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Coulomb correction for ~Ca from a relativistic optical model
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An effective Coulomb correction term arising from the second order Dirac equation is calculated for "Ca. The
optical potential used consists of a mixture of a Lorentz scalar potential and the timelike component of a Lorentz

four-vector potential. These calculations show that the real Coulomb correction term resulting naturally from the

Dirac equation is in agreement with empirics.

NUCLEAR REACTIONS Relativistic optical potential, mean field theory of
nuclear matter; Coulomb correction for 40Ca.

In a recent letter' we described a relativistic
optical model potential. based on meson exchange
considerations in a relativistic mean field theory
of nuclear matter. ' One motivation for this work
was the success we have had in analyzing inter-
mediate energy proton-nucleus scattering experi-
ments using the Dirac equation. 3 Another is the
revival of interest in relativistic treatments of
the nucleus gnd nuclear matter. ~-'4

The specification of the Lorentz character of an
optical potential is a basic feature of models which
employ a relativistic wave equation. In the refer-
ences above, the potentials consist, in general, of
a mixture of a Lorentz scalar potential U, and the
timelike component of a Lorentz four-vector pot-
ential U, . The potentials U, and U, and a tensor
potential are the only ones which remain in the
Dirac equation after applying conservation law
constraints to static local interactions for scatter-
ing by a spin-zero target. The potential U, is of-
ten associated with a neutral scalar field arising
from two-pion exchange processes and is simu-
lated by the exchange of a neutral scalar meson,
the a, while the potential U, may be associated
with the field of the neutral vector & meson. The
tensor potential is usually neglected for isospin
zero targets.

In this work we extend our previous calculations
of general features of the optical model potential,
such as volume integrals and rms radii, to the
calculation of angular distributions and polariza-
tions. Comparison is made with the p- Ca elastic
scattering cross sections" and polarizations" at
26 MeV as well as with the recent data of Rapaport
et al."for n-"Ca at 26. 3 Mev. A comparison of
the central optical potential volume integrals from

the analyses of both neutron and proton data allows
a determination of the empirical Coulomb correc
tion volume integral. "

The Dirac equation used i.s given by

(a p+P[~m + U, (r)] + U, (r) + Vc(r)]jg(r }=E~P(r), (l)

where Vc(r} is the Coulomb potential for protons,
m the nucleon mass, and E its c.m. energy. In
order to compare with nonrelativistic optical
models, we write (l) in second order form. The
equation for the upper two components is

(P'+ U, I + U„o L)P„=[(E—Vc}2 —m2]q„, (2)

where

Ujf 2EU+ 2mU —U, +U, —2V~U+UDirp

and

1
U = ———A=-U

yA Br
(4)

A = E + rn + Us Uo Vc . (5)

Of the effective potentials in Eq. (2) the Thomas
spin orbit term U„and the Darwin term UD, are
well known. Additionally, the effective central
potential U,«contains squares of the nuclear poten-
tials U, and U„a nuclear-Coulomb cross term
V~U„and an explicit energy dependence form the
EUO term. Their occurrence is a natural conse-
quence of the use of a relativistic wave equation. "
Their importance as distinguishable features of an

optical model depends on the mixture of U, and U, .
The cross term V~U, in U,« is a Coulomb cor-

rection term of the type commonly associated with
the Schrodinger equation for an energy dependent
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potential. If U, is complex then VcU, is complex.
A complex Coulomb correction term, long recog-
nized as a possibility, has recently been observed
in an empirical analysis. " Complex Coulomb cor-
rection terms also result from nonrelativistic
microscopic calculations"" of the optical poten-
tial.

The optical potentials used are written

IO

IO =-3

IO
2

U,(r) =v, (r)+fw, (~),

U, (r)= v.(r)+fw, (r).
(6)

(7) 10 I

The real parts of the optical potentials are con-
structed using a standard folding formula, '"

v.(r)= fi.(") .(l — l)a-

V, (r) = po(r')v, (Ir —r'I )dr' . (s)

'The effective baryon density p, is obtained by a
double folding of projectile and target nucleons
with the nuclear matter density p, ; the density p, is
taken from an empirical formula of Negele. " The
effective scalar density is approximated by P, (r)
= [pgp)„p, (r), where [pJp, ]„ is the scalar to
baryonic density ratio in nuclear matter. The
effective interaction is written as v(r) = tf(x),
where f(r) is a form factor with rms radius deter-
mined by the mass of the exchanged meson and I;

is the volume integral of the effective interaction
in nuclear matter. The density ratio and the
values of t, and t, are taken from Walecka's'
relativistic mean field theory of nuclear matter as
described in Ref. 1. The potentials V, (r) and

