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Generator coordinate ayproach to nuclear reactions. II.Nucleus-nucleus scattering with
distorted basis functions
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The generator coordinate formulation of the single nucleus scattering by an external potential presented in the

preceding paper is generalized here to the nucleus-nucleus scattering, in which the complete antisymmetrization of
all nucleons involved is exphcitly carried out and the correct internal states are extracted by the double-projection
method of Peierls and Thouless. General distortion effects are incorporated, where the single nucleon orbitals may

depend on the relative distance and relative momentum generator coordinates of two nuclei. The special case of
nuclear molecular orbitals is also considered. The connection between the distorted orbitals and a restricted time-

dependent Hartree-Pock procedure is clarified.
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I. INTRODUCTION

In a first paper' (to be referred to as I in the fol-
lowing), we have given a microscopic formulation
of the scattering of a nucleus by a fixed external
potential. From a set of determinantal wave func-
tions, mathematically consistent scattering wave
functions are constructed using eithex the single
projection method of Peierls and Yoccoz' (PY) or
the double projection method of Peierls and Thou-
lesss (PT). The single-particle nature of the wave
function is thus preserved, which makes the eval-
uation of various matrix elements with these func-
tions rather simple. The scattering problems are
then solved in the generator coordinate (GC) vari-
ables so that the usual kinematic complications
encountered in the resonating group method (RGM}
are avoided. The Griffin-Hill-Wheeler~ type scat-
tering equations are explicitly derived, and a pre-
diagonalization procedure is formulated to provide
an improved representation of the internal states
in specifying the asymptotic boundary conditions.
Extensions of the theory to incorporate both the
energy and coordinate-dependent distortion effects
are then carried out; it is found that the projection
methods can naturally be adapted for this purpose.

We continue the above study by extending the
formalism of I to the practically more interesting
case of nucleus-nucleus scattering 5' Since we
expect the approach of I to be equally applicable to
this case, with minor modifications in the kine-
matics, a brief summary of the result of I rele-
vant to the present paper will be given in Sec. H.
The scattering equations and explicit boundary
conditions are derived for the nucleus-nucleus
scattering in Sec. DI. Then Sec. IV contains the
extension of these results to incorporate distor-

tions, which naturally leads to the time-dependent
Hartree-Fock (TDHF) procedure in the paramet-
rized form.

II. PRELIMINARY DISCUSSION

Since the development of the formalism below
will depend heavily on the results obtained in I,
we briefly summarize the relevant points of that
paper and also define notations.

For a nucleus with ÃA nucleons, Slater deter-
minantal functions of the form

@A(x) Gk(R )@A gnt(]A) (2.2)

where

A, A Ax=(x, , x, , .. . ,x„},
A

(]A (A tA )
A

Rg = Q x(/N„.

In this factorizable case (2.2), we have

4,"(x)=~ det[y,"(x,)y," (x,) ~ ~ y," (x„)]
(2.l)

may be constructed, where the p's are the single-
particle functions and the x, 's are the single nu-
cleon coordinates measured from a fixed point 0,.
(We drop the explicit notation describing vectors
for simplicity). In a special case, the function
4,"(x) assumes the factorizable form
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e.".. (x)= Jd)( e„'"'"s.(x-)},}'
dR„'C.(R„-R„')C.'"'((").

a'~0
(2.3)

Of course, this separation (2.2) is not always
possible, and the extraction of the internal wave
function requires then a special projection proce-
dure. %'hen 4," does not factorize, we have to
adopt the PT procedure in extracting the internal
wave function, as

@""((')=- f&e)" (e'}~ """@""(~)

dR~F, B~ —Rg 4, x —Rg ) 2.4

these operators, we have

e.--(.)= f.x.f.a. ~ (~„.a„),o„,s, o .(.).
(2.10)

6[I ]/6 6",.(Z„")=0,
where the variational functional [j] is defined by

(2.12)[I]=X,+ (}I'„[H—E]4,),

The connection between the PV and PT forms of
the wave functions can be derived by choosing the
weighting function F,(K"—K') M(K') 6,'(K ), where
G,{K")is the relevant, momentum dependent nor-
malization.

The scattering equation is obtained from a va, ri-
ational principle,

where F, is the Fourier transform of F, and

4,"(»-R„')=4,"($,"+RA-RA'). As in I, we neglect
the (2v) '~' factors throughout for notational sim-
plicity.

