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We investigate a barrier penetration model for the sub-Coulomb fusion of light ion systems and derive an analytic
formula for the cross section. The validity of the model is checked against results based on a modified proximity
potential which reproduces the fusion cross section at energies above the Coulomb barrier. The meaning of the
parameters defining the model as well as the extrapolation of the formula at very low energies are discussed.
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I. INTRODUCTION

At low energies it is assumed that the fusion
cross section is identical to the reaction cross
section, and that the calculations can be reduced
to a barrier penetrability problem. The shape
of the barrier depends on the choice of the nuclear
and Coulomb potentials. An example is shown
in Fig. 1 for the system '°0+!%0. The potential
V, is defined in Sec. IIIA. One can see that
for partial waves /<22 the potential has a pocket,
i.e., a minimum, followed by a barrier situated
around the maximum of V,. For [ >22, where
the pocket has disappeared, the formalism pre-
sented below is no more valid. Several choices
have been considered for the nuclear and Coulomb
potentials [cf. Refs. 1-4]. Among these choices,
it turns out that at energies above the Coulomb
barrier (I =0) the proximity potential,® with a
small adjustment' of one parameter, can well
account for the fusion cross section up to bom-
barding energies corresponding to partial wave
barriers where the potential still has a pocket.
Other adjustments®* are consistent with,! and
almost always imply, an increase in the attrac-
tion of the original proximity potential. Instead
of directly working with a chosen barrier, as
in Fig. 1, a common and convenient procedure
is to approximate the potential in the barrier
region with a parabola which gives an analytic
form of the transmission coefficient.® The para-
bola is fitted to reproduce the position, height,
and curvature of the real barrier, and in Refs.

1 and 2 the importance of fitting a parabola for
each partial wave was shown.

The parabolic barrier is a good approximation
for energies near and above the top of the Coulomb
barrier. For energies well below the Coulomb

barrier, the much slower decrease of the Cou-
lomb tail with respect to a parabola fitted at

the top of the barrier [see Figs. 2(a) and 2(b)]
suggests that the parabolic barrier approximation
is inadequate. Recently Avishai’ proposed a
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FIG. 1. Effective potential V, for %0 + 10 as a func-
tion of the relative distance » between nuclear centers.
V, is the sum of a modified proximity potential (see
text), a Coulomb term, and a centrifugal term.
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FIG. 2. (a) Potential barrier V=V y+V, for %0 +%0.
Full line is with the modified proximity potential V as
in Ref. 1 and Coulomb potential V, as in Ref. 8. The
dashed line is the model of Eq. (4) with parameters given
in columns 2—4 of Table I and the dotted parabola has
hwy from column 5 of Table I instead of column 4. (b)
Same as (a) but for 12C + 1B,

model which takes into account the Coulomb tail
and still gives an analytic form of the transmis-
sion coefficient. For I=0 it consists of replacing
the half of the parabola to the right side of the
barrier top by a Coulomb potential between two

point charges. In the present paper we analyze
the applicability of the model proposed by Avi-
shai. We compare its results with those obtained
from a realistic barrier formed from the Coulomb
potential of Ref.® and the nuclear proximity po-
tential adjusted as in Ref. 1. We propose a modi-
fication of Avishai’s model to take into account
the centrifugal term on both sides of the barrier
and study an approximation which leads to analytic
expressions for the transmission coefficient and
the cross section.

In the next section we present the model. By
introducing some approximations we derive an
expression for the fusion cross section. In Sec.
III we show by numerical examples the validity
of various approximations involved and discuss
the choice of the parameters defining the model.
In Sec. IV we analyze the fit to experimental sub-
Coulomb fusion data, and in Sec. V we conclude
the paper.

