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An estimate is made of the efFect of expanding about the full nucleon and meson propagators as well as the mean

meson fields in certain model renormabzable relativistic field theories of nuclear matter. Meson masses are
determined self-consistently by satisfying, at zero momentum only, the Schwinger-Dyson equations which result

when the energy functional is truncated at the two-loop level. The tachyonic pion problem of the standard mean
field expansion is eliminated but the opposite problem of a far too massive pion in normal nuclear matter arises.

NUCLEAR STRUCTURE Relativistic mean field theories of nuclear matter,
tachyonic pions. Approximate solutions of Schwinger-Dyson equations.

I. INTRODUCTION

The relativistic mean field model of high den-
sity nuclear matter as proposed by Walecka' and
elaborated on by Chin' has many virtues. The
model is relatively easy to solve, it seems to
describe the bulk properties of nuclei including
the spin-orbit interaction, ' and the exchange en-
ergies calculated perturbatively about the mean
field result' and certain higher order direct en-
ergies' were shown not to be of major impor-
tance.

However, questions still remain about the mean
field as the basic solution about which to do per-
turbative corrections. One must always be cautious
when the coupling constants are as large as g' j
4m= 10. For instance, a naive application of per-
turbation theory results in vacuum polarization
causing the effective coupling constant to diverge
at a Fermi momentum on the order of the nucleon

2
mass, k~=—m„. A second worry is that in fact
correlation effects may be large at normal nuclear
matter densities. ' Since the parameters of the
model are determined by fitting to the properties
of nuclear matter at normal density, one's extra-
polation to high density may be very uncertain.

Recently an extension of the model was proposed
which includes the pi and rho mesons in a re-
normalizable way. ' Unfortunately, as we show
below, the mean field approximation predicts that
the pion goes tachyonic at a density lower than
normal nuclear density. This reemphasizes the
importance of understanding corrections to the
mean field theory.

In fact this latter difficulty seems to be a rather
general result; that is, if a renormalizable
Lagrangian has cubic meson couplings, then at
high enough density at least one of these mesons
will go tachyonic in a strictly mean field treat-
ment. This problem was noticed by Lee and

Margulies' in the context of the sigma model with-
out pions. The solution to the problem was also
given by those authors: namely, one must expand
about not only the mean meson fields but also
about the full renormalized propagators.

The aim of this paper is to estimate numerically
the effect of expanding about the full propagators
on the mean field results of the %alecka model.
Since the exact propagators are not known, we
will employ a particular approximation to the prob-
lem, to be discussed later.

II. TACHYONS IN THE MEAN FIELD
APPROXIMATION

The basic Walecka Lagrangian is

,'E'"E,„+-,'m—„'&P&u,+P(g,P -g„g)P, (&)

where P, Q, and ~" are the nucleon, scalar, and
vector meson fields. Serot has included the pion
by adding a term

2 =-,'(s n e'w —m, 'm')-i gpss, rwg

1 2+2g n'& Q m

The rho meson may also be included but for a
mean field treatment of symmetric nuclear matter
it will not affect our result.

A mean field treatment may be given based on
2 g + Z,. The resulting equations are derived and
discussed in Appendix A, where it is shown that
the effective pion mass squared is given by

Here n, =(gg) is the scalar number density, equal
to the baryon number density n =(g'g) at low
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density. With m, /g, =57.5 MeV as determined by
fitting the saturation point of nuclear matter, one
has g~ —= 10 in order to get the correct mN s-wave
scattering lengths. ' Thus m,*' &0 when the den-
sity is greater than 0.015 fm 3, which is roughly
10%%u,

' of nuclear density.
The reason for this behavior is not hard to find.

In the txee approximation to mN scattering in the
above Lagrangian there are taco contributions,
which are shown in Fig. 1(a). For s-wave scat-
tering these two contributions have opposite signs
and cancel each othex to 1 part in 50 in order to
yield the very small s-wave scattering length
a", observed experimentally. (For a simple ex-
plicit calculation see Campbell. ') This was the
prime motivation for introducing the Qm' coupling
in Eq (2)..' These two contributions then lead
to contributions to the pion self energy in nuclear
matter as shown in Fig. 1(b). Only the attractive
tadpole diagram is included in the mean fieM so-
lution, so it is no wonder that the pion goes tachy-
onic at such a low density. The consequence would
be an s-wave pion condensate, which is known not
to occur from other studies.

