nucleus interaction.
The sigma model, as developed by Banerjee and
Cammarata,'® is capable of producing good re-
sults in S waves but no results for the P waves
have been presented. Other, less dynamical
models!® are capable of reproducing the measured
amplitudes either very near or below the elastic
scattering threshold. We are currently examining
the possibility of generalizing the work done here,
with guidance taken from these other approaches,
to build a model of the pion-nucleon interaction
which is reasonably consistent with the experimen-
tal data.

This paper is structured as follows. In Sec.

1, the relativistic partial wave N/D approach?°®
is generalized to include the coupling of the in-
elastic channels to the elastic channel following
the approach used in Refs. 3 and 7. Crossing
symmetry is maintained only to lowest order in
M ™', In Sec. III each of the models is developed
in detail, while in Sec. IV the results are re-
viewed. In Sec. V, we summarize the conclu-
sions which we are able to draw from this work.

II. PARTIAL WAVE N/D

For all of the models considered we will use
partial wave N/D dispersion theory to generate
unitary amplitudes. The technique of including the
inelastic, pion-production cut we shall take from
Ref. 7 and, in this sense, we are using a generali-
zation of the approach of Chew and Mandlestam.?°
The analytic structure of the partial wave ampli-
tudes is quite intricate'®; we simplify the situa-
tion by treating the nucleon mass as a large
parameter in treating singularities other than
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the elastic and inelastic cuts.

The invariant scattering matrix 9 for the elastic

scattering of a pion of initial momentum ¢, and
final momentum ¢, from a nucleon of initial mo-
mentum p, and final momentum p, can be written
in terms of two independent amplitudes A and B
in the usual way:

M* = iu(p,, s,) [A* + §B*Ju(p,, s,), (2.1)

where the superscript @ denotes the isotropic
spin, @ =3 or %, the u(p, s) and % (p, s) are the
usual nucleon spinors, and g =4, =4, =4 in the
center-of-mass system. The notation, metric,
and normalizations are from Ref. 16. From the
invariant amplitudes A and B we may form the
helicity amplitudes f, and f, according to

=€ +M)[A* + W=-M)BY/(B81W),
(2.2)
f3=(E-M[-A% + W+M)B*)/(81W),

where E is the nucleon energy in the center-of-
mass frame, W is the total energy in the center-
of-mass frame, and M is the nucleon mass. The
helicity amplitudes may be angular momentum
decomposed according to

+1
=t | axl R + 2R, W,
-1
(2.3)

where x = cos g, 9 is the scattering angle in the
center-of-mass frame, I is the orbital angular
momentum, and the + is determined by the value
of the total angular momentum j,

j=l%3. (2.4)

We write partial wave dispersion relations for
the amplitudes f§,.

The analytic structure of f§, may be sum-
marized'® in the following way. We may write

fisW) =P7, W) + Bfu (W)

1 (~ Imfa,(W)dw'’
T sy W'=-W=ie ’ 2.5

where Py, W) is the nucleon pole term (including
the crossed U-channel pole). The integral
over the imaginary part of f§, is taken along the
physical cut which runs from M + i to infinity.
The term B§, (W) is then the contribution to f§, (W)
which results from all other singularities and
thus contains, in practice, a multitude of approxi-
mations.

We take guidance from Refs. 7 and 8 in decid-
ing which singularities are dominant and must
be retained. In addition to the nucleon pole terms
which arise from the processes in Fig. 1 and
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FIG. 1. The uncrossed and crossed nucleon pole dia-
grams. The dashed lines represent a pion, the solid
lines represent a nucleon.

have explicitly been included in the term P}, W),
we keep in By, (W) the crossing cut. This cut
arises from a fundamental symmetry, and thus
we feel it is important. It is the only singularity
in Bf", (W) which survives in the limit of infinite
nucleon mass and it was found in Ref. 7 that as
much as twenty percent of the attraction in the
low energy, resonance region arises from the
crossing cut.