II. THE MODEL

At low energies the gross structure of the fusion
cross section is well accounted for by the formula

£

op=m2 Y (0+1)T,, 1)
1=0
where % is the reduced wavelength of the relative
motion and T, the transmission coefficient for
the partial wave I. We calculate T, from the
expression®

1

T'=1+exp(2K,) ’ @

where K, is the penetrability integral through the
barrier V,(r),

K,= Lz (ZF“ v, () = E]) ar, (3)

7, and 7, being the turning points at the bombard-
ing energy E in the center of mass system, and
b is the reduced mass. The form (2) of T, re-
sults from a semi-classical approximation. In
the limit of large K, it turns into the more famil-
iar WKB expression.

Consider a potential V, =V +#%(1+3)*/2ur?. If
the maximum of V, is positioned at R,, we assume
that in the barrier region the shape of v, can be
approximated by

2 iy
V,~E, ‘“woz(r.ZRO) +ﬁ22(lp;:) ’

r<R,
4)
N Z]Z=e2+ f(l+3)?
T or 2ur?
i.e., the inner side (¥ <R,) of the Coulomb barrier
(1=0) is a half-parabola of height E, and curvature

, >R,
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fw,, and the outer side (r>R,) is a pure Coulomb
repulsion between two point charges. The dif-
ference with respect to Avishai’s model’ is that

a centrifugal term is added for >R, and the
same term is considered a function of » for <R,
instead of a constant. If E; and R, are taken from
systematics of fusion cross section (see, e.g.,
Ref. 1), then the function (4) has a discontinuity
at R, which increases with Z,Z, and makes the
model less adequate for larger nuclei. For light
heavy ions at bombarding energies well below

the barrier top, the effect of this discontinuity

is negligible, as we shall see below.

The integral K, can be evaluated exactly for
R,<r<7,, but it would be advantageous to have
an analytic expression for the whole integration
interval. This can be obtained approximately
by making a series expansion of the integrand
in terms of the centrifugal term. Keeping the
first term in the expansion, we obtain

K,~ Ky(E)+(1+3F[Dp(E)+ Do(E)] (5)
where
mE, - E) . [RR\Y?
=0 7 - —0
K, o, +1n = 21 arcsm( 271)
-[kRq(2n - kR 2, (6)
R x  w/2+arcsinx
DP—2uwoR02(l—x2+ A-x)? )5 (7
and
1 /2 13
De 'Zn(ﬁo' 1) : ®)
In the expressions above 7 is the Sommerfeld
parameter 1 =uZ,Z,e?/i2k, k is the wave num-
ber, and
2(E,-E)
20— 77
x =“wozRoz (9)

In K|, the first term represents the integration
over the half-parabola and the other terms re-
sult from the integration over the Coulomb tail.
This is the I =0 contribution. The !#0 partial
waves give an additional term in (5), where D, and
D, come from the first derivative of K, with
respect to (I +3)? integrated from 7, to R, and

R, to 7,, respectively. Avishai’s result can be
considered as a particular case of Eqs. (5)-(8)
and is obtained by setting D, =0 and x=0. The
approximation x~ 0 is good for a narrow para-
bola (large #w,) having a height E, < pwy?R2/2.
Such examples are the parabolas with parameters
taken form columns 2, 3, and 5 of Table I, which
give x < 0.07. Setting x~ 0 the quantity D, becomes

e (™)

TABLE I. Parameters of the model of Egs. (4).

E, R, fw, iw, b hw, ©
Pair MeV) (fm) (MeV) (MeV) (MeV)
o+160 1075 7.74 2.92 5.08 3.54
160 + 14N 9.05 8.08 2.72 4.95 3.23
160 +12¢ 794  7.88 2.69 4.90 3.26
uN +12¢ 6.99 7.83 2.61 4.77 3.19
12¢ 4 12¢ 6.36  7.31 2.66 4.81 3.44
g +12¢ 521  7.46 2.46 4.44 3.14
10g +12¢ 5.23  7.43 2.51 4.57 3.24
2From Ref. 1.

bFrom fitting the inner part of the barrier at one point
(see text).
¢From Eq. (18).