A similar behavior occurs in the sigma model
with or without a massive vector meson. In fact
this behavior should occur in any mean field treat-
ment of a model Lagrangian which has a pseudo-
scalax mK coupling and a scalar meson exchange
mechanism to give the correct ao value. A

pseudovector coupling would avoid this problem,
but then the theory is not renormalizable and we
would be playing under different rules.

As noticed by Lee and Margulies, any model
which has a cubic meson coupling has the pos-
sible defect of generating a tachyon pole in a

+ crossed

FIG. 1. The tree approximation to mg scattering in a
model field theory is shown in (a). The solid line is a
nucleon, the dashed line a pion, and the squiggly line a
scalar meson. The corresponding contributions to the
pion self-energy are sho~ in (b).

mean fieM treatment. Thus this is a problem
of rather general significance and is not restricted
to the pion problem.

III. VARIATIONAL FORMALISM

The technique for handling unphysical tachyon
poles is to write the energy density as a functional
of not only the mean meson fields but also of the
full propagators. For derivations and a more
complete discussion, see Lee and Margulies' and
also Norton and Cornwall. ' For a specific dis-
cussion in the context of abnormal matter, see
Nyman and Bho. '

One can write the energy density as

P
d

+ 4 tr[ln[S(P)/S (iI)] —S(P)/S (P)+1)—2 ~ tr(ln[D(P)/D (P)] —D(P)/D (p)+ 1}

—,tr[»[&(P)/&'(P)] —& (P)/&(p)+ 1)+g f, (S,D, &)-subtractions.
2 lf 1=2

Here 8', D', and &' are the bare perturbative
propagators for nucleons, vector mesons, and
scalax mesons. S, D', and &' are the propaga-
tora in the presence of the mean meson fields
Q and (d", and 8, D, and & are the full renor-
malized propagators. The mean field potential
energy is U($, &o") and ~, the isospin degeneracy,
is equal to 2 for nuclear matter. The f, is the sum
of all L loop, two line irreducible enexgy diagrams

(5)

with the bare perturbative propagators replaced
with the full propagators.

The above energy density functional possesses
some useful variational properties. There are
the usual minimization conditions on the mean
meson fields

E=O, „E—0.
Geo"

There are also the following minimization con-
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ditions:

~s(p) ' ~D(p) ' ~n(p)
These last three conditions can easily be shown
to lead to the following Schwinger-Dyson equa, -
tions:

As an example, we show in Fig. 2 the quantity

f,(S,D, &) for the basic Walecka Lagrangian Zp, ,
and the resulting Schwinger-Dyson equations which
also serve to define the nucleon and meson self-
energy parts.

IV. APPROXIMATE SOLUTIONS

Unfortunately there is no known closed formula
for the energy density functional E. Each f, must
be constructed on a case by case basis using per-
turbation theory. This is one of the difficulties
in finding a truly practical, truly nonperturbative
variational solution.

The approximations to be used subsequently may
be described in several steps. First we keep only
the two-loop exchange diagrams, the f, of Fig. 2.
If we were to include pions at this stage then of
cours there would be additional diagrams. The
primary motivation here is one of practicality,
with the additional thought that this particular
truncation should be adequate to eliminate tachyons
in those theories with cubic meson couplings.

Once we have decided upon which loop diagrams
to keep, then the nucleon and meson self-energies
should be determined self-consistently as functions
of momentum p. Solving coupled nonlinear integral
equations is hard enough, but this problem has the

f, {S,D, A) —, ----- +I I

Ox&'(p)-sp (p) ~ g (p) ~ — —~ + e e ~

0 '(p)-Do (p) 0 (p)
V

4 {p)-ho (p) G (p)= =====l ER + ~ e e
S

FIG. 2. The energy density functional f2 for the %'alecka
model, and the associated contributions to the self-en-
ergies. The curly line is a massive vector meson.

or

One would not expect the p"p" term to contribute
to observable quantities. Most likely this is a
difficulty to be faced by most treatments which
are based on approximate solutions for the full
propagators. An example of this difficulty in a
field theory approach to NN scattering has been
found by Bessis, Mery, and Turchetti. " Another
example of this difficulty, in the context of a non-
perturbative approach to the electron propagator
in @ED, has been pointed out by Atkinson and Fry. ~
In fact we have used the first form of the vector
propagator without the p"p" term.