Fully relativistically, the singularities in the
complex W plane which arise from crossing sym-
metry are not simple. We thus generate the
crossing cut from the right-hand physical cut
utilizing the infinite nucleon mass crossing re-
lations. We feel that this is an adequate proce-
dure because, although important, the crossing
cut is not a dominant contribution to the amplitude
along the physical cut.

We shall generate the N/D dispersion relation
not for f%, (W) but for a quantity xS, (W) defined
by

R (W) = £ (W) /pf (W), (2.6)

where p{, (W) is an arbitrary function. It can be
chosen, as in Refs. 4, 7, 10, and 20, to cancel
some of the singularities in £, (W) and thus render
k%, (W) a function with simpler analytic structure
than f§, (W).

In order that kg, (W) have simple properties
under crossing symmetry, we chose, as in Ref.
4, p% (W) to be real and invariant under crossing
symmetry. This can be done in the limit of
infinite nucleon mass, where crossing symmetry
will then become

hy (=W) = ‘L;Aaﬁhﬁ(w). @.7)

Here we have simplified the notation by using the



1664 R.J. McLEOD AND D. J. ERNST 23

single subscript @ (or 8) to represent both iso-
spin and angular momentum quantum numbers with
a =1 to 4 for the states P, P;, P;,, and P,,,
respectively. The matrix A is given by

1 -4 -4 16

A=% -2 -1 8 4 (2.8)
-2 8 -1 4
4 2 2 1

We limit ourselves to only qualitative discussions
in S waves and thus neglect BY, (W) altogether in
these partial waves.

In this infinite nucleon mass limit, the cross-
ing cut becomes a reflection of the elastic scat-
tering cut onto the left-hand real axis by the
matrix relation Eq. (2.7). Cauchy’s theorem allows
us to write for the contribution to ha(W) from the
crossing cut, hS*W)=B,W)/p,W), which has
only a left-hand cut from M - pu to -,

——— aw’. (2.9)

J""" Imh, (-W’)
-M+p W+ w’

1
CR - =
rE (W) = :

With this approximation, the analytic structure
of h(W) is as pictured in Fig. 2. The discontinuity
of h,(W) across the right-hand cut is proportional
to Imh,(W). Unitarity can then be used to re-
place Imh (W) by |k, (W) | to generate a nonlinear
Low equation for h,(W). The N/D dispersion
theory is an attempt to generate a solution to this
equation. We shall take as our numerator function
the contribution from the nucleon pole term and
the crossing-cut

No(W)=Po@)/po (W) + hSF (W) . (2.10)

It has historically been the practice®'” to include
the crossing cut in the denominator function. For
that approach, the iteration of the resulting non-
linear equation, although quite stable, converges
to something®'” which is not a solution of the Low
equation, Eq. (2.5). Here, we leave the crossing
cut in the numerator in order to gain some addi-
tional insight into the possible origin of this dif-
ficulty. A denominator function Du(W) is defined
by

Inelastic
Crossing C‘”S\
Cut AMMMNIKT
m _ AMARMIIININ
P 2222272227227,
Nucleon Elastic
Pole Cut

FIG. 2. The analytic structure of the pion-nucleon
amplitude in the complex energy plane after we have
made approximations discussed in the text.

hy (W) = foW) _ No(W)
P (W) — Do (W)

This denominator function D, (W) must contain
the elastic and inelastic cuts. In addition, if f (W)
contains any zero not in N, then D, (W) must con-
tain poles®! which correspond to these zeros. We
shall make the usual assumption that no such
singularities contribute significantly to the physi-
cal elastic scattering. With this assumption,
D, (W) contains only the elastic and inelastic cuts,
and thus can be written as

(2.11)

w1 Im[pywn]
Do(W)= Do)+ Lﬂ, row—ie V"
(2.12)

The constant D () is a renormalization factor
which we shall determine in the next section.
Unitarity requires that f c((W) can be written in
the form

fo(W) =fj,e'basind,/q, (2.13)
where 7, is the ratio of the elastic to the total
cross section in the channel @, and g is the pion
momentum in the center-of-mass frame. This
implies a generalized optical theorem