The scattering functions are constructed from
(2.3) and (2.4) by a linear superposition, as

In (2.12), ( ) denotes the integrations over all the
x, variables and X, is an asymptotic amplitude pa-
rameter in @,. E(luation (2.11) then gives

py d «y
A.-PY «4, k-pY ~

(2.6)

fdz;[a, .,(z.",z;) zN, .,(z„., 8}})-
(2.13)

dZ« "-~ -Z«e'~~ ~~4"-~ ("

A{R )@A-pr ( (A) (2.6)

respectively.
A form e(luivalent to (2.6) which is found to be

useful in I is given by

e."- (.) = f~)( 1~(4„)„}))(.)(,

where ZA' —= (KA, RA).
An improved description of the nuclear internal

states and mathematically consistent boundary
conditions for the amplitudes F,s which satisfy
(2.13}can be derived by the prediagonalization
procedure formulated in I. A slightly intricate
argument can be given to show that such a predi-
agonalization of (2.13}involving the nuclear inter-
nal Hamiltonian H„is in fact equivalent to the di-
agonalization using (2.4). Thus, we finally obtain

with

xe(»A' (BA-BA )4}A (» R() (2.7)
y~ ~+FfN

d

with

(2.14)

5'.()(' )}') f&}("F(K"-If'V~ (-)}'}=e' "'"'

D„.= exp( iRA'-~ E„)-,
A,

8»:exp{iKA ~ RA)

(2.9)

Equation (2.7) results immediately by the change
of variable (I' =K„-K„in (2.6).

For notational convenience, we introduce the
boost and displacement operators by

x ei»A' (RA BA' &@ (» R})

and the boundary conditions

F4.{KA,RA) =F4.{KA —K4)a4s

where Ez and Rz are operators, while the primed
quantities are generator coordinates. In terms of {K" K')e'»A'sA' (2 16)
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= 4,(x),
g~ ~oe

A

the ansatz (2.4) gives

4,"(x;R„') (2.17)

Several generalizations of the above formalism
to incorporate various forms of distortion effects
were made in I.

(a) For adiabatic distortions in which the basis
functions 4,'d(x) are explicitly dependent on the
generator coordinate R„',with the asymptotic prop-
erty that

4."(x)-4,"(x;Z„',R„'), (2.22)

where EA here is again the generator coordinate
which appears in (2.7). Thus,

(c) For coordinate and momentum-dependent
distortions, we combine the extensions (a) and (b)
above, and construct a general basis function of
the form

C~, = dt„F,tA 4, $", tA, RA —tA, 2.18
x 4', (x —Rg ', Ifg, Rg) . (2.23)

where tA =-RA —R„'.Evidently, 4,, will be an explic-
it function of both $" and R„.However, for large
R„,4~~ ($";R„}-4,",rT(( ), as a consequence of
(2.17}and the fact that 4';~ is peaked around the
value t„'=O.

The scattering functions are defined just as in
the first line of (2.6), and the scattering e(Iuations
are the same as before, (2.13) without change. It
is assumed that center-of-mass spuriosity will
not contaminate asymptotic regions. In the fac-
torizable case, the form (2.5) should be sufficient,

4.(x) —4'. (x;&~) . (2.20)

The double projection method can again be used to
construct the scattering wave functions 4„asin
(2.6) or (2.7). Note here that the generator coor-
dinate ff„' in (2.20) is that variable in (2.7), and not
the q' variable in (2.5), so that one is to consider
(2.13) from the outset. In the factorizable case,
the single projection should be sufficient, as evi-
dent from a slightly different form of (2.5) given
by

4A ~"= dq' f" -q' G -q' q' e" '
A@,""'$"' q' .

(2.21}

dRA RA G" RA-R

(2.19)

again as long as the additional RA dependence dis-
appears when RA'-~.

(b) For momentum-dependent distortions, the
optical potential description of scattering phenom-
ena suggests, in general, that the effective inter-
actions should be momentum-dependent as well as
coordinate-dependent. Such a feature can be in-
corporated in the construction of the basis sets,
as

In the faetorizable ease, however, the simpler
form (2.5) is not possible and we have instead

dq' dRA f, -q' e' '
&G, RA -RA', q', RA

x4, '($";q,R„'),
which still requires the double integrations.

