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Mean-field approximation to the many-body S matrix
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A nonperturbative method is developed for calculating the excitation of a many-body system by a time-dependent

Hamiltonian. The stationary-phase approximation to a functional-integral representation of the interaction-picture

many-body evolution operator results in a mean-field approximation to the S matrix which is asymptotically time

independent. A one-body temporally nonlocal evolution equation defines the stationary mean-field configurations.

The general method and character of the stationary solutions are illustrated by application to the forced harmonic

oscillator and forced Lipkin model. Potential applications to realistic nuclear and atomic scattering situations are
discussed.

NUCLEAR REACTIONS Mean-field approximation, many-bodyS matrix, time-
dependent Hartree Fock.

I. INTRODUCTION

The picture of independent nucleons moving in
a self-consistent mean field has proven to be a

good first approximation to many aspects of the
nuclear many-body pxoblem. Hartr ee- Fock cal-
culations with phenomenological' or realistic"
effective interactions are capable of reproducing
ground-state binding energies, charge densities,
and single-particle energies for nuclei throughout
the periodic table. To describe excited states,
the static mean-field picture can be extended to
the near equilibrium oscillations of the random-
phase approximation (HPA). »' The next logical
step in this sequence is to develop a mean-field
picture for nuclear collisions. In the past several
years, time-dependent Hartree-Fock (TDHF)
calculations' ' have been shown to be a good de-
scription of some inclusive properties of deep
inelastic heavy-ion collisions. '" However, it has
so far proven impossible to formulate a mean-
field method for calculating specific reaction
cross sections or, equivalently, elements of the
many-body 8 matrix. This paper presents the
first steps toward such a cal.culation.

To motivate the present investigation, it is use-
ful to recall the well. -documented deficiencies of
the TDHF approximation as an exclusive de-
scription of nuclear ~e~ctions, rathex than as an
inclusive description of nuclear collisions. The
TDHF many-body wave function is assumed at all
times to be a single Slater determinant evolving
in a nonlinear, self-consistent manner. This
evolution differs significantly from that of the
exact Schrodinger equation in that, for times
long after the collision, the wave function does
not decompose into a linear combination of channel

eigenstates ~hose coefficients have a time in-
dependent modulus. This so-called "spurious
cross- channel correlation"'" therefore defeats
any attempt to calculate the S matrix by projection
of the TDHF wave function onto channel states. "
Another difficulty is the fact that the initial TDHF
determinant is a wave packet in the space of chan-
nel eigenstates, making it difficult to unam-
biguously isolate a given incident channel. " Fin-
all. y, although the TDHF evolution prescription
plausibly repxesents the mean-field physics ex-
pected to dominate at small bombarding energies
per nucleon, its precise relation to the exact
Schrodinger evolution has only recently come under
investigation. '4*"

Our mean-field methods for calculating the
many-body 8 matrix follow from the Hubbard-
Stratonovich representation for the many-body
evolution operator. "'" For a Hamiltonian con-
sisting of a one-body kinetic energy term and a
two-body interaction, the exact Schrodinger prop-
agator can be written as a functional integral over
an auxiliary field, the integrand containing only
a one-body evolution operator which is functionally
dependent on the auxiliary field. The many-body
evolution problem is thus reduced to a coherent
superposition of a (very infinite) number of one-
body evolution problems. For given initial and
final states, the saddle point or stationary-phase
approximation to the functional integral results in
a set of mean-field equations, similar to the
TDHF but not identical to it, which define a sta-
tionary field configuration, and hence a one-body
approximation to the matrix element of the many-
body propagator. The remarkable utility and
versatility of this general technique for the many-
body problem is well illustrated by its recent

0& 1981 The American Physical Society



MEAN-FIELD AI'PROXIMATION TO THE MANY-BODY 5 MATRIX 1591

applicati'on to bound-state problems" and its po-
tential applications to spontaneous fission life-
times" and the nuclear partition function. ' An

excellent introduction to this approach can be
found in Ref. 20.

The definition of the initial and final state in the
many-body scattering process is an important
aspect of the problem. For simple single-par-
ticle potential. scattering, these states are plane
waves, the eigenstates of the "channel Hamil-
tonian, "which is the free kinetic energy. How-

ever, in the many-body case, the solution of the
channel Hamiltonian is itself a many-body prob-
lem, quite distinct from any approximations to the

propagator. The success of any practical cal-
culation therefore depends upon how well an ap-
proximate evolution of approximate channel states
reproduces the exact results. Because our mean-
field approximation uses a one-body evolution
problem to determine the stationary auxiliary
field, it is most conveniently applied when the
channel eigenstates are approximated by Slater
determinants, a1though it is by no means re-
stricted to these cases.

echnical difficulties in achieving a simple but
adequate approximation to the channel states pre-
vent us from developing a practical application
of the mean-field method to the full nuclear scat-
tering problem, although, as discussed in See.
1V, we have done so in principle. While this might
prove to be possible in the future, our goal here
is to answer the quite independent question of how

well the mean-field method approximates the
exact many-body evolution. For this purpose,
we consider the more abstract problem of a many-
body system subject to an external perturbation
local. ized in time, and seek to calculate the ampli-
tudes for the various transitions induced by the
perturbation between eigenstates (or approxi-
mate eigenstates} of the unperturbed Hamiltonian.
Whi1.e this study avoids the problem of finding
satisfactory channel eigenstates, it is not devoid
of physical interest. Indeed, it is possible to
model the scattering problem in a way in which
the relative motion of the colliding system is
treated semiclassically (as is appropriate for
heavy-ion or atomic collisions), and the intrinsic
motion is treated quantum mechanically using our
mean-field approach. Transitions between in-
trinsic states are then induced by a potential whose
time dependence is due to the relative motion.
It is also possible to develop a scheme for in-
cluding in a self-consistent manner the influence
of the intrinsic excitation upon the relative mo-
tion. "

The balance of this paper is organized as fol-
lows. In Sec. II, we set up the formalism for our

method. We show that intrinsic defects of the
mean-field approximation to the Schrodinger pic-
ture evolution require a reformulation of the prob-
lem in the interaction picture to achieve an 8
matrix which is asymptotically time independent.
The equations defining the stationary auxil. iary
field configurations are presented and their prop-
erties discussed. In See. III we illustrate our
method by applying it to the forced harmonic oscil-
lator, for which it gives the exact results, and to
the forced I ipkin model, ~here we investigate the
limits of its validity. Section IV contains a dis-
cussion of several open questions and of the po-
tential application of the mean-field appr oximation
to vari, ous realistic reaction situations in nuclear
and atomic physics.

II. FORMALISM

A. Statement of the problem

As discussed in the Introduction, the type of
problem we shall consider is the excitation of a
many-body system with pairwise interactions by
an external, time-dependent one-body field. The
Hamiltonian for such a problem can be written as

H(t) =Ho+ V(t).

Here, H, is the unperturbed Hamiltonian com-
posed of the one-body kinetic energies t& and the
two-body interparticle interaction v, &, which we
take to be local in coordinate space

Ho= tg+~ v x;-x~ .

'The external, time-dependent perturbing field is
taken to be of the one-body form

V(t)= QV(x„t)

with (V(x, t)
~

-0 sufficiently rapidly as (t~—
although our treatment below can be simply gen-
eralized to a two-body perturbation.

In a second-quantized notation, H, can be written
in terms of the anticommuting field operators
g(x), g'(x) as

H, =T+-,' dxdx'g x g x' v x —x g x g x,

dx &g'(x) &4(x)~1
2m

is the total kinetic energy operator (we hence-
forth put tf= 1). Similarly
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n~&= f..((*»(, (*&((*& (2.6)

s. .
=(~'isle�.

It then follows that lS&, zl is the probability to
excite the state P, that Se~ describes "elastic"
propagation of the state P, and that S is unitary in
the sense that Q~, . S~„~, S~,e = 5~, ~.

The operator S in (2.7) is defined as the long-
time limit of the interaction-picture evolution
operator"

(2.7)

For simplicity we omit the explicit specification of
spin and isospin coordinates.

Our goal is to calculate the S matrix for the
above problem. Specifically, if the system is in
a state P as t--~, the amplitude to observe it in
the state P as f -+~ is defined as

body operators. %e propose to evaluate them in
the mean-field limit as described below, turning
the many-body evolutions into a set of coupl. ed,
one-body evolutions. This is, of course, most
convenient for determinantal approximations for
P and P, but, in view of the independence of the
propagation and initial-final state approximations,
it may, in principle, be investigated for any P, P .

8. The mean-field approximation to the propagator

p(~) = 0'(~)4(~), (2.12)

To evaluate Eq. (2.8) we must develop tractable
expressions for U end U,. We focus hexe on U, the
transcription to U, being simply accomplished by
putting V=0.

In terms of the density operator,

S= lim Uo(0, t)v(t, -t)vo(-t, 0). (2 8) the Hamiltonian can be written as

Here U(t„ t, ) is the Schrodinger-picture evolution
operator for 0 from time t, to t„and satisfies

e(t& &(+ Jf d=. d 'p(. & ( — '&p(. '&

8
v(t„ t, ) = If{t,)v(t„ t, ) (2.9) + dxVx~t px ~ (2.13)

with the boundary condition

U(t„ t, ) = 1. (2.10)

The free evolution operator U, is defined sim-
ilarly, but with II(t) replaced by If,.