Im[f o (W)]= ni lfa (M 2, (2.14)

which gives for the imaginary part of D, (W)

q

Im|{D = - . .

m[ u(m na(m Na(W)P(W) (2.15)
Substituting this into Eq. (2.12) yields
D (W) =D, (=)

L e G L

T Jyep (W) W -W-ie :
(2.16)

In the next section we derive models for P_,(W).
These expressions for P (W), together with

Egs. (2.7), (2.9), (2.11), and (2.16), allow us to
solve for f (W) if we take #j, (W) from experiment.
The solution is found in the following manner. We
take as a first approximation N, (W) to be simply
P W)/p,W). This is used in Eq. (2.6) to
generate D, (W) and thus an h,(W). Crossing sym-
metry, Eq. (2.7) then gives h, (—W) to be used in
Eq. (2.9), which when inserted in Eq. (2.10) gen-
erates a new estimate for N, (W). The process is
repeated until one reaches a stable result.

II. MODELS

In this section we derive three relativistic mo-
dels for the nucleon-pole term, each of which
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reduces, for P waves, to the Chew-Low model
in the infinite nucleon mass limit. These nucleon-
pole terms are then used in the dispersion rela-
tions derived in the previous section to generate
elastic scattering amplitudes.

The first model we examine assumes pseudo-
scalar coupling of the pion to the nucleon

Lim = 'igoi")'s?' $‘I’ . (3.1)

The usual Feynman diagram techniques then
lead to the following amplitudes:

Aw'B=Ay"=0,

2M\2/ 3 1
B = ~a17* (2) (5257 + F2wm) v,

and

By = 41rf2<2M) <U—-_2ﬁ-§)v2(q). (3.2)

The variables are the usual variables with S = w2
and

U=M?+ 1?2 ~2Ew-2¢%cos¥. (3.3)

The mucleon pole partial wave helicity amplitudes
can be derived using Eqs. (2.2) and (2.3). The
angular integral in Eq. (2.3) is easily evaluated
and explicit formulas for P{*, (W) are given in
Ref. 22.

We also examine the case where the pion couples
to the nucleon via pseudovector coupling,

Lim = - ‘—°' Yy pE. (3.4)

Although pseudovector coupling yields a field
theory which is not renormalizable, it is interest-
ing for several reasons. First, it can be taken
as an approximation® to a more general sigma
model and thus, in a semiquantitative way, can
be considered the lowest order approximation
to a more realistic, renormalizable theory.
Second, in a quark bag model?* where the pion
couples to the axial vector current at the sur-
face of the bag in a chiral invariant manner, the
pion coupling is of a derivative form.

The contribution to the A and B amplitudes
from the nucleon pole then became

2
Aypt/?= A= 41rf"’/M(~2LM) v*(q),

) (=

U-le +%f) v,
(3.5)

Bypt/?=-

and

£2 2

15"}11’3/2= 4]; (2—}4‘) (-TU _ZM 2;[ )v (q).
In Egs. (3.1) to (3.6) we have assumed the pion
interacts with a nucleon of finite extent and thus
the form factor v(q) appears. One can derive®®
the form factor from the interaction of a pion
with a nucleon which is a quark bag. One need
not, however, ascribe such a meaning to v(g). In
a much less fundamental view (as in Ref. 15),
one might view v(q) merely as a method (perhaps
artificial) of separating the pion-nucleon inter-
action into a low energy region [where v(q) is
finite] from an assumed independent, high energy
region.