This is Avishai’s expression for D,, convenient
for narrow parabolas. But there are no argu-
ments to neglect D, which is of the same order
of magnitude and usually greater than D,.

One would expect the approximation (5) to be
valid whenever the increase in the area under
the barrier due to the centrifugal term is small
compared to the /=0 barrier. This happens for
low partial waves and at energies well below the
top of the Coulomb barrier. A detailed numerical
analysis is given in the next section.

Finally, using the approximation (5) for K,, one
can write a closed formula for the fusion cross
section (1) by replacing the sum with an integral
over /. This gives the expression

2
oF =§(l-)l§-b—c-) In[1+exp(-2K,)] , (10)
which is an analog of Wong’s formula!® (see the
Appendix) valid at energies around and above
the Coulomb barrier. Wong assumed parabolic
shapes for all barriers with the same parameters
R,, w, in all partial waves. Recent studies':?
have shown that the dependence on ! of the para-
meters defining the parabola is important at
energies above the Coulomb barrier. For the
model studied in the present paper one has to
define the parabola parameters for /=0 only.
The approximations which lead to formula (10)
are studies numerically in the next section.

III. DISCUSSION

Presently we discuss the validity of the model
described in the previous section by performing
a numerical analysis of the approximations used
in deriving the expression (10) for the fusion
cross section.

First we have to choose a realistic barrier
whose shape will be approximated by the Eqgs.
(4). This is done in Sec. IIIA. Second we have
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to find values of the parameters R,, E,, and
KEw,which fit the realistic barrier. This is dis-
cussed in the Sec. Il B. Lastly the validity of
the approximations used to derive the cross sec-
tion formula is analyzed in Sec. IIIC.

The intention of the present work is to under-
stand the model (4) rather than experimental data.
However, a comparison with the measured cross
sections will be given in Sec. IV.

A. The “exact” barrier

We consider the potential

V,(r)=V )+ Vc(r)ﬂ%(‘%i , (11)

where V, is the nuclear part and V. the Coulomb
part. For V, we choose the modified version

of the proximity potential® as proposed by Vaz
and Alexander*

VN(&) = 47rybclcz/(c1 + Cz)¢(§) )
(12)
£=(r-C,-C,)/b,
where £ is the dimensionless separation distance
between nuclear surfaces, b =1 fm a parameter
related to the surface thickness, and ¢(£) a uni-
versal function expressed analytically as

d(£)=-0.5(£ - 2.54)* - 0.0852(& — 2.54)°, £<1,2511
= -3.43T exp(-£/.75), £>1.2511, (127)

The parameters C , are the central radii related
to the effective sharp radii R, by

C,=R,-b*/R,,
(127)
R, =1.284'/°_0.76+0.84,"/°+AR (i=1,2),

where AR is explained below. The quantity y
is the surface energy coefficient given by

N =
y =0.9517 [1 -1.,7826 (T),] .

The Coulomb potential V is taken as in Ref. 8.
Ve=V,=krrfor r <R, +R,,
v 3e2( (Z,+2,F 22 222)
’

07 o

RBRE+REY7TR, "R,

(13)

(-

Y -
k=(Vo—-R—::%2)(R1+R2) ,

and

2

Vc=£ﬁrﬁ for ¥ >R, +R, . (137)
This Coulomb potential is more adequate for
heavy ion colligsions than that used in Ref. 1, but
this choice does not alter the results obtained
there because in the energy range considered,
the fusion cross section is insensitive to the inner
part of the barrier.

Vaz and Alexander' indicated that small changes
in the values of the parameters R,, v, or b as
proposed by Blocki et al.’ were necessary in order
to obtain a good fit of the fusion cross section at
energies above the Coulomb barrier. From a
detailed numerical study they found that a change
in all three parameters is practically equivalent
to a change in one parameter only. They found
it convenient to adjust the radii R; as defined
in Ref. 5 by a quantity AR. In formula (12’) we
use for AR values taken from Table II of Ref. 1.