In the ordinary state of affairs, ltI) and lP ) are
eigenstates of V„with eigenvalues E~ and E, ,
respectively. In this case, Ss, ~ may also be written
as

x= 7 — »(0&( d. p( &= / &,;. (2.14)

To simplify the notation we define a scalar
product (A, B) as

(A, B&= f d*A(x&B(x&. (2.16)

Here, K is the kinetic energy operator, corrected
for the self-interaction term

S, , = Iim e'"~'('"(p'lV(t, -t)l p). (2.11) Note that A and 8 can be either c numbers or op-
erators. Equation (2.13) then becomes

In view of the general intractability of the many-
body problem, any approximation to S involves
two separate and independent approximations.
First, the generally unknown eigenstates of 0,
most be approximated, often by a singl. e deter-
minant or by a linear combination of a small num-
ber of determinants. The best that one ma, y then
assume is that such wave functions are "narrow"
wave packets in the space of exact eigenstates,
and that the matrix el.ements of S between such
wave packets therefore approximate the exact 8
matrix. The validity of this assumption will, of
course, vary from problem to problem. It should
also be remarked that this necessarily approxi-
mate nature of the initial and final states makes
Eq. (2.11) time dependent, even as t -~, so that
Eq. (2.8) is then more appropriate.

The second major approximation concerns the
propagators U and U„which are difficult many-

If (t) = IC+ —,'( p, up) + (V{t),p),
where v is viewed as a matrix in x space

( r)&( & fa*'»( . -=*'&p(. '&.

(2.16)

(2.17)

The evolution operator U defined by Eqs. (2.9)
and (2.10) is given by

V{t, -t)=Texp -t d~a{~)

t
= T exp -g 4& K+ ~, vp + V 7'), p t

(2.18)

where T denotes the time-ordered product. To
evaluate this expression we adopt a technique
first introduced by Hubbard and Stratonovich'6 in



MEAN-FIELD APPROXIMATION TO THK MANY-BODY S MATRIX

statistical mechanics, and applied recently to
nuclear physics by Kleinert" and Levit. ' The
details can be found in these references. In broad
terms, we Iinearize the quadratic form (p, »p} in

Eq. (2.18) by introducing a functional integration
over an auxiliary field, o(x, »). The many-body
propagator is thus expressed as a superposition
of an infinite number of one-body propagators.
Although superficially complicated, this exact
representation of U is a useful starting point for
the appxoximations discussed below. In the fol-
lowing, we assume for simplicity that the fermions
are distinguishable, thus neglecting exchange
terms. These may be included in a relatively
straightforward, but cumbersome manner. "

The Hubbard-Stratonovich representation of U

ls

where

t

u, (t„ t, ) = exp i-d» }1,(»)
tj

Of course, u, satisfies

(2.28)

(2.26)

with u, (t„t, ) = 1.
Let us now consider how these expressions can

be used to approximate the matrix elements of the
propagator. We defer to the following section
consideration of the product U, UU, required by
Eq. (2.8), and as an illustrative example consider
instead the quantity (P lU(t, -t))P}. According to
Eq. (2.19) this is given as

where

U, (t, -t) = T exp i-d» II, (»)

(2.19)

(2.20)

(2.21)

D o' P U, P expip &, 2.27

where we have omitted for convenience the
arguments (t, -t) and ~ from U, and &r, respec-
tively. The effective *'action"

The auxiliary field o(7 } is a time-dependent
scalar c number in x space, o(v') -=&r(x, »), while
the functional integral in Eq. (2.19) is over aII
possible ' fields. This integral and its measure
D[o] are best understood by choosing a discrete
mesh of uniformly spaced points (»&, tt) in space
time, with spacing &x, &t. Then"

(det »}'~'
D[o]=- . „„Q t&,»t&.t @do(x„t )

2W1 1 1

(2.22)

where iV(~) is the number of spatial points.
The Hamiltonian II, as defined by Eq. (2.21) is

the second-quantized representation of a one-body
operator

(2.23)

where h, is the single particle Hamiltonian

w I~) = &f «~, & ~ «)((()) I)& I()))'.

d~ c, ea' + Im ln P U P (2.28)

8~[ol
5&r(x, »), 0

(2.29)

and expand p through second order about this
field:

is a complicated functional of o.
The exact evaluation of Eq. (2.2'l) is, of course,

out of the question. However, one may expect
that in certain situations (e.g. , the "ciassicap~
limit), V1 will vary sufficiently rapidly with o
so that the stationary phase method will furnish
an adequate approximation. Following Ref. 14,
we therefore consider a stationary field oo(», 7)
which satisfies

I1,(7) = k+ (o, ») + V(&) . (2.24)

Thus, the potential experienced by a particle in-
cludes the external potential and a potential ob-
tained by convoluting the two-body interaction
over the o field. It follows from Eq. (2.23} that
U, is a one-body propagator and can be decom-
posed into a product of singl. e-particle prop-
agator s

(2.30)

With this approximation the functional integral
(2.2V) is of the multi-Gaussian type [in the var-
iables 3&(», »)], and can be evaluated exactly to
give
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&O'IU(t, -t)IP& = „6o 6 „,6,„, ) l&P'IU:(I, -t)IP&l exp(t& [o 1)
det[v(x - x') 5(i- i')]

(2.31a)

t
=-S, [o'] p

2
«(~, ~) &O'IU:(t, -t)lp&

-t
(2.31b)

The quantity S,[{r], which we shall refer to as the quadratic correction to the zeroth-order amplitude [the
balance of Eq. (2.31b)] is given by

1st[v(x —x') 5 (i —i') ]
ds{[ll'q /5m{*, r}5(r{ ', v' }}) (2.32)

This is generally very difficult to evaluate, since it involves calculating the determinant of a continuous
matrix in space-time, although this matrix depends only on the local properties of {p[oo]. However, we
show below that because of certain properties of Eq. (2.8), the zeroth order evaluation is often sufficient,
and S, may be set to unity. We therefore concentrate on the determination of o' and {p[v ]. We have, of
course, assumed in Eq. (2.31) that only one stationary field exists. If there are several such fields, then
(p IUlp& is the coherent sum of contributions of the form (2.31) corresponding to each stationary path.

Stationary solutions {i are found by applying Eq. (2.29). Since

5U =-j QT'U I, T6U ~ U (2 .33)

6ff, (i) = (6o(i), ~p), (2.34)

5p= dv 5o v, ya T — 50' r, @Re
(P') U, (t, i)pU, (i, -t) l P) (2.35)

It then follows that o' satisfies the equation

&p'( U,o(t, i)p(x)U, o(i, t) Ip&l-
&P iU,.(t, -t)lP)

(2.36)

I d, IP(i)& =If.o(i)IP(i)&,
. d

(2.39a)

In terms of these states, Eq. (2.36) reads

~(,) H
(P'(i) ~ p ~ P(i)) (2.40)

&P (i) ~p(i)&

It is now convenient to introduce a more trans-
parent notation. We define Ip(i)& to be the wave
function which develops forward in time under the
one-body propagator U, o from Ip) at time -t:

(2.37)

Similarly, &t( (i)l is the wave function which de-
velops backwards from P at time t:

&P'(i) I
=- &O' IU:(t,i) .

By Eq. (2.20) and its adjoint, these states evolve
according to

Note that the denominator in this expression is
actually independent of i, since U, (t, i)U, (i, -t)
=U, (t, -t). Equation (2.40) is a self-consistent
equation for a', in the sense that both

I
p(i)& and

&p (i)l have a complicated functional dependence
upon the values of a' at all times. Note also that
the solution a' depends upon which matrix element
of U is being calculated, i.e., upon lp) and &p I.

As has been emphasized in Ref. 17, the mean-
field approximation to the evolution operator re-
duces the many-body problem to a set of non-
linear one-body problems. In this regard, it is
very similar to the well-known and much ex-
ploited time-dependent Hartree-Fock (TDHF)
method. Indeed, Eq. (2.39a) is identical with the
TDHF if Eq. (2.40) is replaced by

o
( ) H

&P(i) ~ p(x) ~ P(i)&

{p(i) t p(i))

where here &p(i)l = (I p(i )))' [not the state im-
plied by Eq. (2.38) with P = P]. The denominator
here is, of course, unity. Although Eq. (2.41)
has the advantage of reducing the self-consistency
problem to a time-local one, (and the mean field
is independent of P ), it should be noted that there
is no a psiosi justification for it, and that the
mean field defined by Eq. (2.40) is that which fol-
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lows rigorously from the stationary phase ap-
proximation.

The difficulty mentioned above concerning Eq.
(2.11) rather than Eq. (2.8) should now be even
more apparent, i.e., (P ~U(t, -t)~P) in either the
mean field or TDHF approximations, continues to
oscillate nontrivially with t, so that the limit
t-~ is not defined and the S matrix cannot be
computed. This has earlier been termed spurious
cross-channel. correlation, " and is due to the
complex, nonlinear evolution of o(&}, even after
V(t) has vanished. The phase exp[i(Es + Es)t] in

Bb (2.II) cannot compensate for this evolution,
whether P is an exact eigenstate of If, (in which
case time dependence is due to the mean-field
approximation made in evaluating U) or whether

P is a HF approximation to the exact state (in
which case o' would have to approach o'» as t
-~, which is not guaranteed). It should also be
noted that in the mean-field approximation, these
spurious oscillations are even more severe than
in the TDHF, since they exist in the former case
for both t - and t --~, whereas in the TDHF they
are present only as t-~ when P is a static HF
state. Efforts to define an S matrix by averaging
out such oscillations in TDHF calculationsu'x'
appear to us to be ad hoc.

C. Mean-field approximation for the interaction picture

The interaction-picture representation of S,
Eg. (2.8}, has none of the difficulties discussed
above. To approximate Eq. (2.8}we apply the
Hubbard-Stratonovich transformation for each
of the three U's appearing there. Thus,

FIG. 1. (a) The "loop" illustrating the time-evolution
used in computing the 8 matrix. (b) The collapse of the
loop ends when V(v) =0 for ( r [ & T.

-t lal

U„(-t, 0) = T exp —i d7' tf, (&)
Iw 0

with

{2.44 a)

ff., =E+ (v„vp) .