In principle m~ may be determined either from
the Schwinger-Dyson equation or by minimizing
the total energy, because of the variational prin-
ciple. However, in view of the fact that we have
only an approximate solution, it was thought better
to determine m~ by minimizing the total energy
directly with respect to m~.

The total energy density may be written as

+ ~die + ~dir+ ~ex+ ~ex
FG 8 v a y

Here &FG is the noninteracting Fermi gas result:.
'The direct energies are

edjr s
(~& +Lex ~ g)Ps 2 2 E N

S (l0)

additional complication that infinite renormali-
zations need to be done. Possible conceptual as
well as calculational difficulties have been dis-
cussed to some extent by Baym and Grinstein. "
Therefore our second approximation is to pretend
that the full propagators have the same form as
the free propagators with the vacuum masses
replaced by density dependent effective masses
m~, m*, and m~. The meson masses are then
determined by satisfying the Schwinger-Dyson
equations at zero momentum on. 1.y. In fact the
vector meson self-energy turns out to have the
form

II'„"(0)= -Aq'" +Bg" g"',

where A and 8 are constants. Only the g"" term
is kept self-consistently, since the g"'g term
changes the form of the propagator.

It also turns out that the vector exchange con-
tribution to the nucleon self-energy, Z'„", depends
upon the particular form of the vector propagator
one uses, i.e.,

QV

p2 ~2 0'
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since one has that

g e ~alt 0

m.'
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The baryon density and Fermi momentum are
related by

2 3n= 2 k~ .
3w

(12)

10

The exchange energies &,
"and a'„' have been

computed previously by Bolsterli'~ and by Chin, '
and the results are reproduced in Appendix B. One
assumes that the diagrams are renormalized
perturbatively, and then the vacuum masses m„,
m„and m„are replaced by the density dependent
masses m ~~, m~, and m ~. 'This then modifies the
vacuum fluctuation enex gy which arises because
of the differences in the Dirac seas in the case
of the nucleons and because of the differences in
the zero point energies in the case of the mesons.
This quantity ~&~, is difficult to compute. It has
been done in two particular cases, by Lee and
Margulies and by Chin, ' who found that it was not
a particularly important contribution. Therefore
we neglect it here.

The results of a numerical calculation, based
on Eq. (9) and the equations in Appendix 8 are
shown in Figs. 3 to 6. In all figures the solid
lines refer to the results obtained with Eq. (9),
including the (pseudo) self-consistent exchange
energies, while the dashed lines refer to a purely
mean field calculation without exchange energies.

In Fig. 3 we show the energy per nucleon E=c/
n —m„versus kr and n/n, . Normal nuclear matter
is taken to be bound by 16 MeV at A~ =263 MeV.
The vacuum masses were taken to be m, =783
MeV and m, = 550 MeV, as Chin' has used. Then,
by fitting to the minimum of the energy curve, we
find g, '/4w =9.33 and g„'/4w = 14.37 for the mean
field, and g, '/4m = 14.70 and g„'/4w =21.75 with the
exchange energies included. The first thing to
notice about the figure is that the curves look
qualitatively similar, although the mean fieM
typically lies lower in energy. However, quan-
titatively the compressibility K is quite different,
being 500 MeV for the mean field and 3 GeV for
the exchange calculation. This is to be compared
with a best experimental determination of E=210
+ 30 MeV." The mean fieM results depend only
on the ratios g„/m„and g,/m, . With the exchange
energies the results depend on the four quantities
g„, g, m„and m„. Thus E is determined un-
iquely in a mean field calculation with Z ~ once the
energy and density of normal matter is specified.