In Ref. 1 each V, was approximated by a para-
bola with I dependent parameters E,, R, and
Fw,, and the transmission coefficeint T, was
calculated according to the Hill-Wheeler formula,®

-1
Tl(E)=(1+exp——‘—2"(§ ~E) ) @)
Wy

This is a very good approximation for energies
around and above the Coulomb barrier as long
as V, has a pocket and the values of E,, R,, and
7w, were determined once the parameters AR
were adjusted. The model studied in this paper
needs parameters for /=0 only, and it would be
interesting to see if the values found by Vaz and
Alexander retain a meaning at energies well be-
low the barrier.

B. Parameters of the model

We apply the model to a series of pairs of light
ions which are of particular interest in astro-
physics and for which there are extensive meas-
urements of the fusion cross section at sub-
Coulomb energies.!!

The pairs of nuclei under discussion are given
in Table I together with the parameters E,, R,
and 7w, used in the calculations. The values of
E, and R, are the same as in Ref. 1. For Zw,
we leave some freedom. One choice is to take
it as in Ref. 1. Such values are reproduced in
column 4 of Table I. By definition they give half-
parabolas with the same curvature at R, as that
of the exact potential defined in Sec. IITA. But,
as one can see from Figs. 2(a) and 2(b), there
is a large difference between the half-parabola
(dashed line) and the exact potential (full line)
at r<R,. At bombarding energies well below the
barrier this difference affects considerably the
penetrability integral (3). Two typical cases are
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shown in Tables II and III for '*0+'®0 at E,, ,, =17.76
MeV and *’B+!%C at E ,, =1.22 MeV, respectively.
One should compare columns 2 and 5 which give
the double of the penetrability integral calculated
with the dashed half-parabola and the exact bar-
rier, respectively. For the partial waves indi-
cated in the tables one can see that with increasing
! the model overestimates the penetrability in-
tegral from 15% to ~30% for '*0+'°0 and from
% to 9% for '2C +'°B. It seems therefore necess-
ary to look for an Zw, which would better repro-
duce the area of the exact potential, and hence
give more satisfactory values for K,. An appro-
priate way is to make the parabola intersect the
7 axis at the same place as the exact potential
does. This recipe gives the values of Zw, indi-
cated in column 5 of Table I. In Tables II and
III, column 3, one can find the corresponding
penetration integrals. As before, the partial
waves considered give the major contribution
to the fusion cross section of **0+%0Q and '2C
+1°B at the indicated energies. Compared to
column 2 the values of column 3 deviate much
less from the exact values K¥, i.e., by 1% to
1.5%. An important result to be noticed is that
the penetrability integrals K4 evaluated with
the approximation (5) and given in column 4 are
very close to the values of K, in column 3, i.e.,
those obtained without making any series expan-
sion. Some small deviations appear for large
values of [ but the contribution of these partial waves
to the total cross sectionis very small. Therefore it
seems perfectly justified to use the approximation
(5) for K,. We recall that the formula (10) for
the total cross section is based on this approxi-
mation and on the transformation of the sum over
! into an integral. The effect of both these approxi-
mations on the cross section will be discussed in
the next paragraph.

In Tables II and III we also give results for

1507

partial cross section

o, =mx3(2,+1)T,.

In columns 6 and 7, 0, comes from a T, calculated
with K} and K7, respectively. It turns out that
differences of 2-3% between K4 and K7 change

the partial cross section for the largest partial
waves by 50%. But, as it is shown in the last
column, these partial waves give a very small
contribution to the total cross section.