(2.24)

while the physical Hamiltonian & i.s given by &
=&„t—&&~, where 1'~. is the total center-of-
mass kinetic energy with respect to the fixed point0„.The single particle orbitals y are defined in
terms of a localized shell-model potential U"(x,.)
by

h" (x,)q)"„(x,) = e "„q)"„(x,), (3.2)

h" (x,) = T(x,)+ U~(x,.) .
The determinantal functions 4), (x"), x"=(x, ,
i =I, . . . ,N~), are then constructed with (q)„")as

4,"(x")=, det[q)~(x, }q)2~(x,}~ q)"„(x„)],(3.4}
A A

III. NUCLEUS-NUCLEUS SCATTERING

We now generalize the result of I as summarized
in See. II above to nucleus-nucleus scattering. Al-
though the kinematics involved is more compli-
cated, the formalism should be straightforward to
construct. The cluster wave functions for the nu-
clei A and 8, with NA and Ã~ nucleons, are given
by single-particle Slater determinants 4,"(x) and
4'e(x). The coordinates x=(x, , i =),I. .. ,&), with
N =NA+Ea, are measured from an arbitrary ex-
ternal reference point O„sothat the 4 's are ob-
viously not translation invariant. The total Ham-
iltonian H„tis given by

N N

+tot ~ +f + (3.1)

Here, we have taken the q' variable in 4,""', con-
trary to (2.20). The q' dependence of 4,""' should
induce no polarization when R„-

and similarly for the cluster B.
Basic antisymmetrized functions for the total

system A. +B are given by
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4.(«) = ti, ,(4."(«")4s{«s)), (3.6)

where c =(a, b) and Q„sis the antisymmetrization
operator, exchanging the nucleons in A. with nucle-
ons in B.

The corresponding kinematics which are needed
in the construction of internal wave functions from
4, using the projection methods are given as fol-
lows (Fig. 1):

NA NANNA+NB

x; NA, RB= x) NB)
j=N +l

A

R= x,. N= RANA+R B N,
f =j.

NA N

KA = K], KB = K~, K =KA+KB
f=NA+j

r=R„-Rs, k=(NsK~-N~Ks)/N )

y~ ~Ãsr/N=—pr, rs = Ngr/N =--n)& ~

(S.6a)

(3.6b)

FIG. 1. Coordinates snd moments. «=(«& ~ ~ «» )
{«» ) «») coordinates of nucleons in the nuclei A
and B arith respect to a fixed reference frame 0;RA
and RB=center of mass coordinates of A and 8 with
respect to 0„;K& and KB= momenta conjugate to R&
and RB; r&, rB, and r=center of mass coordinates of A
and B and the relative coordinate arith respect to the
total center of mass 0,~; kA, kB, and k= momenta
conjugate to rA, rB,and r.

The K, 's are the single-particle momenta conju-
gate to x, 's.

Using the result of Sec. II, we have from (2.3)
and (2.4), for example,

4."(()=- C." (&")4", (&')
where

dZA dZB +c ZA~ZB QA B

&D.„&.„~."(.")] ID..R.p'. (")]],
(3.9)

dgAF gA e A Act x

' ~

and the scattering function is then given by

(3.7)

$.(Z„',Zs')

KAFF A K

{s.10)
(3.9) is the direct analog of (2.10).

Using the relations inverse to those in {3.6),
e =I:e"-=I ff"( a) )) 8" c. )))a-a'"

(3 6)

Changing the variables

QA —~ ~A y ~B ~ ~B ~

we have, with Z„'.=(K„',R„')and similarly for Zs,

RA=R+pr, R, =R —ar
K„=k+eK, E =-k+ PK,

KARA+EBZ -K R+p r.
Thus (3.9) becomes

(s.11)

dk' dr' dK dR'8 e' ' "'e' ' ""'p E' R'0' r' 4 $"+ R R +p r r

x4', []s+(R-R')-u(r-r )]),

where

~)~,));),.)= fd)-, '" F)). ) a~)

x F,( lt" +O' PK')f;r( n-"). -

Noticing that 9, of (3.13) is independent of R', we
can carry out the dR' integration of (3.12). In add-
ition, since the entire formalism should be inde-
pendent of K', we may set

(3.13) p,(K', I ', r') -6,(I ', r')6{K') . (3.14)
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This may not be the most general situation, but
greatly simplifies the discussion below. Conse-
quences of (3.14}should require further analysis.
Thus, with (3.14), we have

da' dr P k' r' „e"'"'4

(3.15)

e (( r " fdR ez[(z+ R R l+d(r " ]

x 4z[(z+ (R —R') —a(r r')]—,
(3.16a)

G(k', r')= fdk'z" (R'-k ) k"(kR' k")-
xf PT( kll) (3.15b)

ff - (.- ")= &0.-( -) I& lt (")&. ,

&,-. (z",z') =&0, (z") ~4, (z')}.,
(3.18)

g,.(z') =8„jz"'" "'4,(t', ~- x')) . (3.19)

Defining further that F,(k' —k") =- F,(k" —k')F, (k'
—k"), the prediagonalization procedure will pro-
vide F,(-k').