With the exchange energies it is conceivable,
though not likely, that by varying m, and m„within

102
0'
4)

80—

20—

-20 1

400
kF (MeV)

FIG. 3. The energy per nucleon versus Fermi mo-
mentum 0& and compression nina. The dashed line is
the mean field and the solid is the exchange modified
result, Eq. (9). Note the change from a linear to a log-
arithmic scale at 1QQ MeV.

EFG —m „=-593 MeV,

E«'=270,

E ' =320S

Ex

Ex 39

(13)

Because of this the results are very sensitive to
the input parameters and to the inclusion or ex-
clusion of the exchange energies.

In Fig. 5 we plot the effective masses as func-

reasonable bounds one might be able to obtain a
more suitable value for K. One might also ob-
tain a better value for E by adding P' and P terms
to Z I,." Both of these investigations lie outside the
spirit of this paper.

In Fig. 4 we show the contributions from the five
component energies of Eq. (9). The first thing to
notice is that the direct vector energy E "indeed
dominates at high density. ' The exchange energies
are generally quite small, especially at high den-
sity. However, at lower densities there is a big
cancellation among the various components. For
instance, at normal density
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tions of kz and n/no T.he important point to notice
about this graph is that the meson masses begin
to increase dramatically around normal nuclear
density. In fact at that point m,*=1 GeV and

m,*=720 MeV. Above several times normal den-
sity the meson masses are roughly proportional
to k~. This is the primary reason that the ex-
change energies are suppressed at high density,
i.e. , the meson propagators go like 1/(k'- m,*'„}.

Although the pion is not included in Z t„, we can
still make an estimate of what m,* would be if the

pion were included in a consistent treatment via
Eq. (2}. Referring to Fig. 1(b} we have
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ni~'= m, '- g~, m, (It)+ II, . (14)

For the parameters used in the exchange cal-
culation one needs g~, = 7.7 in order to have a
small a,". The result of evaluating Eq. (14) is
shown in Fig. 6. The tachyon problem arising in
a strict mean field approach is gone. As with the
other mesons m,* increases nearly linearly with

k~ at high density. Notice however that at normal
density m, /m, =4.8. It is ironic that instead of
the tachyon problem one has gone to the opposite
extreme of having an unacceptably massive pion
propagating in nuclear matter. Undoubtedly the
presence of nuclear matter plus the large coupling
constants have destroyed the delicate mN s-wave
cancellations discussed in Sec. II.

FIG. 4. The Fermi gas, direct, and exchange energy
contributions to Fig. 3.
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FIG. 5. Values of the nucleon, scalar, and vector me-
son effective masses in the mean field (dashed lines) and
exchange modified (solid lines) calculations.
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FIG. 6. Estimate of the pion effective mass from Eq.
(14). Notice that the mean field calculation (dashed line)
predicts an unphysical tachyon at below normal density,
whereas the calculation including exchange effects (solid
line) gives a very massive pion at normal density.
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V. CONCLUSION

In this paper we have pointed out that the model
nuclear Lagrangian of Walecka and Serot, when
solved in mean field approximation, gives rise to
a tachyonic pion at significantly less than normal
nuclear density. The cause of this behavior is not
haxd to locate. For s-wave pion-nucleon scat-
tering there is a delicate cancellation between two
diagrams. The mean field approximation includes
the equivalent of only one of these diagrams, the
attractive tadpole pion self-energy. Keeping both
diagrams is equivalent to including the exchange
energy terms in a self-consistent expansion of
the energy density functional about the full prop-
ogators as well as the mean meson fields. Un-
fortunately the model then becomes extremely
difficult to solve. Our principal approximations
were to keep only the lowest order diagrams in a
loop expansion of two-line irx'educible diagrams,
and to satisfy the Schwinger-Dyson equations only
at p +. Although this approximation scheme cures
the problem of a tachyonic pion at subnuclear
densities, it leads to a far too massive pion at
nox mal nuclear density.