The third model we examine is a model which
assumes pseudoscalar coupling but which express-
ly projects out all intermediate antinucleon states.
We find this model interesting for several rea-
sons. First, the Chew-Low model is derived
assuming a nonrelativistic coupling of the pions
to only nucleons. Its success,”® then, tends to
indicate that, at least qualitatively, a model which
includes only the pion and nucleon degrees of
freedom and suppresses the antinucleon degrees
of freedom might be possible. The success of
the Chew-Low model is not sufficient evidence
to require this conclusion, however. This is be-
cause pseudoscalar coupling (which contains a
substantial contribution from intermediate anti-
nucleons), pseudovector coupling (which contains
a partial suppression of the antinucleon states),
and the complete suppression of antinucleon states
all yield identical P -wave amplitudes in the in-
finite nucleon mass limit. Second, this model
will allow us to investigate the contribution of
intermediate antinucleon states beyond Born ap-
proximation and in more detail than has been done
previously.

To derive this model, we must first define
what we mean by an antinucleon state when a
particle is off its mass shell. Such a definition
is not unique; we will follow the choice often made
in the nucleon-nucleon problem!? of using the
completeness of on-shell nucleon and antinucleon
states to yield a definition. We define a projection
operator onto on-shell nucleons by

E M
Mﬁ*’_ (3.6)

A (p)= o

and the projector onto antinucleons by

=y . E.+v D
A(p)= —’L%LM, 3.7

where E, is restricted to have the value E, = (p*
Mz)‘/g. These are clearly projection operators,
as A2(p)=A_2p)=1, A(p)+A_(p)=1, and
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APIA_(p)=0.
The Feynmann propagator for a fermion, either
on or off its mass shell, can be written

Sp(y'=y) = fﬁ‘ exp[=ip-(y'-y)] A2

= ﬂ(ﬂ’_’_ e-iprir-n _Du(p)
(27)* \E, Py-E,+ie

2n)* -Py+E,—-i¢€

(3.8)

Keeping only nucleon states in intermediate states
corresponds to keeping only the first term on the
right-hand side of Eq. (3.8).

The use of the nucleon-only propagator in eval-
uating the nucleon-pole diagrams, Fig. 1, yields,
for the invariant amplitude W, Eq. (2.1),

- {?- $37+ &, [d —yo(E +w=M)]

M= 2M(E + w = M)
LTS T 02 (@ (E-w-EN] |
2EXE*-E + w) ’
(3.9)
where
E¥=[M?+24°(1+cos6)]'”. (3.10)

This amplitude is clearly not of the invariant
form, Eq. (2.1), as it contains a term proportional
to vy, This is because the projection onto nucleon
states only is not an invariant operation. In order
to generate partial wave helicity amplitudes we
must generalize Eq. (2.2) to the case where

M=% (py S,) (A% +y,C* + FBVu(py,s,).
(3.11)

The necessary generalization of Eq. (2.2) is de-
rived in Ref. 22 and yields

o= ’g*u"f [A® +C* + (W= M)B®],
T (3.12)
E-M
o 2 T A o al,
b T [-A®+C* + (W+M)B*]

Extracting the amplitudes A%, B®, and C* from
Eq. (3.9) yields

Aypt/?=Ayp*/%=0,

Bt/ _ 3 _ 1 ]
NP 2ME +w -M) ~ 2EX(Ef-E +w)}’

1
"ENYEF-E+w)’

Byp/?= (3.13)

C 1/2__[ 3 E-—w—E: ]
NP T 2M T 2EX(E}-E+w) )’

pP=-M2+ie

ﬂ(l)em-w-y)__/‘-ﬂ?)__
E, :

and

C 3/2 _ _ E —-w-—E*
NP EX(E¥-E+w)]"

For this model, one is not able to evaluate the
angular integrals in Eq. (2.3) analytically. We
are thus forced to expand the square root in Eq.
(3.10). The natural expansion parameter would
be 2¢%/M?; this expansion gives the Chew-Low
result as the lowest order approximation. We
have found this expansion to be much too slowly,
if at all convergent. Instead, we choose as our
expansion parameter

2q?