(ii) The system evolves forward in time from
-t to t al.ong the upper section of the loop with the
field o and the interaction V turned on. This is the
interaction process itself and is given formally by

P' t

U, (t, -t) = T exp iJI d7-'fi, (v), (2.45a)

(i) The system starts at ~ =0 in the lower middle
and moves backward in time along the lower left-
hand side of the loop (to time t) wit-h the mean-
field o, and with the interaction V turned off. This
"prepares" the interaction process and is governed
by

(2.42)

S= lim o, D o D sr& exp — o, eo dT
t .2

x U.,(0, t)U. (t, -t)U. ,(-t, 0), If = K+ (o, v p) + (V, p) . (2.45b}

where

t
dr(o, vv} = d7 (-v„vo,)+ dr(o, vo)

0 -t

+ d& &yy Vo'f (2.43)

The propagator S is now expressed as a functional
integral over a set of three fields: o„o, and o&.
For each such set, there is an "interaction picture"
evolution U, U, U„, weighted by exp[(i/2) fd~
&(o, vo)].

The integrand of Eq. (2.42) can be visualized
in the simple diagram shown in Fig. 1. Evolution
is represented by motion along a loop, which con-
sists of three sections:

0

U, (0, t) = T exp id7 ff-, (&),ey & og

where

ff. =If+( vpo)r. (2.46b)

(iii) In the final analysis process, the system
moves backward in time from t to 0 along the
lower right-hand portion of the loop with a mean
field oz and the interaction V turned off. This
stage is necessary, as is the preparation, to
compensate for undesirable tx'ansitions caused
by the mean-field approximation long after the
interaction ceases. This final stage corresponds
to the evolution
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'fhe integrai (2.43) can now be interpreted as
going arourd the loop (f&f&), with (o, »o) taken to be
the appropriate quantity [(o'„vo;), (crt, »ot), or

(o, »o)1 in each section.
Using the expansion (2.42), a specific S-matrix

el.ement can be written as

(2.47}

where

w(&„&,~, I= $(.»«, &~I) &&)'I(), . ()(I)e&1. (2 .48)

The stationary phase evaluation of each of the three functional integrals proceeds analogously to that
of the single integral for (P 1 U (t, —t)l't} following Eq. (2.29). For notational convenience, we drop the super-
script 'b*' denoting the stationary fields and introduce the following wave functions along different sections
of the loop.

(i) At any point w along the lower left-hand side of the loop (-t «&0) we define

IP;(7)& =U., (' 0}l P)

&P', (r)l =&P'lU. (o, t)U. (t, -t)U. ,(-t, T).

(ii} At any point r along the upper portion of the loop (-t &r & t), we define

lP (r)& = U. (r, -t)U,
,
(-t, 0) IP &,

&P'(~)l =&P'lU.,(0, t)U. (t, r).

(iii) Al.ong the lower right-hand side of the loop (0& v. & t) we define

(2.49 a)

(2.49b)

(2.50a}

(2.50b)

(2.51b)

IP,()&=U. (, t}f.(t, -t)U., (-~, o)IP&, (2.51a)

&P,'(r)l =&P'Ift.,(0, ).
When convenient, we shall also use the subscript l as a generic label instead of i, "no subscript, " or f.
The definitions (2.49)-(2.51) may be summarized by two very simple rules: to find lP)) at any point on the
loop, evolve

l P& from r =0 (in the lower portion) c.ockwise along the loop to the given point. Similarly, for
(P,' l, evolve (P l

counterclockwise from v=0. The evolution equations for all of these states follow simply
from Eqs. (2.44)-(2.46).

With these definitions, the stationary conditions for Eq. (2.47) can be written as

&P', (r) I plP (r)&

5
' ' &P'( )}P (r)&

(2.52)

The denominator in this expression is l independent

&PI(') lP ('}&=&P'(') lP(')&= &Pl(') IP (')&

= &P'haft. (0, t)ft(t, -t)U, ,( t, 0) lP&- (2.53)

and is also independent of v. In addition, the o fields are continuous at the two endpoints of the loop, v

~,(-t) = o(-t),
c(t) = o,(t) .

Our stationary phase approximation is completed by the Eeroth order expression for the 8 matrix:

(P lS lP& = tim exp — dr(~, »&x) (P lU, ,(0, t}g (t, -t)U. .(-t, 0) lP),
g«a

(2.54a&

(2.54b}

(2.55)
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evaluated at the stationary field configuration.
It is, of course, possible to simply write down
the "quadratic correction" for this expression,
analogous to the Sgo] appearing in Eq. (2.31b).
However, it is generally not practical to evaluate
this correction. Fortunately, as me show below,
lt ls often unLmportant.

Equations (2.52) are three implicit coupled equa-
tions which must be solved self-consistently and
simultaneously for the three stationary fields o„
o, and e&. Nevertheless, the many-body evolution
has been simplified substantially, since the wave
functions defining the e's propagate under a one-
body evolution where the effects of the two-body
interaction are approximated by the mean field.

o,(7)=o(7') for t&r&-T, -
o(7) = o~(~) for T & 7 & f,

(2.56a)

(2.56b)

i.e. , at any point in space c coincides with o,.
befox'e the interaction stax'ts, and with o& after
the interaction ceases. Thus, the evolution caused
by U, for T & I7 I

& t is canceled by U, , when 7
&0 and by U, when v &0. This may be represented
by modifying Fig. 1(a) to Fig. 1{b), since no net
evolution takes place along the "collapsed" ends
of the loop.

To prove Eqs. (2.56), we assume them to be
true and then demonstrate that this assumption is
consistent with the equations (2.52) defining the
o's. Suppose -)&7&-T. Then using the composi-
tion property of the U's, Eq. (2.52) for f =i can be
written as

&P'(~) ~ U.(7', -f)U„{-f,Apl P, (~)&

&p (r) ~ p(r)&

(2.57a)

and Eq. (2.52) for l ="no subscript'* can be cast as

(P P)l p (~U, - ) f(U-f, ~}IP,(v)&

&p(r)~ p(r)&

(2.57b)

D. Asymptotic behavior

The S matrix defined by Eqs. (2.52) and (2.55)
becomes time independent for t greater than the
time during which V is nonvanishing, and so has
a mell-defined limit as t- ~. Although we shall
nom prove this statement only for the Eeroth order
approximation to S,, ~, Eq. (2.55), it can also be
shown to hold for the quadratic corrections to this
expression.

The time independence of Eq. (2.55) is a con-
sequence of the asymptotic behavior of the e fields.
Suppose that there is a time T for which we may
safely take V(r) =0 when I~ I

& T. Then, if f &T,
we mill demonstrate that

But, if we invoke Eq. (2.56a) and realize that for
this interval of time V=O, we have U, (&, -f)
= U„(r, -t} and thus U, (r, -f)U, {-f, 7)=1, The
right-hand sides of Eqs. (2.57a) and (2.57b) are
therefore equal, verifying Eq. (2.56a). A similar
proof holds for Eq. (2.56b}.

Having established Eqs. (2.56), we may also
conclude that the o fields for I~ I

&7'are inde-
pendent of t as long as t&T. This pxoperty,
together with Eqs. (2.56), established the f in-
dependence of Eq. (2.55) for f& T. Note that al-
though o, continues to cause nontrivial evolution
during the preparation stage for -t&7'&-7, this
evolution is precisely canceled by that due to 0
during the same interval of the interaction process.
A similar cancellation of the effects of 0'& occurs
for T&v'&t. Such cancellation is a very positive
aspect of our approximation for S~, ~. Even though
the mean-field evolution induced by V, may be a
very poor approximation to the effects of the exact
U, its deficiencies are, to a large extent, com-
pensated for by the effects of V, . and U, . %e
demonstrate this explicitly below in our study
of the forced harmonic oscillator.

E. Time reversal symmetry

Several properties of the exact S matrix follow
from the underlying symmetries of the exact Ham-
iltonian. It is not c priori obvious that these prop-
erties are preserved by our zeroth order mean-
field approximation (2.55). While the conservation
of energy, linear momentum, and angular mo-
mentum are not relevant for the more abstract,
time-dependent problem me have presented hex'e,
it can be shown that these properties hold when
our methods are properly applied to realistic
scattering problems. " The unitarity and time-
reversal symmetries of S are separate issues,
however. Kith regaxd to the former, since the
stationary field solutions O„o, and e, are gen-
erally different for each pair of states P, P', there
is no guarantee that S,, s as defined by Eq. (2.55)
is unitary. Indeed, we show in our model cal-
culations below that for many cases ga ISss I'
~ I, although individual 5-matrix elements are
often quite mell reproduc'ed. Time reversal is a
symmetry of S only when V(t} has such a sym-
metry, of course. Our approximation for S pre-
serves this symmetry, as we now demonstrate.