Systematic improvements to this scheme are
possible. One could attempt to solve the truncated
Schwinger-Dyson equations not just at p =0 but
at all momenta. This is necessary for a proper
treatment of pion condensation in this model. The
difficult problem of renormalizing such a self-
consistent scheme and the associated vacuum
fluctuation energy remains an open question.

If one wants to use a relativistic quantum field
theory approach to nuclear matter then the options
available seem to be threefold. First, we could
choose to ignore the pion altogether. Second, we
could insist on a renormalizable Lagrangian, in
which case a coupling of the foxm Pn' seems to
be inevitable in order to obtain the correct s-
wave scattering lengths. Third, we could drop the
requirement of renormalizability so that a
pseudovector pion- nucleon coupling is allowed.
The first option can be thrown out immediately
in view of the importance of the pion in nuclear
physics. 'The second option is possible but, as
discussed in this paper, one must go beyond the

mean field approximation in order to avoid a
tachyonic pion at subnuclear densities.

The third option we consider to be the most
viable. The mean field approximation may be
applied without the appearance of unphysical
tachyons. Pion condensation may also be more
easily considered. Although the Lagrangian is then
nonrenormalizable, which is mathematically un-
pleasant, this really should be of secondary con-
cern. We know that hadrons are actually com-

I am gratefully indebted to M. Bolsterli and

especially to D. K. Campbell for a number of en-
lightening discussions.

In this appendix we calculate the effective nu-
cleon and meson masses in the mean field ap-
proximation to the Walecka-Serot Lagrangian.

The finite density Lagrangian is

C~+Z, =g(ig' m„+-g, Q-g„Q —ig, yP w+ py')g

+~g~, m QP —,'F""F,„+—,'m—„'&u'~,. (Al)

We anticipate that the scalar and vector meson
fields will acquire finite constant components so
we write

$ = Q+ Q', v" = e"+ co'", (A2)

(P& = P, (ro"
&

= &o', &~& = 0. (AS)

Notice that we do not allow for a pion condensate.
'The Q and (d" are c numbers and the (Ij)', ~'", and
m are quantum fields. The resulting linearized
field equations, appropriated averaged over the
ground state of the system, are

Cl w =-ig, (+,rP& —m(m, g~, m, Q), -
&4"' = (-m. ' 0+g, (0 4&) —m. '0',
Cla) '" = (g„&~"y& —m „'(o")—m„'(u'",

4(if' m+g. 4+ y-' u WP =0-
(A4)

Thus we see that

S' 8

+v ggo

V

(As)

posites of quarks and gluons and not point par-
ticles. Hence a better description of a system of
hadrons may follow from a nonrenormalizable
or nonlocal field theory rather than from a local
renormalizable one. One may then take the point
of view that an economical description of many
properties of finite nuclei and infinite nuclear
matter is afforded by such an effective nonre-
normalizable nuclear Lagrangian when used in
conjunction with a definite physical approximation
scheme (such as mean fieid). Such a description
will only be valid up to densities of two to tentimes
normal when a phase transition to quaxk matter
takes place.
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The effective masses and chemical potential are

m*=mo u&

ppr+ =ttl

where P={Er,p) and E~=(p'+m~N')'r~, etc. This
can be written in the computationally more con-
venient form

k +Eq8x MB E Q ~]+2ln F E
4 F F g m*

m rr
= m N

—gl Q = m rr p s~ )
+2g, '(1 ——,

'
w)( rr*„i/2v)'I(w„g),

2
0 g~

p. += p, -g (d = p. —
e&„

The relationship between the Fexmi momentum

kF and p, * is
g2 Q

2 + pp(
g2

The scalar and baryon densities are

2K ~ Nl+~
dp r z -a)cia 8{kr Ip I)

s~N +p

w, = (rn+/rrr*„)',

t; = (EF + k~)/m~~,

I(», C) =4 du(1 —u ')

(1 p)1 (u5 1) +wuv
(u —t )'+ wut

(B5)

n=
( ), i dp8(kr —

ipse).

Here ~ is the isospin degeneracy, equal to 2 for
nuclear matter.

APPENDIX 8

In this appendix we quote the results for the
energy densities and self-energies as used in
Sec. IV of the text. In all cases we set the isospin
degeneracy factor ~ =2.