C. Cross section

Results for the total cross section are given
in Tables IV-VI for'®0+0, *N+%C, and °B
+12C at several values of the energy below the
Coulomb barrier. Columns 2-4 represent the
sequence of approximations used to derive the
analytic formula (10) for or. It is meaningful
to compare each of these columns with column
5, which gives the fusion cross section o5*°F
obtained from the potential of Sec. III A by making
a summation over all contributing partial waves.
As was expected, the model (4) cannot be applied
just below E, because of the artificial kink in
the barrier see Figs. 2(a) and 2(b) . Indeed,
in the case of'°0+'°0, one can see that at E
=9.76 MeV, i.e., at ~1 MeV below the barrier
top, the fusion cross section in columns 2-4 is
smaller by ~12% than the exact cross section
o 57°% Just below the Coulomb barrier the para-
bolic approximation of Eq. (2’) would be more
adequate. Column 2 gives the cross section for
the barrier (4) with parameters from columns
2, 3, and 5 of Table I. The penetrability integral
is calculated exactly for each partial wave and
the cross section is calculated from Egs. (1)-(3).
At energies of a few MeV below the Coulomb
barrier the model gives larger cross sections

TABLE II. Results for the penetrability integral K; and partial fusion cross section o; of
160 +160 at E cm. =7.76 MeV. Column 2—with parameters from Ref. 1; column 3—with a
semiparabola which fits well the inner side of the exact barrier; column 4—as in column 3
but with the approximation (5); column 5—with the exact barrier of Ref. 1; column 6—the
partial fusion cross section with approximation (5); column 7-—the partial fusion cross sec-
tion for the exact potential; column 8—ratio of the partial to total fusion cross section for

the exact barrier Ref. 1.

2K, 2K, 2K ¢ of of

1 (wy=2.92) (Fwy=5.08) (Fw,=5.08) 2K¥ (mb) (mb) of /oF
0 9.563 8.202 8.202 8.336 2.88x10™% 2.52x10~°  0.11

2 10.403 8.825 8.824 8.994 7.73x10~% 6.52x10=  0.27

4 12.465 10.295 10.275 10.520 3.26 x10™3  2.55x10~°%  0.11
6 16.155 12.643 12.556 12.897 4.81x10~4 3.42x10%  0.01

8 w© 15.928 15.666 16.138 2.80x107° 1.75x10°  0.0007
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TABLE III. Same as Table II but for 2C + 1B at E,m=1.22 MeV.
2K, 2K, 2K# of of
1  (wg=2.51) (iwy=4.57) (iwy=4.57) 2K¥ (mb) (mb) o¥/oE
0 32.598 30.339 30.339 30.578  6.529 x107%? 5142 x10712 .23
1 33.348 30.859 30.859 31.090 1.165x10% 0,924 x1071!  0.42
2 34.967 31.898 31.898 32.106 6.869 x10%2 5,580 x1071% 0.25
3 w 33.460 33.457 33.611  2.024 x10%2 1,734 x107% (.08
4 w 35.557 35.535 35.588  3.256 x101%  3.086 x10713 o0.01
5 w 38.227 38.133 38.037 2.962x10%  3.258x1071¢ 0.001
6 © 41.575 41.250 40979 1.550x1071% 2,032x10%5 0.0001
than the exact barrier, because at these energies which refer to the S factor related to the fusion
the area under the penetrability integral is smaller cross section by
for the model than for the exact barrier. For even
lower energies the difference in the area becomes S=opEe®™ (14)

less important with respect to the total area and the
results of the model become closer to those of the ex-
actbarrier. Column 3 shows the effect of the approxi-
mation (5) in the penetrability integral. One can see
that this approximation is very good except for ener-
gies of 1 MeV or less below the Coulomb barrier,
where the model is not reliable. Column 4 is the
result of Eq. (10). The transformation of the sum
into an integral for obtaining Eq. (10) brings an
artificial contribution of a continuously varying !/
and slightly reduces the total cross section. This
decrease somewhat compensates for the increase
produced by the model itself. Then formula (10)
brings a maximum error of ~20% for *°0+ 'O or
0B+ 12C in the energy range of 3—4 MeV below

the Coulomb barrier. In other cases, e.g., *C
+1%0 or N+ 12C, this figure rises up to ~30% and
gives an average maximum error (overestimate)
of ~25%. After reaching a maximum this error
decreases for lower values of E.