%e begin by extending the usual treatment of
time-reversal symmetry to the evolution of non-
conservative systems (i.e. , those with a time-
dependent Hamiltonian). Following the notation
and methods of Ref. 24, we let A be the anti-
unitary operator effecting time reversal (complex
conjugation in the case of spinless particles), so
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that KK'=K~K=1. There will be a time reversal
symmetry in the exact evolution problem when
KH(t)K =H( t), -or, if H, is time reversal in-
variant (KH, K =H,), when KV(t)K'=V( t) -In.
this case, it may be shown that

Kt v'(t„ t,}t = v(-t„-t,), (2.58)

S8.8= »m (p' ~lv, (o, t)U(t, -t)v(-t, 0)
~
p) (2.59a)

= »m (P{v,'( «, 0)V'(t, --t)v, (o, t) ~P')*

(2.59b)

= »m (p ~K [K' V,'(-t, 0)K][K'V'(t, t)K]-

where denotes equality within an arbitrary
phase. This reduces to the familiar result for
conservative systems, K'U'(t„ t, )K™U(t„ t, )
upon exploiting the time-translation invariance of
U for such cases, i.e. , U(t„t,) depends only upon

Since U, also satisfies Eq. (2.58), we may per-
form the following sequence of manipulations on the
exact S-matrix elements defined by Eq. (2.8):

In passing from Eqs. (2.59c) to (2.59d), we have
used the anti-unitary property of K [Eq. (XV.24)
of Ref. 24] and have assumed that pand p' are
symmetric under time reversal,

o,.{7)= o~( 7) t-&7 &-0,

(r(v) = o( r) --t&v &t,

tT~(T) = (T,{7}0-. & T&«,

(2.61a)

(2.61b)

(2.61c)

are a stationary solution for the reverse process
P' —P. Furthermore, the approximate S-matrix
elements (2.55) are equal, within a phase. To
demonstrate these statements, we exploit trans-
formation properties of the U, 's under time rever-
sal, which are analogous to Eq. (2.58):

(2.6o)

which can always be chosen to be true for a time-
reversal invariant H, . Time reversal thus implies
that the exact 8-matrix elements for the direct
and reverse process are equal within a phase.
%e now consider how time reversal symmetry
is manifested in the mean-field approximation to
S. Specifically, we show that if cr, , o, and o& are
a solution to Eq. (2.52) for the direct process
P- I3', then the fields o&, c, and o;. defined by

x [K'V,'(O, t)tc]K'
~
P )* (2.59c) K'V,' ( t, ~)K= V, -{-r, t),

K'v,'(v, -«)K= v, (t, -T),
(2.62a)

(2.62b)

Spat ~ (2.59e)
I

= »m {PIV,(0, «)V(t, -t)V,(-«, 0) IP') (2.59d) « 'v.' {~,t)K= v, ( t, -7}. - (2.62c)

The equation defining o~(r) {0&7'&t) may then
be written as

(p i V.,(0, t)V (t, «)V., (-«, --~)prr„( r, O)l p&-
(p Iv, (o, «)v. (t, t)v„( t, o)l p-&- (2.63a)

(plv. ( ~, 0)pv. ( t, - ) r(v, --tt) v(o, t)l p &+

(pl v.'.(-t, o)V{t,-t)v& (o, t) l p'&*

U'pon inserting KK~ between all operators and using
KpK'= p, together with Eqs. (2.60) and (2.62), this
becomes

(pl v„(o,7)pv„(r, t)v, (t, -t)v, ,(-t, o) I p')

(pl v,,(O, t)rr, (t, -t)v, ,(-t, O)l p &

Note that any possible phases are canceled exactly
between numerator and denominator. This equa-
tion and its analogs for o and o& show that oi,
cr, and o& are a solution for the reverse process
P'- P. It is then straightforward to verify that
S,, , and S»., as given by Eq. {2.55), are the same,
within a phase.

For elastic propagation (P'= P), the direct and
reverse processes are identical. Consequently,

(2.68b)

(2.64)

erg~) = o,(-7) for 0 ~ ~ & t,
o(r) = o(-7) for ~T

~

~ t.
(2.65a)

(2.65b)

In particular, &r&(0)= o,.(0), implying the con-

I

solutions to Eqs. (2.52) must exist in time reversed
pairs, or be time reversal invariant. The former
case corresponds to Eq. (2.61), while in the later
case, o&=n&, o= o, and o,. =o„so that
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tinuity of o at the lower midpoint of the loop in

Fig. 1. Moreover, (P(v)
~

= (K
~

P(-&)))~ and

(P,, pr)
~

=(& ~P~,(- v)))' T.hese properties can be
usefully exploited to halve the numerical effort
involved in mean field calculations for realistic
systems.

Before closing this section, it should be men-
tioned that, in analogy with the TDHF approxi-
mation (2.41), time-local approximations for the
o fields in the interaction pictuxe may also be
formulated. For example, the TDHF in the inter-
action picture might be formulated as

o "'(», r)=(P,(&) ~p(»)
~

P( v)&,

where (P,(r)
~

= ~P,( r))' [not the state implied by
Eqs. (2.49)-(2.51)] and

(2.66)

S TD HF —(P i
i P (0)) (2.67}

III. ILLUSTRATIVE APPLICATIONS

In other words, all evolution along the loop is
governed by time-local equations. Note, however,
that in addition to being purely nd hot and without
foundation~ this scheIQe tx'eats p and p unsym-
metx ically and so violates any time reversal sym-
metry which may be present in the original prob-
lem. Nevertheless, as we show below in our study
of the Lipkin model, the TDHF in the interaction
picture can sometimes be a fair approximation to
the S matrix, and can even be justified rigorously
if only inclusive averages of the Smatrix are
desired.

cation of our mean-field methods to a realistic
situation.

For a number of nontrivial model Hamiltonians
the solution of the mean-fieM equations can be
greatly simplified. These are systems for which
the relevant operators form a finite Lie algebra,
and hence generate a Lie group composed of all
possible evolution operators. In this case, the
mean-fieM equations may be reduced to a set of
time-local evolution equations for the group pa-
rameters which must be solved self-consistently.
This simplification of the time nonlocal evolution
of the wave functions represents a substantial
computational savings and so allows several non-
trivial tests of the mean-field approximation. As
examples of our method, we consider below two
such gxoup-theoretic Hamiltonians; the forced
harmonic oscillator and the forced Lipkin model.
Although the former is certainly not a many-body
Hamiltonian, it is amenable to a mean-field ap-
proximation, since evolution under a Hamil-
tonian quadratic in the coordinate may be reduced
to evolution under a time-dependent lineax Ham-
iltonian through methods analagous to the Hubbard-
Stratanovich transformation (2.19). The Lipkin
model is a true many-body system: a two-level
shell model system with pair-wise interactions
which may be formulated in an SU(2) context. We
demonstrate that the zeroth order mean-field
approximation to the 8 matrix is exact for the
forced oscillator and has a well-defined and sub-
stantial range of validity for the Lipkin model.

The determination of the stationary e fields
defined by Eqs. (2.52) and (2.49)-(2.51) represents
a self-consistent, time-dependent problem. Any
number of iterative schemes for its solution can be
imagined. For example, one may begin by gen-
erating wave functions

~
P', (7)) by evolving

~
P)

clockwise around the loop using the TDHF ap-
proximation (2.66). Wave functions (P",(v)

~
can

then be found by evolving P' counterclockwise
around the loop according to Eqs. (2.51b), (2.50b),
and (2.49b) using o fields defined according to
Eq. (2.52) with the P'and the instantaneous value
of (P" ~. Subsequent iterations proceed by alter-
nately evolving P(P') clockwise (counterclockwise)
around the loop using the cr fields generated from the
the previous wave functions and the instantaneous
value of the wave function being evolved. The

problem is thus made equivalent to a number of
TDHF-like calculations. This procedure would,
presumably, converge on a solution, although
there is no proof that this need be so. There is
also no simple way to guarantee that in a given
situation all solutions will be found. Such prob-
lems must be solved for any successful appli-

A. Forced harmonic oscillator

%e consider a simple harmonic oscillator of
unit mass and frequency subject to a x'eal external
time-dependent force f(f), with f(f)-0 as [f,

~

-~.
The unpex'turbed Hamiltonian is

+0=2P +sf ~
(3.1}

n = '
deaf(&) e'

vP
(3.3)

and

(3.4)

where q is the oscillator coordinate and p the
conjugate momentum satisfying [q,p]=i and the
perturbation is

(3.2)

The exact S matrix for this problem can be found
analytically by familiar algebraic methods. "'"
If we define
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S=exp[na'- n'a+itJ], (3.5)

where a=(q+ip)/~2and a'=(q —ip)/W)2 are the
annihilation and creation operators. The S-
matrix element between oscillator states having
n and n' quanta is

By introducing an auxiliary function of time a(T),
we can employ the Hubbard-Stratanovich trans-
formation to rewrite Eq. (3.7} as

tV(tt)=, J-P[ (t)]exP '&q f *( )d

n't
(n lsln)=s, =e" e [m[

tl' ff n! where

x U.(t, -t), (3.8)

nt '(1/2
I& I /2

n ti

t
U, (t, t) = T ex-p idT -H, (T)

t

with

(3.9)

x(&)tt'-tt L (n'-n
&(

I
& I2) (3.6b)

where L,'(z) is the associated Laguerre polynomial
of integer degree s and integer index k, with k
+s+~ 0.

To apply our mean-field methods, we consider
first the exact Schrodinger propagator,

t
U(t, )=Tee I-x-ipd [-, p'e-, q'ef( )q[

-t

(3 't)

H, (T) = z p'+ a (T) q+f(T) q . (3.10)

The analogy with the many-body problem may be
seen by identifying q' with the two-body potential
energy, which is quadratic in the density oper-
ator. Like Eq. (2.19) for the many-body problem,
Eq. (3.8) expresses the exact propagator for the
oscillator in terms of the "linearized" propagators
(3.9), although for the latter case c is only a sin-
gle function of time, not a whole field.

To evaluate S-matrix elements, we work in the
interaction picture as in Eq. (2.42):

(» Id[I &= »m f p[e) tq[e[ "[ t[exp('» Jtd"*)( '[Itt. (p, & (t, ttt)t(ttpt &
I

), -e-
~ aO

f tyy y ([y & ty
~

(3.11)

where each of the U, 's evolve with the "one-body"
Ham iltonian

H, (T) = zP'+ o, (T) q+ 5„f(T)q. (3.12)

Here, 5« is unity when l ="no subscript" and zero
for l = "f"or "i "Note .that for the initial and
final states we have chosen exact eigenstates of

Ho, since the corresponding "static Hartree-Fock"
Hamiltonian, & p'+ eq, has no bound states for any
time- independent 0.