- g (3.14)

K
For small ¢® we have « ~2 ¢?>/M? but for large ¢
we now have k <1 and the expansion remains
convergent. This is a simple variation of Padé
approximates. We thus write E} in the form

E¥=(M?+2¢%)'2(1 + k cos 9)' 2, (3.15)

and expand the square root in a Taylor series.
This is then used in Eq. (3.13) where the B and C
amplitudes are expanded in a Taylor series. The
final algebraic expressions for the partial wave
helicity amplitudes are quite lengthy; an explicit
example is given in Ref. 22.

IV. RESULTS

Certain qualitative features of the amplitudes
can be understood by examining the nucleon-pole
term Pa(vi/) alone. In Fig. 3, we present
NW)=P,W)/v*(q) for  equal to the S,, chan-
nel. These curves are obtained from the ampli-
tudes Eq. (3.2) for pseudoscalar coupling, Eq.
(3.5) for pseudovector coupling, and Eq. (3.13)
for the case in which we remove the contribution
of intermediate antinucleons. For this last case
the amplitude is expanded in a power series in «,
defined in Eq. (3.14), and the curves are labeled
by n, the largest power of « kept in the expansion.
One can immediately conclude that this expansion
is nicely convergent over the range pictured.

The well-known features of large S-wave am-
plitudes for pseudoscalar coupling and partial
“pair suppression” for the pseudovector cou-
pling are evident. The experimental phase
shifts in the S|, channel are attractive [which
corresponds to a positive P(W)], and we see
that simple pseudoscalar or pseudovector coupling
produces amplitudes of the incorrect sign in this
channel. The complete suppression of the inter-
mediate antinucleons is seen to greatly reduce
the S-wave amplitude and also produce an ampli-
tude of the correct sign.
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FIG. 3. The contribution to the Sj; pion-nucleon am-
plitude of the nucleon-pole diagrams. N=P/v%(q) is
plotted as a function of pion center-of-mass momentum
q for three models; the solid line assumes pseudoscalar
coupling, the short dash is pseudovector coupling, and
the long dash is the model in which intermediate anti-
nucleon states have been removed. For this last case,
each curve is labeled by the highest power of k, Eq.
(3.14), kept in the expansion. Notice that the long dash
curves have been multiplied by 10.

Perhaps more interesting is the nucleon pole
amplitude in the P,, channel which is pictured
in Fig. 4. Here we also include the Chew-Low
amplitude as defined in Ref. 7. This shows im-
mediately one of the main conclusions of this
work: Any of the relativistic models differ sub-
stantially from the Chew-Low model. Previous
discussions!!~3+15 have not found this large

(Gev™)

a (u)

FIG. 4. The contribution to the P33 pion-nucleon am-
plitude of the nucleon-pole diagrams. N=P/v%(q) is
plotted as a function of pion center-of-mass momentum
q for four models; the short dash is for Chew-Low, the
solid line is pseudoscalar coupling, which is the same
as the pseudovector coupling, and the long dash is the
model in which intermediate antinucleon states have been
removed. For this last case, each curve is labeled by
the highest power of k, Eq. (3.14), kept in the expansion.

difference (with the exception of Ref. 14) because
they dealt with expansions in M ~!. The conclusions
of these previous works were misleading because
they examined only the lowest order term in M~!
of a series which is not at all convergent. An-
other important conclusion to be drawn is that

the intermediate antinucleon states contribute
significantly to the P-wave channels.

Conclusions drawn from P(W) are at best
qualitiative. Approximating the full amplitude
by PW) is, in the partial wave N/D approach,
a form of the Born approximation. Since in
many partial waves and for some of our models
the interaction is very strong, the Born approxi-
mation is not at all valid. We thus use the partial
wave N/D approach developed in Sec. II to sum
a large class of Feynmann diagrams and to gen-
erate unitary amplitudes.

Before we proceed, we must determine the
constant D () which appears in Eq. (2.12). This
constant in the Chew-Low theory serves to re-
normalize the pion-nucleon coupling constant;
there it may be chosen to fix the value of the
residue of the nucleon pole. For the more general
case which we are considering, the crossed nuc-
leon pole graph in Fig. 1 yields a U-channel pole,
which as a function of W is a short cut. One is
thus unable to choose D () to fix the value of the
pole term everywhere along this short cut.