IV. COMPARISON WITH THE EXPERIMENT

The relation between the exact barrier and its
approximation by the present model being esta-
blished, we can now discuss the comparison with
the experiment. We consider the data of Ref. 11,

Figure 3 shows these data together with results
obtained by calculating o with formula (10) and
parameters from columns 2, 3, and 5 of Table I.
The last column of Tables IV-VI indicates the

S factor obtained for '°0+ %0, *N+!2C, and °B
+12C, respectively. We notice that the proximity
potential gives smaller values for S than its ap-
proximation by the model (4), the ratio between
the S factors being the same as the ratio between
the associated cross sections. For all pairs ex-
cept *%0+ °0 one obtains the correct order of mag-
nitude for S. The agreement between the calcula-
tions and the experiment can be improved by in-
creasing the value of Zw,, for example up to

~T MeV for N+ 1%C, and ~6.5 MeV for °B+%C.
This suggests that a potential with a steeper slope
than the proximity potential would better fit the
data. This conclusion is consistent with that of
Vaz and Alexander who found it difficult to fit
data above and below the Coulomb barrier with
the same potential.

Finally we wish to make some considerations of
astrophysical interest. At very low energies one
can make the approximation In(1+ e o)~ ¢-2Xo,
and then the S factor becomes

TABLE IV. Fusion cross section for 0+ 160, o), ¢, and ¢f™ are obtained by summ-

ing over all significant partial waves. In oy
explained in the text.

1)

the barrier is given by Eq. (4) with parameters
af? is like o}’ but based on the approximation (5) for the penetrability

integral; in of}“”‘ the barrier is given by Egs. (11)—(13); o results from Eq. (10). S is calcu-

lated from Egs. (14) and (10).

E o) ¥ Op oProx S
(MeV) (mb) (mb) (mb) (mb) (b MeV)
9.76 7.371 7.669 7.743 8.482 0.711 x 10%
8.76 0.645 0.656 0.636 0.610 0.133x10%
7.76 0.285 x10-1 0.287 x10 0.277 x 10~ 0.239 x10~! 0.228 x 10%
6.76 0.537 1073 0.539 x 103 0.519 x 103 0.424 x10-3 0.368 x 10%
4.00 0.285 x 10~ 0.285 x 1011 0.273 x 1071 0.225 x10™11  0.119 x10%
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TABLE V. Same as Table IV but for 14N +12C,

E o) @ op oP rox S
MeV) (mb) (mb) (mb) (mb) (b MeV)

6.07  10.907 11.299 10.889 10.457 0.324 x 1018

5.07 0.451 0.456 0.435 0.361 0.622 x 1018

4.07 0.418 X102 0.418 x 102 0.397 x 1072 0.308 X102 0.108 x 10'?

3.07 0.319 x1075 0.318 x1075 0.300x 1075 0.230x1075  0.176 x 101?

1.00 0.396 x10™%  0.396 x10~% 0.370x 10~ 0.305x10~%  0.414 x 10*°

72 T T(E —E,) . &)1/2 s
S—4“ 5D, exp[ o, + 4narc sin 2 +2[RR (21 - kR,)]'?| . (15)
Making the derivative with respect to E, one obtains for E~ 0

as mi? SN VAT S N D ./ O %Z_R_)’] (16)
dE  4u[D,(0)+ Do (0)] Fw, ~ 3\ 27°Z Z ¢? nw, n® ’

where D, and D have been defined by Eqs. (7) and (8), respectively, and F is a function of the parabola

parameters R, E,, 7w, of the reduced mass p and the charges Z,, Z,:

3 1

301‘/2(7 _Eo)llz —013/2(7 —E0)3/2 - (Y/Eo - 1)1/2

F

For brevity we have denoted 1/@=Z Z ,e*/R, and
7= Lw,?R,2/2. Fixing R, and E, one can find the
value of Zw, for which

ds
E‘ 0, (18)
These values are given in the last column of Ta-
ble I and, if compared with those from column 5
which fit the barrier formed with the proximity po-
tential, they are systematically smaller. As we
have mentioned, to have a good fit of the experi-
mental S factor we need even larger values than
those in column 5. For such values dS/dE be-
comes negative close to E~ 0. Within the present
model one would therefore expect a monotonically
decreasing S at very low energies.

V. CONCLUSIONS

We have derived an analytic formula for the
fusion cross section, valid at sub-Coulomb ener-

T2y —E, E,T%y—E,) %+ arcsin(E,/y Y 2+ 120 + 201 2(y ~E P % *

1)

I

gies. This is complementary to Wong’s formula
which can be used around and above the Coulomb
barrier. The derivation is based on a model pro-
posed by Avishai to approximate a realistic Cou-
lomb barrier with a half-parabola and a Coulomb
potential between two point charges at the left

and right of the barrier position, respectively.
We have added a centrifugal term and studied var-
ious approximations leading to the derived analytic
formula. An estimate of the error made by using
this compact formula instead of calculating with
the exact barrier for each partial wave was made,
and it was found that on the average, for energies
of 3—4 MeV below the Coulomb barrier, the for-
mula gives a cross section of ~25% higher than
the detailed exact calculations. From a compari-
son with the experimental S factor it was found
that the proximity potential modified by Vaz and
Alexander to fit fusion data at energies above the
Coulomb barrier is inadequate at sub-Coulomb
energies where data are quite sensitive to the inner

TABLE VI. Same as Table IV but for 1°B +12C.

E O'I(}) 0'1(72) o ogProx S
(MeV) (mb) (mb) (mb) (mb) (b MeV)
4.22 8.708 8.946 8.466 7.869 0.184 x 10
3.22 0.149 0.150 0.140 0.119 0.312 x 10
2.22 0.123 x1073 0.123x10°3 0.114 x 1073 0.961 x10™4 0.482 x 1014
1.22 0.274 x10710 0.274 x101%  0.251 x 10710 0.220 x10-10 0.702 x 101
0.25 0.153 1042  0.153x 10742 0.131 x 1042 0.131 x10™42 0.964 x 1014
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FIG. 3. Comparison between the experimental S factor
(Ref. 11) and results of formula (10).

side of the barrier. A nuclear potential with a
steeper slope giving rise to a narrower barrier
would improve the agreement with the experiment.
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APPENDIX

In this appendix we shall rederive Wong’s for-
mulal!® for the fusion cross section, valid at en-
ergies around and above the Coulomb barrier.
The derivation of our expression (10) follows
along the same lines. In both cases the important
common feature is that the transmission coeffi-
cient is of the form

O - (A1)

T+ b
where x=1+3 and b and @ depend on the barrier
shape. Wong considered barriers of a parabolic
shape
=RoP, i+3)
2 2uR 2
with the position R, and the curvature Zw, the
same for all partial waves and height E,=E,
+n%(1+3)?/2uR 2. From the evaluation of the pen-
etrability integral (3) we obtain in this case
27 h?
b—exp(ﬁ———w (EO—E)) s a—fi—woﬂRoz' (A3)

0

Vi=E,— pwy? a

(A2)

The fusion cross section (1) is calculated under
the assumption that one can replace the sum over
1 with an integral over the variable x=1+3. Then
using expression (Al) for T, the cross section be-
comes

e [T 2T 1)
op=21X J; 17057 o 1n(1+b s (A4)
which brings us to Wong’s formula
2 —
0F=h_—w‘£°—ln 1+exp2_7r(_E_E.Q)). (A5)
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