The matrix element in Eq. (3.11}is most con-
veniently evaluated in the interaction picture with

respect to the kinetic energy —,'p'. We denote oper-
ators and states in this picture by careis ( ). For
any Schrodinger operator 6,

H (T}= (T((T)t) (T)+ 5(of(T) q(T),

while the interaction-picture states are

In, (T))= exp(-ip'T/2) In, (T))

(3.15)

(3.16)

x (n' IU~ (0, t) U (t, t)U, ( t, 0) In). --

(3.1'1)

and satisfy relations identical to Eqs. (2.49}-
(2.51}with all U's replaced by U's. Thus in the
interaction picture, Eq. (3.11) reads simply

( '[Xl )= (' f tftel »I'I Pf et[exp(i )Xfd '*)'

8 (T)-=exp(ip'T/2) 8 exp(-ip'T /2)

and, specifically,

(3.13) The stationary points of the integrand in Eq.
(3.1'7) satisfy self-consistent equations analogous
to Eq. (2.52):

q (T) =q+pT = [(1+iT)a'+ (1 —iT)a]/&2,

P(T) =P ~

The interaction picture evolution operators are

U, (t„t,}= exp(+ ip't, /2) U, ,(t„t, ) exp(-ip' t, /2),

(3.14)

and evolve with

(Jl I (T) I q (T) I n, (T))'

(nl (T) In, (T))

This is, of course, the same o field as would be
obtained if we evaluated the matrix elements in

Eq. (3.11) directly. To solve these equations,
we proceed in four steps: (i) adopt a convenient
representation of the evolution operators in terms
of two complex time-dependent parameters, o. ((T)
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and p, (,v); (ii) express the a fields in terms of
these parameters; (iii) demonstrate that the a
fieMs satisfy time-local. differential equations;
and (iv) solve these equations self-consistently in
order to determine the S matrix. The details of
these steps follow belovr.

(i) For any complex parameters a, i), , we define
a unitary operator

W[a, )i, ]= exp [aa' —a*a+i']
and parametrize the evolution operators as

U. (~, 0)-=W[e,. (r), i)., (7')], 0~ ~&-f, (3.20a)

to the same point v, are also can write

&n'(r}I=&'IW[ai{0}*&i(0}]W'[a('} I ('}].
(3.22)

The parameters 0| and p, thus specify the evolution
of ln) clockwise around the loop or of &n'

I
counter-

clockwise around the loop. They are, of course,
continuous at &= +t.

A

The evolution of the U's through the H, 's defined
by Eq. (3.15) implies that the parameters a and
p. evolve as

U. (v, f)U. -(-f, 0)=-W[a(r), I (r)], -f- r-f,
(3.20b)

ia, (t)=1/))2 [ a(v)+ 5,0f(v)](I+jr) (3.23a)

U., (r, f) ff.(f, -I) U„(-f,0) =- W[a, (~), I,(r)],

f & r~ 0. (3.20c)

Note that a,(0) = p, ,(0) = 0, and the parametrization
is defined so that

In, (v))= w[a, (v), i() (r)] In). (3.21)

Since counterclockwise evolution around the loop
to a time v is equivalent to complete counter-
clockvrise evolution followed by clockwise evolution

I

Il(T) = Im(aa'), (3.23b)

where the dot denotes d/dr
(ii) Using the representations (3.21) and (3.22)

for n(r)) and &il'(7') I, (3.18) can be expressed
as a relation between o and z, g. Choosing to
evaluate the &-independent denominator at ~= 0
on the final part of the loop, and using standard
commutation relations to effect the unitary trans-
formation of j(v') by W, we have

a( (T) = Re [&n' I W[a~ (0), i)y(0)]W [a i (r), p( (T)]87(r}W [a ( (v}, jL ())]rIn )/(n'
I W[ay {0),jig(0)] ln )] (3 24a)

= ~2Re [(I -iv)a, (r)](1/ 2)Ite [(I+fr)t+(I - I')q],
where the complex parameters ( and )I are functions of az(0) and are defined by

&n'I W[ a~(0) 0)]a~In) ~ I„'". "'')(Ia)0)l ) n+1 6"„,,"~(laI(0)l )
&n'I W[a&(0)) 0]ln) ~ I „',

"' '(I a&(0) I } ai(0) I „"' "(I af (0) I ')

(3.24b)

(3.25a)

(n'I W[a, (0},0]aln) n I„'", "' "(Ia, l')
0)

L„"'p '(la, (0) I')
&n'I W[a~(0), 0] ln) a~*(0) LP "'( I af I') ~ I,"' ~(l af(0) I )

(3.25b)

Both Eqs. (3.24) and (3.25) are independent of all
of the overall phases p. In deriving Eq. (3.25}we
have also exploited relations similar to (3.6).

(iii) The closed algebra of the harmonic oscil-
lator has allowed us to express the o fields at
any time 7' in terms of the instantaneous values
of the parameter e and only taro parameters, g

and g, which are determined in terms of only
az(Q) through Eq. (3.25). Since (3.23a) deter-
mines a&(0) for a given a field, the self-con-
sistency of o at all times, expressed through Eq.
(3.18), has been reduced to a single consistency
condition on az(0).

Rather than solving the coupled equations
(3.23)-(3.25), it is more convenient to eliminate
a and solve fox o directly. By taking the second
time derivative of Eq. (3.24b) and using (3.23a)

and its first time derivative, we find that the o

fields satisfy

&) (r) = -a, (r ) —5,J'(r), (3.26)

o,(r) = (a)c0osr+a, (0) sins,

(r)=(:cos + siam' —fDd '(( )s' (r- '), '

(3.2Va)

(3.27b)

i.e., the o fields satisfy differential equations
equivalent to a forced classical harmonic oscQ-
lator. Equations (3.26) could also have been
derived directly from the second dexivative of
Eq. (3.18) using the commutation rules for q(r)
and H, (r)

(iv) The solutions to Eq. {3.26) may be written
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(3.27c}

o,.(0) = Re($+ q),
uY

(3.28a)

o~(v ) = oz(0) cosr+ bz(0) sinr,

with coefficients o,.(0), o, (0), C, D, oz(0), and

o&(0) to be determined. The quantities v,. ~(0) and
o', z(0} can be determined from Eq. (3.24b), its
first derivative, and (3.23a), using o!,(0) = 0. One
finds

eral discussion of the continuity of the 0 fields
given in the previous section. Thus,

C = a,. (0) = I /V2 Re (g + q),

D=o, (0)=-I/elm($-0).
(3.29a)

(3.29b)

This determines all the coefficients. Final self-
consistency, i.e. , the determination of a~(0), is
imposed by smoothly joining 0' and o& at time
+ t. One finds

f, (0) =- 1
lm($ —0), {3.28b) t

af(0) = — dr f(r) e ".
vZ

(3.30)

1
o, (0}=&2 Rem, (0)+ Re(f+q), (3.28c)

(3.28d)of(0) = W21mo. q(0) — Im(f —q) .

To determine C and D, we require that 0',. and 0,.
at time -t match with o and o, recalling that
f(-t) =0. This continuity follows from the gen-

Note that nz(0) is independent of both n and n',
which is not the usual situation (see the Lipkin
model below}. However, as can be seen from
Eqs. (3.27) and (3.28), the o field does depend
upon the matrix element being considered.

Having determined nz(0), we may now evaluate
the zeroth order approximation to the S matrix:

s„,„=exp( '/2 err'dr)(n'~~at'a, (0), g, (DH~ ) (3.31a)

t 0

=exp — dr 0,'(T)+ . dT 8'(T)+ dr (Tg'{T) e'"f"'
2 0

~ft ) x/2";) expI: —
I ~~{0}I'1 I-op(0}t" "' I-„'""'I

I ~~(» I'l.

The phase p&(0) can be found from Eq. (3.23b)
to be simply P o'z(0)

~

', while the time integrals
can be done explicitly using Eqs. (3.27)-(3.29).
After some algebra, one recovers Eq. (3.3).

The implications of time-reversal symmetry
for our solution are straightforward. When f(T)
=f(-r), Eq. (3.30) shows that a&(0) is purely
imaginary [o'z(0)*=-o'z(0)t. The alternate forms
of S„,„given in Eqs. (3.6a) and (3.6b) then show
that S„,„=S„„,. The relations between the 0 fields
for 8„, and 8, are readily demonstrated by
realizing that $ and q are real, so that from Eq.
(3.28) o (0) =(rq(0) =0, and o,. (0) =-I/v2 Im($ —q),
crz{0)= kimn~(0) —I/V2 Im($ —g). The alternate
forms for $ and ri given in Eqs. (3.25) then esta-
blish the symmetry. For elastic propagation
(s' =n), the requirement {r~(0)= &r, (0) implies
a&(0) = $ —q, which leads by Eqs, (3.25) to a
demonstrable recursion relation satisfied by the
associated Laguerre polynomials, and it is then,

simple to verify that oz(r}= a', (-r) and o(r) = o(-v').
It is interesting to examine the behavior of our

solutions as f(t)- 0, corresponding to free prop-
agation. Of course, in this limit, 8„.„-6„, .
Nevertheless, the o fields are, in general, non-
zero. For n'=n, Eq. (3.25) shows f, ri-0, so by

(3.28), (3.29), all o fields are zero However. , for
n'~ n+I, q-0, but $-I/of(0). Similarly, for
n' ~ n —1, $ -0, but g - I/a&*(0). Thus, the o fields
diverge, even though they cause no net transitions
around the loop.

It is simple to demonstrate the relation of our
mean-field approach to the TDHF approximation
in the interaction picture. According to Eq. (2.66),
the latter implies putting of(0) = 0 in Eq. (3.24a)
and setting the denominator there to unity. The
quantities ( and g are then zero by formulas sim-
ilar to Eq. (3.25) and the solution for the o fields
follows from Eqs. (3.27)-(3.29), with (3.30) still
being valid. One can then show that 8„,„ is as given
by the exact or mean-field evolutions, but with a
very different set of a fields than the latter case.
Thus, for the special case of the oscillator, the
mean-field TDHF approximations in the inter-
action picture give the same (exact) S matrix,
although this is not generally true (see the Lipkin
model below).