V,(r) are completely specified by this construction.
As a test of the model we consider p-"Ca at

26 MeV. We find that the data may be adequately
represented with real potential. s calculated as de-
scribed above. As noted in Ref. 1, the volume
integral of Re(U„,) is about 15% smaller than the
phenomenological p- 'Ca optical potential. The
calculated volume integral may be brought into
agreement with experiment by a four percent de-
crease in the strength of V, . Such a change is well
within the uncertainties in the input to this calcula-
tion.

The imaginary parts of the optical potentials are
determined phenomenologically. Both Lorentz
scalar and Lorentz vector absorptions are assumed
to be Woods-Saxon derivative shapes with para-
meters given by Rapaport et al." The two strength
parameters of S', and W, are varied to obtain rea-
sonable agreement with the proton scattering data.
Figure i shows the data Ref. 25, and the calcu-
lated p- 'Ca cross section at 26 MeV. Figure 2
shows the data of Ref. 26 and the calculated polar-
ization. These fits are comparable to results
from empirical nonrelativistic optical model cal-
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FIG. 1. Elastic scattering cross sections for p- Ca
at 26.3 MeV. The smooth curve is the calculated cross
section. Experimental data are from Ref. 25.

culations as well as the recent calculations by
Brieva and Rook."

The discrepancy between calculated and experi-
mental cross sections at large angles is charac-
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FIG. 2. Elastic scattering polarization for nucleons on
4~Ca. The smooth curve is the calculated p-40Ca polar-
ization at 26.3 MeV. The experimental proton data at
this energy are from Ref. 26. The dashed curve is the
predicted n — Ca polarization corresponding to the
dashed curve in Fig. 3.
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10— JU, (r)U„(r)dv
AE (9)
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FIG. 3. Elastic scattering cross section for n- Ca at
26 MeV. The smooth curve is the calculated cross sec-
tion using the optical potential determined from p-4 Ca.
The dashed curve results when the absorption is in-
creased as described in the text. The experimental
data are from Ref. 27.

teristic of optical. model calculations which do not
include an explicit exchange interaction. In a
recent paper Vosniakos et al. "have found that the
inclusion of a complex E-dependent Majorana ex-
change potential in the optical model removes
most of this large angle discrepancy. We have
found that inclusion of a relativistic generalization
of a Majorana exchange potential can account for
the structure in the large angle cross sections for
p-'He at 800 MeV. " We are investigating the
inclusion of such an exchange potential at low

energies but do not discuss it in this paper as its
effect on the Coulomb correction is small.

The volume integral of the Coulomb correction
term defined by

is calculated to be (18 - 2i) MeV fm'. This result
is in agreement with the nonrelativistic theoretical
work of Jeukenne, Lejeune, and Mahaux" and
Brieva and Rook. " The empirical value" deter-
mined from the difference in optical potentials for
protons and neutrons at this energy is (22-15i)
MeV fm'. 'The uncertainty in these values is of the
order of 10-. 15 /p. " The smooth curve in Fig. 3
shows the calculated cross section for n-"Ca at
26 MeV using the optical potential for p-"Ca de-
scribed above with the Coulomb potential set to
zero. The neutron scattering data of Ref. 27 is
also shown. As is indicated by the dashed curve
in Fig. 3 the generally good agreement can be
improved by increasing Wo by 4'/p. In this case
comparison of neutron and proton volume integrals
yields an empirical Coulomb correction volume
integra. l of (18-16i) MeV fm', which is in agree-
ment with the nonrelativistic analysis of Ref. 29.

In the calcul. ations discussed here the real po-
tential. s are energy independent. This means that
the real Coulomb correction defined by Eq. (9)
varies inversely with the energy, E= T+M.
Thus, it is essentially constant at low energies
(T s 50 MeV). One would not necessarily expect
this situation to hold at intermediate energies due
to explicit energy dependence in U, (r). For exam-
ple, we found a linear energy variation of the ratio
Rx = f U, (r)dr/ f U, (r)dr in our fits to p-'He data
at intermediate energies. ' We are currently inves-
tigating p-"Ca at intermediate energies and our
pret. iminary results indicate a similar linear
variation in R~." Thus, we expect additional
energy dependence in J, when the entire energy
range is considered.