We choose to fix the value of the amplitude at the
point

2

n
W =M - E—

ik (4.1)

This should be compared to the S channel, un-
crossed nucleon pole, which occurs at

wl=M. (4.2)

We choose the point in Eq. (4.1) as it is the center
of the U-channel cut and this cut plays a signifi-
cant role in all the P-wave channels. Choosing
D, o) such that D (W=WJ)=1 then allows us to
use f2 as the renormalized pion nucleon coupling
constant and fix it at its experimentally determined
value of 0.082. The corrections to this procedure
are of order (u/M)k cos®0 and are small for our
purpose.

With this choice of D, (=), we take the nucleon
pole terms and iterate in the partial-wave N/D
equations derived earlier. We choose the function
p (W), as was done in the Chew-Low model,

2 21
pa() = LT (4.3)
The results for the P;; channel are shown in Fig.
5 together with data from Refs. 26-29. For each
model we assume a Gaussian form factor of the
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FIG. 5. The factorq® cotan§/w versus center-of-mass
momentum g in the P33 channel. The circles are data
from Ref. 26, the triangles from Ref. 28, and the squares
from Ref. 29. The solid line is the result of our model
assuming pseudoscalar coupling; the dashed line is the
intermediate antinucleons removed.

form
v(p)=e~**/8, (4.4)

and treat B as an adjustable parameter. We

find that for pseudoscalar coupling and a value of
B =1100 MeV, we are in detailed quantitative
agreement with the measured phase shifts. Simi-
lar results are obtained for pseudovector coupling
which differs from the pseudoscalar coupling in the
P,, channel only by small changes in the crossing
term. This is considerably better agreement than
was found by earlier work!% the improvement is
due to our technique for including the inelastic
cut. The phase shifts predicted by this model are
almost identical to those predicted by the Chew-
Low model with a cutoff of B8 = 764 MeV. This is
the type of compensation discussed in Ref. 15.
There it was noted that the dispersion relation

is simply a formula which, if one allows an ad-
justable parameter to position the resonance, fixes
the width of the resonance. We have found that if
the inelastic cut is included then the dispersion
relation yields the correct physical width, that
this width is indeed independent of the details

of the model, and that not only the width of the
resonance, but also the quantitative details of

the phase shifts are independent of the details of
the model.

There are limitations on the models for which
this type of compensation holds. The model in
which we suppress completely the intermediate
antinucleon states produce a very weak interac-
tion as can be seen in Fig. 4. In order to pro-
duce the correct position of the resonance, the
cutoff must be increased to over 2000 MeV, and
the dispersion theory then produces a resonance

which is too narrow. The dashed curve in Fig. 5
presents the results of this model for g = 2550
MeV. For this value of 8 the resonance is too
narrow.

The fit to the phase shifts remains qualitatively
reasonable and is as good as several fits in the
literature which have been termed satisfactory.
The fit is obviously inferior to that which re-
sults from our other models or from the Chew-Low
model. We are thus led to conclude that, even in
P waves, the coupling to the intermediate anti-
nucleons provides a substantial part of the in-
teraction and is necessary to produce precise
quantitative agreement with the data. The possi-
bility of building a model which includes only the
pion and nucleon, without antinucleons, is thus
dubious. The Chew-Low model, which appears to
be such a model, is better condidered as an ap-
proximation to a fully relativistic model in which
intermediate antinucleons are present.