Some useful insights can also be obtained by
considering the mean-field approximation to the
Schrodinger picture evolution, which can be sim-
ply formulated using the methods discussed
above. In the general case, the approximate
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(n'I U(t, -i) In& is time dependent, since no linear
field o(f}q can prevent the initial state n from
spreading in coordinate space due to the free kin-
etic energy. Unfortunately, the self-consistency
conditions determining the parameter analogous
to oz(0) above are complicated nonlinear equations
involving the Laguerre polynomials, and so cannot
be solved in the general case. One interesting
specific case to consider, however, is free prop-
agation of the ground state, i.e., f(r) = 0. In this
case, apart from a discrete set of values of t
determined by tant = 1/t -(where the stationary
o field is undefined), the stationary o field is
o(r) =0, yielding (0I U(t, t) I0&-=1/(1+ft)'~', which
makes explicit the dispersion of the wave func-
tion. This then graphically illustrates the cor-
recting power of the additional U, s in the inter-
action picture, which act to cancel this spread.

B. The forced Lipkin model

V(t}=f(t) J=f (f)J,+f (t)J, +f (t)J, .
We take f real with li

I
0 as It I-

Since Bp commutes with J, to find its exact
eigenstates one need only diagonalize it within
each subspace of well-defined J, the eigenvalue
of J being J(J+ 1). We shall confine the discus-
sion to the ground state multiplet, which has
~=-,'¹When v=0, the eigenstates of Hp ale
simply

I
J= ', N, M),-—J~M- J, with energies M.

The lowest member of this multiplet is the state
with M=-J, which corresponds to all particles
occupying the lower level, s = -1. Vfhen v WO,
one has to diagonalize the (N+ 1) x(N+ 1) matrix
(J, M'IH, IJ, M&, and the eigenstates Ip&, with
eigenvalues E~, will be real linear combinations
of the l&, M):

(3.35)

The general time dependent Hermitian one-body
perturbation of this Lipkin model can be written
as

As a second nontrivial application of our mean-
field techniques, we consider the S matrix for the
Lipkin model ' under the influence of an ex-
ternal, one-body perturbation. The unperturbed
system consists of N fermions with pairwise inter-
actions. These fermions are labeled by a quantum

p =1, . . . , N, and each can occupy an upper (de-
noted by s =+1) or lower (s = -1) single-particle
level having energy +e/2 and -c/2, respectively.
For convenience, we henceforth measure all en-
ergies in units of e and all times in units of 1/e.

H a~, is the creation operator for a fermion of
type p in level s, then the unperturbed Hamiltonian
of the model may be written as

(3.36)

Note that one can effectively halve the numerical
work by exploiting the invariance of &p under the
"parity" transformation exp(ivJ, ), so that the
diagonalization can be carried out separately for
even and odd M.

Since the perturbation V(t) also commutes with
X, the wave function will evolve continuously
within the subspace J= —,

' N if the initial state was
within this subspace. The exact excitation prob-
lem can thus be solved by expanding in the ground-
state multiplet:

a~+i PP' s

Ig(t)&= +C~(t) exp(-fE~t) IP& . (3.37)

where v is a real parameter specifying the
strength of the two-body interact'ion.

This Hamiltonian can be discussed in terms of
an SU(2} algebra by defining quasi-spin operators

The (interaction picture) amplitudes C~ satisfy
first order linear equations:

iC =p (&I V(7& IP'&exp(i(E, —E,, )r)C,
gt

-' =~~a„,a„,=~~),' ',
P

(3.33a)

(3.33b}

= p (M
I
v(r)

I
M'&iM

I
p &(M'

I

p'
&

x exp [i(Eq —E~, )7]C~. , (3.36)

Using the anticommutation rules for the a and a,
it is straightforward to show that these operators
satisfy the usual SU(2) commutation rules:
[J„J,]=vJ„[J„J]=2J'„as do each of the j' "s
individually. In terms of the quasi-spin opera-
tors,

Ho =J,+ —,
' v(J, +J ) =J,+ v(J', —J„). (3.34)

where (M IP& =(J= ', N, MIP& are t—he real trans-
formation coefficients from the quasi-spin basis

I
J; M) to the exact eigenstates IP& as defined in

Eq. (3.36). Note that the perturbation
M &=f(t) (MINIM'& has nonvanishing

matrix elements only for M'=M, M+1. To find
S~,~, we start at time r=-f [when V(-f) =0) with
C~.. = 5z.,~, integrate the set (3.38) to r =+t, and
then Sz.z Cz. (t) . ——
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Io-&-=II I,=- &=I =-
&

ln the strong coupling limit
I
g

I
&1, there are two

degenerate, deformed HF minima:

(3.39)

The I ipkin model has a new feature not present
in the harmonic oscillator: a Hartree-Fock ap-
proximation to the ground state. If one assumes
a variational many-body wave function which is
the direct product of N identical single-particle
wave functions (one for each type of particle),
minimization of the expectation value of Hp shows
the following to be true. In the weak coupling
limit, l)t I

=—
I
(N —1)v

I
&1, the Hartree-Fock

ground state,
l
oar&& is given simply by IM=-J);

i.e. , all particles are in the lower level s=-1.
Thus,

(p lsl p&=ltm fsl[o J&[o]x&[o';1
g~ oo

x exp iv g dT(o(('&o(('& o(»o(('&)
x y y

where

x (p'
I
U„(o, t) U,(t, —t) U, (-t, o)

I
p ),

(s.41)

&[o,] =-Q s&[o,',"Jn[o,'„"J (s.42)

and each of the U, evolves with the one-body
Hamiltonian

lo-&= I~~sr& exp[+i«, JI- &

=II exp[+i(( j„"'1
I
s, = -»

for X~ —1,

IoaF&= I+O s,&=exp4tO J,JI-J&

= IIexpkt9 j„"'1Is =-1)

(3.40a)

H, = j, +5pf j ~

+ 2 g (y' & ~ (P& ((&' &.((&i (3 43}
p'4 p

((,&

( )
(p&'(r) Ij,"„'

I p, (T)&

(P,'(T) I p, (r)&
(3.44)

The terms p = p are omitted since j„=j,~ forI ( ) ( )

spin--,' operators. The stationary field configura-
tions of Eq. (3.41) correspond to

for g &1, (3.40b)

where the angle (t& is given by cosy = 1/
I &t I. ln

these states, each single particle wave function is
mixed between the lower and upper levels, and

the mixing is the same for all particles. Note
that the degeneracy can be lifted ' by taking the
combinations l(t&&(r& +

I
-(t&sr&. There is then a

parity doublet where the ground and first excited
states are nearly degenerate.

Our primary interest in this paper is testing the
mean-field approximation to the S matrix, and
not the HF approximation for the initial and final
states. We shall therefore concentrate on the
S-matrix elements for exact I ipkin states.
Nevertheless, it is also interesting to consider
the exact and mean-field S-matrix elements for
elastic propagation between static HF states.
The former may be computed exactly by taking
Cs(&=-t) =(p lo&(r& in Eq. (3.38), integrating
these equations from -t to +t, and then forming
the S-matrix element as (0„,

I
S

I
0„,) = Z(&, (0»

I
P

'
)

x CB,(+t).
To construct the mean-field approximation to

the S matrix, we follow Eq. (2.42) and introduce
an auxiliary field 0,'~,' for each one-body operator
j„' „' appearing in the two-body term of Hp. Thus

(p IS
I
p)-exp i' (tr(o' —o„)

x(p'IU. (o, t)v.(t, -t)U. (-t, o)lp)

(s. 46)

and each of the U, evolve with

ff. (T) =Z j*' +6(of'i ' +2X(o&.i.' —o&,i,')
p

where

=J,+ 5&of ~ J+ 2)((o„J,—o, J,)

=-F,(r) J,

(3.46a)

(3.46b)

(3.46c)

lf
I P) and Ip') belong to the J= —,'N multiplet,

they are symmetric under any permutation of the
particle labels p, a symmetry which is then also
true of the integrand in Eq. (3.41). Consequently,
we may search for stationary points where the
o„~„=o„„arethe same for all p. The zeroth order
contribution of such points to the S matrix is then
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For such symmetric solutions, we can also use
Eq. (3.33) to average (3.44) over all p and obtain

)
I (P('(&) i J*.I P, (( )&

. ip,'()ip, (r)&
(3.46)

The symmetric solutions are only one class of
possible stationary points of the integrand in Eq.
(3.41). We expect that these will be the most
important ones and retain only them in our subse-
quent treatment. Nevertheless, there may exist
other solutions in which the g'~ depend upon p.
The symmetry of Eq. (3.41) then guarantees that
for each such solution there exist "mirror" solu-
tions, corresponding to permutations of the p
labels, whose contributions to S add coherently.

A simpler, alternative implementation of the
Hubbard-Stratanovich representation of the Lipkin
propagator would introduce p-independent auxiliary
fields directly in the Hamiltonian (3.34). In this
case, X in Eqs. (3.45)-(3.47} would be replaced
by NX/(N-1}, the difference, of course, corre-
sponding to Hartree-Fock. Beginning the formu-
lation with p-dependent 0 fields correctly removes
the spurious self-interaction present in the Har-
tree treatment.

We solve the mean-field equations by following
methods analogous to steps (i)-(iii) used for the
forced harmonic oscillator above, but differ from
the previous step (iv) by solving evolution equa-
tions for the group parameters rather than for
the 0 fields.