The energy density of a Fermi gas is

Ep o ('p dp(p +mrr ) 8(krr ip i)

(B6)

The vector meson exchange energy, Fig. 2,
has also been calculated by the above authors.
It is

dpd j 8(k„—Ip I)8(k~ —I jl)
{2v)' E E

k +EE 0 -m~21nF F
g

2Ez kr'+ m „*'Ezkr —m „*'1n ~
~

~ /

(»)
with

W„= {rrr„*/m *„)

-2g„'(1+-,' w„)(m„*/2v)'I(W„, g) (B8)

Here Er = ir, + = (krr +mrr )
The classical, or direct, scalar and vector

meson contributions to the energy density are

nadir
& ~ 2y2

(B2)

fPLN +P ~ g
m~ —(p —q) . ' (B3)

~"'=-' m '((u')'

The classical fields (IF) and ~ are determined
below.

The scalar meson exchange energy density has
been calculated previously by Bolsterli'4 and
Chin. ' The corresponding diagram is given in
Fig. 2.

, ~' dpdg 8{k~—Ipl)8(k~- ill)
(2v)' E,E,

The nucleon and meson self-energies, Fig. 2,
have been calculated using the finite temperature
formalism, analytically continuing to t) =0, and
then letting the temperature go to zero. " The
analytic continuation would be especially impor-
tant at finite temperature since, f'or f'ermions,
p'= (2n+1)vTi+ p.' is never zero for any integer
n. %e find that the scalar meson self-energy
1s

Gq q
H, =-H, (P=O)=4g, ' ~, ~, 8(k, ~Z~)

2 2m* 4g l tn „k~ 2 EF+QF
'F j F F+ @

— Plg Q
nfl „

(B10)

which is in agreement with a calculation by Lee
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and Margulies' [their Eq. (4.$3}]. The vector me-
son self-energy tensor is

dq 9(k» —lq I )
(2w}' E &o (E +~ )'

II""= II""(~= 0) =-A gg" +Bggog (811) (~ g2+ q2)1/2 (816)

dq 9(k»- Iql) (
2 q'

I( )', i, ,'j
gs 1 a g2 k» 1 g2 ~ »+k»~i

~ E»k», 3,N2—$ + g»»ly+ lni

dq 9(k» —lql), fl I q'
(2v)' E, I~ 2 E,'

(812)

The effective meson masses are then

(812)

Although no self-consistent calculations have been
done which include the pion, an estimate of m,*
has been made in Sec. IV. The pion self-energy,
Fig. 1, is in our approximation

d q 9(k» —
I q I )

II», -——II»,(P=O)=4g, '
(2 )3

g, ' dq 9(k„- lql)
4 "~ (2w)' E, &o, (E,+ &u, )

'

(~ g2+q 2)1/2 (817}

The integrals appearing in Eqs. (816) and (817)
can be evaluated in terms of elementary functions
but the results are too lengthy to reproduce here.
As noted in Sec. IV, Z, has been computed with
the vector propagator g, „/( p' -m„*'). The ef-
fective nucleon mass is

(816)m„*=»n„-g,$+Z„+Z, .
The mean vector field is determined by

noticing that the pressure depends on (d in the
following way:

P = 2»I2 ~ (d +F (p—g „Q) ) ,. {819)

The system is in thermodynamic equilibrium when
I' is at a maximum with respect to variations of
the independent parameters, in particular ~ .
Hence

(814)
=m„m —g„E'(I/, -g„ru )=0. (820)

The nucleon self-energy, Fig. 2, has non-
vanishing contributions proportional to the unit
matrix and to the matrix y . The part proportional
to y, Z„'+T,', is absorbed into the definition of
p, * and need not be calculated explicitly here.

p, *= p, -g„m' —Z„' —Z, =(k' »m+„*')' '. (815)

The parts proportional to the unit matrix are

Noticing that the baryon density is given by

=E'(p-g„(u ) =n, (821)
9p,

we see that

(~= ~", n.
my

The mean scalar field Q is determined by Eq.
(816).
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