For completeness we present the results of
our N/D approach for the remaining S and P waves
in Figs. 6-10. The results in the P;; and P;,
channels are reasonable. The results for the
S-wave channels bear out the conclusions drawn
from examining the nucleon-pole terms alone. In
some of the P-wave channels we see an interesting
phenomenon: the contribution from crossing be-
comes sufficiently large so as to cancel the pole
terms and produce a zero in our numerator func-
tion, and by Eq. (2.11), a zero in our amplitude.
The original dispersion integral for the amplitude,
Eq. (2.5), will not have a zero at that particular
energy. Thus the N/D approach is not generating
a solution to the original equation. It is not clear
how to generate a crossing symmetric solution
to the nonlinear Low equation. The occurrence
of a zero in our approach, where we leave the
crossing cut in the numerator, indicates that a
Castillejo-Dalitz-Dyson (CDD) pole?! is required
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FIG. 6. The phase shifts versus center-of-mass mo-
mentum of g in the Py3 channel. The diamonds are data
from Ref. 27.
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FIG. 7. The same as Fig. 6 except the P3; channel is
shown.

(as suggested in Ref. 30) in the denominator func-
tion of Refs. 5 and 7 where the crossing cut is put
into the denominator.

V. CONCLUSIONS

The ability to use pions as a probe of finite
nuclei has generated a renewed interest in the
understanding of the pion-mucleon interaction.
This interest has in turn generated a number of
models. We have examined several models, and
although these models are not sufficiently general
to reproduce the experimental phase shifts in
each partial wave channel, the models are suffi-
ciently physical that we are able to reach several
important conclusions. First, we find that by ex-
tending the N/D approach to include that inelastic
cut the approach is in excellent quantitative agree-
ment with the measured P,; phase shifts with a
pion-nucleon vertex of a range of 1100 MeV. We
have found that relativity produces significant
changes in the amplitude, changes which are not
of order M ™!, However, the theory remains in
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FIG. 8. The same as Fig. 6 except the Py; channel is
shown.
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FIG. 9. The same as Fig. 6 except the Sy; channel is
shown.

detailed quantitative agreement with the P,, chan-
nel phase shifts by readjusting the cutoff of the
pion-nucleon vertex. Since the cutoffs for both
cases, 764 MeV for Chew-Low and 1110 MeV

for the relativistic model, are large in compari-
son with typical nuclear momenta, this difference
is probably not significant for our understanding
of the interaction of pions with nuclei. This
ability of the theory to compensate for quite dif-
ferent interactions by an adjustment of the cutoff
was found to have only a limited range of validity.
For the considerably weaker interaction in which
we suppressed totally the intermediate antinucleon
states, the resulting phase shifts are no longer in
precise agreement with the data. Thus a model
which is based on pion and nucleon degrees of
freedom only seems unphysical; the Chew-Low
model works well because it is an approximation
to the relativistic model which includes antinuc-
leons and because, although the relativistic cor-
rections are large, the readjustment of the form
factor is able to compensate for the large kine-
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FIG. 10. The same as Fig. 6 except the S3; channel is
shown.



1670 R. J. McLEOD AND D. J. ERNST 23

matic differences.

There clearly remains much work to be done.
A dynamic relativistic model of the pion-nucleon
interaction which is in agreement with measured
phase shifts is still nonexistent. The dynamic
model of Cammarata and Banerjee'® works well
in the S wave but P-wave results are lacking. The
model of Liu and Shakin®! is, like the model of
Ref. 8, only semidynamical in the sense that it
involves potentials as a general replacement or
approximation to whatever the underlying dynamics
may be. Their model also incorporates a back-
ground term whose off-shell moment dependence
is not determined. With our present limitations
of the understanding of the interaction of a pion
with the many-body nuclear target, a dynamic
model may not be immediately necessary in order
to gain quantitative information from pion-nucleus
scattering. Such a model, however, would certain-

ly be useful in building a microscopic theory of
the pion-nucleus interaction and could certainly
help remove some of the ambiguities in the in-
formation that is extracted from pion-nucleus
experiments.

Note added in proof. We have received recently
the extension of the model of Ref. 18 to p waves.
These results have appeared in N-C. Wei and
M. K. Banerjee, Phys. Rev. C 22, 2052 (1980);
22, 2061 (1980). o
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