(i) In analogy with Eq. (3.19), for any real
a =(a„a„a,) we define the unitary operator

W[a]=exp[-2ta J]. (3.49}

Since [j o, j o ']=0 for pop', W can be factored
into a product of one-body unitary operators:

(E(» F,„,F„)= (2X&&,+ 5(of» 2X&(( + 6,of(„1+6(of ) ~

(3.47)

ip, ( )&= W[a,(r)]ip&,

(p,'(r) i
=(p'i w[a, (o)]w'[a, (r)] .

(3.53a)

(3.53b)

Equations of motion for the parametrization can
be found from the evolution equation for the

U, 's. These lead to
Ni

[a,(r)]=H, (T)W[a (T)], (3.54)

where H, is given by Eq. (3.46}. Since the
evolution of the a, implied by Eq. (3.54} is inde-
pendent of which particular SU(2) irreducible
representation is being used (i.e. , independent of
J= ,'N}, it i-s simplest to choose J'=-,' and exploit
the properties of the Pauli matrices. Defining
a = (a„'+ a„'+a,')"', we obtain

1 ctg&2a= —,— (F ~ a)a+(actga)F+Fxa,
(3.55}

where both a and F [defined by Eq. (3.47)] may
be along any part of the loop. This is the analog
of Eq. (3.23) for the oscillator. Note that at & =0
on the initial part of the loop, where &t -0, there
is no singularity in these equations. This is not
true of the conventional Euler-angle parametriza-
tion.

The contribution to the S matrix from a given
stationary solution may be written simply in
terms of our parametrization. From Eqs. (3.45)
and (3.52c) we have

v. (r, t)v.(t, t)-v. ( t-, o)= wfa, (r)] o(r(t.
(3.52c)

At time r = 0 on the initial part of the loop, we
must have a, (0}—= 0 and the parameters must be
continuous at the endpoints +t: a;(-t) = a(-t),
a(t) = a,(t).

With this notation, the initial and final states
along the loop are

(3.50)

where

o(("'[a]=exp[-2ia ~ j "'] (3.51)

Since each of the operators in the H, 's are ele-
ments of the SU(2} algebra, we can parametrize
the evolution operators in analogy with Eq. (3.20)

e rr 'r(x fr(r(, ' —rr„') ((r'(rrfrrr(0)1(rr&.

(3.56}

The final matrix element (p'iexp[-2iaz(0) Jl ip&
is given in terms of the rotation matrix for spin 4,

D„'.„[a,(O)l =(M iexp[-2ia, (0) J]iM)

V. (r, 0) = W[a, (r)] 0 & r & -t r

V.(r, -t)V. (-t, O) -=W[a(r)] -t (r (t r

(3.52a)

(3.52b)

(P'i W[ai(0)] iP & = g (P'iM'&D„, „[PVi(0)](M iP& .

(3.57)
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For large values of J, D can be conveniently
generated from

D'!'[a/=5. , coso. —2i &r &m'Ij Im)

(3.58)

by the usual Clebsch-Gordan series.
Of course, the entire discussion above remains

valid when P and P' are replaced by the HF ground
state. In this case, Eq. (3.56) may be simplified
further using the factorization of W, Eq. (3.50},
and the product nature of IO„r) as in Eqs. (3.39)
and (3.40):

N

&o ~s~o„,&=Ie*p ixfu &rr, '-rr, & &s= —&I & i&0&&l =—&& I@I-&. (3.59)

For strong coupling situations, the single particle states
I
s = -1) should be replaced by rotated states as

in Eq. (3.40). Thus, the zeroth order mean-field approximation to the S-matrix element for elastic
propagation of the HF ground state depends very simply upon N for fixed y.

(ii) Using Eqs. (3.48) and (3.53) we can derive an expression for o in terms of u similar to Eq. (3.24)
for the oscillator. The unitary transformation of J, W JW, can be simply evaluated using the SU(2)
commutation rules to obtain

o,„= (cos2n, )y —2 '(o&, xy)+2 '
o&, „cT, ~ o,.(0),

l

(3.60)

where y is the unit vector in the y direction. A

similar expression determines a„.
The parameters o,(0) are analogous to $ and 0

for the oscillator in Eq. (3.25} and depend only

upon &T&z(0):

1 (P'I exp[-i2&rI(0) X]J IP)
N .(P'I exp[-i2Z~(0) ~ T] IP)

(3.61a)

Z&P' I
M')D' ~"[&r (0)]&M' I J I M)(M I P)
E&P IM')D'„. „[u,(0)]&MIP)

(3.61b)

(s = -1Iexp[-2io.'&(0) ' j ]j I s = -1)
&r (0) =Re

(s = -1!exp[-2i@&(0)' j ] I s = -1)

(3.62}

(iii) Equations (3.55) and (S.60) can now be
solved for o&, (r), where the full self-consistency
requirement on the time-dependent 0 fields has
been reduced to one on the three parameters
B,(0). That is, the o,(0) in Eq. (3.60) used to
evolve @ must be the same determined by n&(0)
through Eqs. (3.61).

As in the oscillator, we can eliminate and
obtain closed equations for the 0 fields. We in-

where the sums run over all M indices appearing
in the summand. When IP) and IP') are replaced

by
I
Oar}, this can be simplified by using Eq.

(3.44) rather than Eq. (3.48):

troduce another auxiliary field o,(v) defined anal-
ogously to Eq. (3.48). Taking the first time de-
rivative of this equation and simply evaluating
[H„S], we obtain

g, (T) = F,( )Txo, (T) . (3.63)

&PI[Jr.. W[o'i(0)]]IP}
&P I W[&r (0)] IP

(3.64)

These equations are analogous to Eq. (3.26} for
the oscillator, but are nonlinear since F is a
function of o. Note also that it follows immedi-
ately from Eq. (S.63) that o —= &r o is conserved
around the loop.

(iv} In contrast to the forced oscillator, Eq.
(3.63) alone is not sufficient to find the stationary
solutions. One might hope to guess o,(0), inte-
grate Eq. (3.63) around the loop to find o~(0), and

then demand self-consistency on &r&(0) through

Eq. (3.60). Unfortunately, this latter explicitly
involves n&(0), and it is impossible to invert Eq.
(3.61) to find &T&(0) in terms of o,(0). Hence,
self-consistency can be assured only by also inte-
grating the &r equation (3.55) together with (3.60).

The unperturbed Lipkin Hamiltonian (3.34) is
not time reversal invariant due to the term linear
in J,. Consequently, the mean fields will not
possess this symmetry either. For example, for
elastic propagation (P '=P), it is easy to show
that 0, and 0& are not continuous at T=O, but in-
stead suffer a discontinuity
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However, other symmetries of the problem are
preserved by the mean-field approximation to the
S matrix. In particular, by methods analogous
to those used to discuss time-reversal symmetry
in Sec. II, the following two symmetries can be
shown.

(i) Ho is invariant under the transformation
(x, y) —(y, x) and v —-v (i.e. , a 90' rotation about
the z axis followed by a reflection through the y —z
plane and a change in sign of the two-body inter-
action). If V(t) also has this symmetry [i.e. ,
f,(t) =f„(t)j, then the exact and mean-field S ma-
trices for the original and transformed problems
also have this symmetry, and if (o„,o„) is a self-
consistent solution of the original problem,
(o„,o,) is a solution of the transformed problem.

(ii) Since Ho is invariant under a rotation by v

about the z axis (i.e. , J„„--J',„},each of its
exact eigenstates ~P) has a definite parity (-)
under this transformation. The exact and mean-
field S-matrix elements S~.z for the perturbation
(f„f„,f,) are related to those for (-f„-f„,f,) by
the phase factor (-)a'z . If (o„a) is a solution of
the original problem, then (-o„,-o) is a solution
of the transformed problem. When f,=f„=0,
transitions can be induced only between states of
the same parity. In this case, the original and
transformed problems are identical and either
g„=0„=0or the mean-field solutions occur in
conjugate pairs, (+o„+o). In the former in-
stance, it is evident that S~. will vanish unless p'
and P have the same parities, while in the latter
case, the conjugate solutions give equal and oppo-
site contributions to S to satisfy the parity selec-
tion rule.

The model defined above is specified by the
number of particles N, the coupling constant y,
and the driving field F(t). Since it is not possible
to explore the full range of these parameters
here, we have chosen to present some represen-
tative studies where f(t} has a Gaussian time de-
pendence on a time scale T.

f(f) = e " (f„,f„,f,) . (3.65)

Here, the amplitudes f„„are time independent.
Unless stated otherwise, we assume the "stan-
dard" parameters r =f,=f„=f,= 1. Throughout,
we focus on the moduli of the various S-matrix
elements, but note that results for the phases are
of a similar quality.

In Fig. 2, we show several approximations to
the elastic S-matrix element (S00 ~

as a function of
¹ The standard parameters are assumed in a
typical weak coupling situation X =0.5. The mean
field is seen to be a good approximation to propa-
gation of the exact ground state and an even better
approximation to that of the (undeformed) HF

V(t) =e ' (J„+ „+,)
=0.5

Soo-

i0-I—

/0 2
0

I

!0
I

20
I

30
I

40 50

FIG. 2. Modulus of the ground-state elastic propaga-
tion amplitude ~SO&~ in the forced Lipkin model for vari-
ous ground states and evolution methods. Plotted as a
function of the number of particles N are the results for
0—exact evolution of the exact ground state; a—mean-
field evolution of the exact ground state; x —exact evo-
lution of the HF ground state; —mean-field evo-
lution of the HF ground state; ———interaction-picture
TDHF for the HF ground state.

ground state. Note that in this latter case, an
exponential N dependence is predicted by (3.59).
Also shown in Fig. 2 is the interaction-picture
TDHF approximation defined by (2.66)-(2.67),
which is seen to be a rather poor approximation
to the S-matrix element for the HF ground state,
although it is (accidentally) a fair approximation
to that for the exact ground state.