We wish to acknowledge useful conversations
and communications with C. Mahaux, B. Mulligan,
and J. Rapaport. This work was supported in part
by NSF Grant. No. PHY-7825532.

~L. G. Arnold and B.C. Clark, Phys. Lett. 84B, 46
(1979).

2J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).
3L. G. Arnold, B. C. Clark, and R. L. Mercer, Phys.

Rev. C 19, 917 (1979), and references therein.
4L. D. Miller, Phys. Rev. Lett. 28, 1281 (1972).
~L. D. Miller and A. E. S. Green, Phys. Rev. C 5, 241

(1972).
6L. D. Miller, Phys. Rev. C 9, 537 (1974); 14, 706

(1976).
L. D. Miller, Ann. Phys. (N.Y.) 91, 40 (1975).

J.V. Noble, Nucl. Phys. A329, 354 (1979).
~R. Brockmann and W. Weise, Phys. Rev. C 16, 1282

(1977).
R. Brockmann, Phys. Rev. C 18, 1510 (1978).
J. Boguta and J. Rafelski, Phys. Lett. 71B, 22 (1977).
J. Boguta and A. R. Bodmer, Nucl. Phys. A292, 413
(1977).

~3K. P. Lohs and J. Hufner, Nucl. Phys. A296, 349
(1978).

~4F. E. Serr and J.D. Walecka, Phys. Lett. 79B, 10
(1978).



L. G. ARNOLD, B. C. CLARK, AND R. L. MERCER

~58. D. Serot, Phys. Lett. 86B, 146 (1979).
~6B. D. Serot and J.D. Walecka, Phys. Lett. 87B, 172

(1979).
~VS. A. Chin, Ann. Phys. (N.Y.) 108, 301 (1977).
~8M. Brittan, Phys. Lett, 79B, 27 (1978).
~SL. C. Liu and C. M. Shakin, Phys. Rev. C 20, 1195

(1979).
+M. R. Anastasio, L. S. Celenza, and C. M. Shakin,

Report No. B.C.I.N.T. 80/051/97.
+M. R. Anastasio, L. S. Celenza, and C. M. Shakin,

Report No. B.C.I.N.T. 80/052/99.
22M. Jaminon, C. Mahaux, and P. Rochus, Phys. Rev.

Lett. 43, 1097 (1979).
23M. Jsminon and C. Mahaux, in Proceedings of the

Conference on the Meson Theo~ of Nuclear Forces
und Nmclear Mutter, Bad Honnef, 2979, editedby
K. Bleuler (to be published).

+M. Jaminon, C. Mahaux, and P. Rochus, Phys. Rev.
C (to be published).
K. H. Bray, K. S. Jayaraman, G. A. Moss, W. T. H.
van Gers, D. O. Wells, and Y. I. Wu, Nucl. Phys.
A167, 57 (1971). Tables of the data were provided by
%.T. H. van Gers.

28D. L. Watson, J.Lowe, J.C. Dore, R. M. Craig, and
D. J.Baugh, Nucl. Phys. A92, 193 (1967).

2~J. Rapaport, V. Kulkarni, and R. W. Finlay, Nucl.

Phys. A330, 15 (1979). Tables of the data were pro-
vided by J.Rapaport.

@For example, the latter three features discussed also
appear in the effective potential for the Klein-Gordon

equati, on.
~J. Rapaport, Phys. Lett. 923, 233 (1980); and private
communication.

@J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys.
Rev. C 15, 10 (1977); 16, 80 (1977).

@F.A. Brieva and J.R. Rook, Nucl. Phys. A307, 493
(1978).

32P. E. Hodgson, Nuclear Reactions und Nuclear Stmc-
fgre (Oxford U.P., London, 1971), Ch. 6; see also
F. Petrovich in Microscopic Optical Potentials, edited
by H. von Geramb (Springer, New York, 1979), Vol.
89, p. 155.

33J. W. Negele, Phys. Rev. C 1, 1260 (1970).
+We have done calculations with surface plus volume

absorption. For simplicity we consider only the surface
absorption in this work.

B~F. K. Vosniakos, N. E. Davison, %. R. Falk, O. Abou-
Zeid, and S. P. Kwan, Nucl, Phys. A332, 157 (1979).

+L. G. Arnold, B.C. Clark, and R. L. Mercer, Phys.
Rev. C 21, 1899 {1980).

3~8. C. Clark, L. G. Arnold, and R. L. Mercer, Bull.
Am. Phys. Soc. 25, 520 (1980).