The moduli of the amplitudes to excite the exact
nth excited state from the exact ground state (S„D

~

are shown in Figs. 3-5 for various cases. The
exact propagation is compared with both the mean
field and interaction picture TDHF results for
X =0.5. Figure 3, a typical case of intermediate
excitation, shows that the zeroth order mean-
field approximation well reproduces the exact re-
sults, though somewhat underestimates the ex-
citation of those states which are strongly excited.
The approximation gets better with increasing N,
since the phase of the functional integrand, which
is assumed to be varying rapidly, is roughly pro-
portional to N, as in (3.56). The interaction pic-
ture TDHF, although unitary, generally predicts
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0
k
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0
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k 0
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0
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Q
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n

I
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0
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10 l2 I 4 16 18 20

FIG. B. Moduli of the amplitudes to excite the exact nth excited state from the exact ground state )S„o( in the forced
Lipkin model. Shown for several values of N are the exact amplitudes (0), their mean-field approximation (z), and

thei, r interaction-picture TDHF approximation (a).

too broad an excitation spectrum. Figure 4 is a
case of strong excitation (short time-scale r =-,'
and large amplitude f, „,=4) where both approxi-
mations agree very well with the exact result,
although again the mean field is slightly better.
Such agreement is to be expected, since the strong
external field makes the treatment of the two-body
interaction less important, which is how the two
approximations differ. Figure 5 is a case of
weak excitation.

The stationary mean field o, „(&) is shown in Fig.
6 for a weak coupling situation. When V(r) =0,
the fields oscillate and, of course, o, r(r) coincide

0.5
2

V(t)=e 'f (4J + 4J + 4J )

0.6—
I I I I I I

0
0.5—

Is-I
0.4—

0.3—

t2e-
4 (J„+ J„+ J, )

X=0.5
N= 30

with o'(7). Since the Lipkin Hamiltonisn is not
time-reversal invariant, the mean fields are not
symmetric about r=0, even though V(r) is.

To explore the strong coupling limit
I
Ii

I
&1, we

consider the elastic propagation of the positive-

Is-I
0.3—

Xx 0.5
N= 30

p paa p

0.2

0.2—

O.I—

I A h I I I I I I

2 4 6 8 IO 12 14 16
n

4d

18 20 22 24

9
I I I I I b
0 2 4 6 8 IO

n

FIG. 4. Similar to Fig. 3, but for a case of stronger
excitation.

FIG. 5. Similar to Fig. 3, but for a case of weaker
excitation.
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I I I I I I

~x

0.2—

Q. I

-O. I

-0.2
—0,3—

0.2

O. I

-O. I

-0.2
-0.3

I I I I I I where the s's are N independent. Interference
phenomena as a function of N or X are expected
from this form. Often, only two of the four terms
contribute significantly. In our standard case,
for lxl &1, s„dominates, and s is the second
largest contribution. However, for I)t I

& 3, s
becomes larger as s, decays. For very large
Ix I Is I

= Is- I= l and s, =s, =0. This ts to be
expected, since for the extreme strong coupling
limit, the deep and narrow HF minima make it
difficult to excite states in the wells at +y and the
excitation problem essentially reduces to one in-
volving only two channels, the nearly degenerate
symmetrized and antisymmetrized ground and
first excited states, as in (3.66). In Fig. 7, we
show the rather amazing agreement of the exact
and mean-field approximations for ISpo I

over the
entire range of I)I I. Again, the improvement
with increasing N is evident.

IV. SUMMARY AND DISCUSSION

I I I I I I I I I I I I

-6 -5-4 -3 -2 -i 0 I 2 3 4 5 6

FIG. 6. The mean fields g, „{v)for the evolution of
the HF ground state with y =0.5 under the standard per-
turbation. Note that 0& & {v) coincide with 0{~)when

V(T) o «.e., I 7
I
» 1).

In this paper, we have developed a mean-field
approximation to the many-body S matrix. For a
many-body system with pairwise interactions per-
turbed by a time-dependent one-body field, we
have shown that the first-order mean-field equa-
tions reduce to a set of temporally nonlocal TDHF-

parity HF ground state obtained by symmetrizing
the states (3.40): 0,8—

V(t)=e ' (J + Jy+ J )

= 1
I0s.& = ~ (I+ ~») + I-«r&l |

where the normalization is

(3.66) Soo

0.6—

04—

02

0
a g

60
~ ~ ~ ~ e

~ ~ ~ ~
~ ~

(3.67)6f =3(i+He&+i - I-&»&) .
As I)II-~, the HF minima became increasingly
better defined and I+y»& became orthogonal to
each other. The S-matrix element for the elastic
propagation of (3.66) is I.O
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'&-~s.l~ I+~sv&+&-~Br l~l-~»&l.

(3.66)

If we separately evaluate each of these four terms
in the mean-field approximation, each becomes
exponentially dependent on N (as in 3.59) and, in
an obvious notation,

V(I) e (J + Jy + J ) o p
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FIG. 7. Elastic propagation amplitudes I SDOI as a
function of g for N = 20 and N' =40; 0—exact evolution
of the exact ground state; x —exact evolution of the sym-
metrized HF ground state; ~—mean-Geld evolution of
the symmetrized HF ground state.
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like equations which must be solved self-consist-
ently to determine the excitation amplitudes. Ap-
plications of this method to the forced harmonic
oscillator and Lipkin model have shown that it can
well reproduce the exact S matrix in a variety of
situations.

Our studies naturally raise a number of ques-
tions concerning both the mean-field method it-
self and its future utility in realistic calculations.
Some of these will be given detailed consideration
in future publications while others are currently
being investigated. We briefly summarize some
of the more relevant points below.

To generate the zeroth-order mean-field ap-
proximation basic to our method, we have chosen
one particular stationary-phase approximation to
the Hubbard-Stratonovich representation of the
many-body evolution operator, i.e., that in which
the phase of the integrand is assumed to vary
much more rapidly with 0-field configuration than
does it magnitude. As discussed in Ref. 14 relax-
ing this assumption leads to generally complex
v fields and a steepest-descent approximation to
the functional integral. Although such mean-fields
imply a nonunitary one-body evolution through
(2.21), the extra freedom they introduce may re-
sult in better approximations to the exact inte-
grand with little additional complications. The
complex-time (instanton) technique useful in

bound-state problems" may also be applicable to
the S matrix. Such questions can, of course, be
readily investigated in the force Lipkin problem
discussed above.

have not considered any quadratic correc-
tions to the lowest-order mean-field approxima-
tion, although we discussed in Sec. II why such
corrections would generally be expected to be
small. Indeed, this proved to be the case in most
of the examples considered. This is fortunate,
since the evaluation of such corrections requires
the practically intractable computation of a func-
tional determinant similar to (2.32). When sever-
al solutions contribute coherently to a given S-
matrix element, larger errors might be introduced
by the neglect of these corrections. To what ex-
tent the situation might be corrected by complex
0 fields remains to be investigated. All of these
issues must be considered case by case, since
they clearly depend on the particular problem and
coupling strengths being studied.

Although we have given a mean-field approxima-
tion to the S matrix, we have emphasized in Sec.
II that the choice of initial and final states is quite
a separate and independent issue. This point was
demonstrated explicitly in our Lipkin studies in
Sec. III. Although Slater determinants are the
most natural and tractable states to use, more

sophisticated wave functions may be necessary to
achieve the desired accuracy in any particular sit-
uation. One attractive possibility deserving fur-
ther study is to use the bound-state mean-field
techniques" to furnish these wave functions. In
a sense, this would make the description of the
channel states commensurate with the approximate
mean-field evolution.

We have not, as yet, been able to generate a
tractable mean-field approximation to the com-
plete time-independent many-body scattering
problem, in large part due to difficulties in the
choice of these channel states. Consider, for ex-
ample, the elastic scattering of a single nucleus
from a spatially localized one-body potential V(x).
The channel states should be chosen as approxi-
mate eigenstates of H, describing the many-body
ground state boosted with a total momentum P,
the quantities of interest then being ( P'

~ S~ P),
where S is given as in (2.8). One possible choice
for these eigenstates can be written in terms of
the zero-momentum component of the static HF
solution. Specifically,

I &) = ""(% ' f&RI'R*)), (4.1)

where X is the nuclear center-of-mass coordinate,
~
R) is the ground-state HF determinant with

( R( X
~
R) = R, and X = J d R d R'( R'

~
R ) is the

normalization. Note that
~
P) is not a determinant.

The many-body S matrix is then

(v'I sly') =or- fs(( a(('((('~e-"" "se""~R),

(4.2)

i.e. , a linear combination of elements of S evalua-
ted between determinantal states. It is, of course,
natural to attempt to treat the center-of-mass mo-
tion semiclassically and make a stationary phase
approximation to the R, R' integrals, exploiting the
fact that (R'( R) is sharply peaked near R'=R.
The stationary conditions which result require that
0 and R' be chosen so that the mixed-time expect-
ation value of the total momentum [ analogous to
(2.36) for the density] be P along the initial part
of the loop and P' along the final part of the loop.
The practical implementation of these conditions
appears to be difficult. Other practical problems
exist in a real two-nucleus collision as far as
properly defining the channel Hamiltonians and the
interaction V = II -H, .

Despite the rather discouraging prospects for a
completely quantal treatment, the formalism we
have developed here is immediately applicable to
situations where a separation coordinate 5 can be
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isolated and treated classically. In this case, the
remaining intrinsic coordinates x can be treated
via the mean-field methods .The motion R(t) then
generates an effective time-dependent potential
perturbing the x degrees of freedom. A scheme
can also be developed to allow the intrinsic ex-
citation to feed-back on the separation trajectory. "
These approximations are applicable to electronic
excitation and charge transfer in atomic colli-
sions, and indeed appear quite tractable in prac-
tice." The same scheme for nuclear collisions
would allow optical model transmission functions
and elastic and inelastic scattering amplitudes to

be computed in a microscopic, nonperturbative
manner.
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