The prediagonalization of (8.1V) is carried out by
first examining the matrix elements H. .. and

+c e ', we set'
8 IH, =H „,, +Q,„,,

Evidently, (3.15) is exactly the form of (2.V), ex-
cept for the operator 8& ~ and the physical inter-
pretation of the variables k and r. Indeed, with
z —= (k', r'), the equations that!F, .(k', r') satisfy

are derived by the variational principle and given
by

fd '[B . .(" ) BN .. .(*" z-')]e.. (z')=e
C

(s.iV}

where

where &,~,, contains matrix elements with states
which correspond to particles in the cluster A or
cluster 8, but not between A. and B. Because of
the antisymmetrization operator 8„~,it is not
possible to isolate the A. -B interaction from g;
H. .. has to be selected from the matrix element
H. .. directly in order to contain cluster self-en-
ergies only.

Following the argument given in I, we have &~ ..
to be independent of the r' and r«variables, so
that

I: fdk]B:. (k",k) ,B N-,'(k.-k)[R,:(k) .e=
C

(3.20)

Thus, only the &,„,. part affects the scattering of
A by B, and this is treated by solving for fz(k') or
!y„(k',xz) the following set of equations

fdz'[B, , (z", ') BN, , (z z—)]„!l,..(z"),=e,
(3.21)

with the boundary conditions [F,.(k'}-=Q,.j", ]
r, .(k', ~ ) =F;.(k' k,)a,z"z'"'

„
&„*(k, k, )a, ,

kg, —k + fX

xF,,(l"-k)z""'"'. (S.22}

Equation (3.21), with the boundary conditions
(3.22), forms the dynamical system one can solve
to describe the nucleus-nucleus scattering. It in-
volves the evaluation of &. .. and N, -,. which re-
quire integrations over the single-particle vari-
ables x =(x, ~ ~ x„).This greatly simplifies the
computation. Qn the other hand, the scattering
amplitudes f~ or sz(zz) depend on the generator co-
ordinates z' =(k', xz), which are much simpler to
deal with. Furthermore, distortion effects can be
included into the above formalism when the basis
functions 4's become dependent on z', as will be
discussed in the next section.

In the factorizable case, we have, from (3.16)

e(kr')= fdRr, 'G,,"[R-R'+ll(r-r')]G, [R-R'- (r — ')][e""'(k*)e "'(( )[=G ( — )e"'(k) (3.28)

and with

F,(k' —k }—5(k )[."-,'(k")

we have

dr& f,PY rz g„~4, $, r

=Q drl f~+ rz Q r rI @iht

(3.25)
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IV. DISTORTION EFFECTS AND TDHF

During the collision between two nuclei A. and B,
various inelastic channels can be coupled to the
elastic channels through excitations of the clust-
ers. These distortion effects may be incorporated
by explicitly including some of the strongly coupled
states in the sum for 4', of (3.8}. However, this is
generally difficult to do in practice not only be-
cause the number of coupled equations in (3.21)
will increase, but also because the separation (2.2)
may be difficult' even in the simple case of har-
monic oscillator wave functions. Therefore, it is
of interest to generalize the single-particle orbi-
tals (rp„}in (2.1) to take into account some of the
effect of distortions, as discussed in Sec. II for
the case of potential scattering.

A. Adiabatic distortions

We begin the discussion with the r-dependent
distortions, which are especially important when
the collision velocity is small compared with the
average orbital velocity of nucleons inside the nu-
clei. Since we are trying to incorporate the dis-
tortion effect in the basis set ((1,},of (3.16), it is
more advantageous to introduce the generator co-
ordinate r' directly, rather than the R„' and R~ co-
ordinates. Thus, C,(),r r') of (3.-16) is modified
to a form

4,((, r —r', r')= fdR'4,"[( +R —(('+(((r —v [;r]''

As in the potential scattering case summarized in
Sec. II, the prediagonalization procedure will be
complicated somewhat because of the explicit r'
dependence of 4„butthe scattering equations that
p, satisfy would be identical to (3.20). The bound-
ary conditions (3.22) are unchanged in the asymp-
totic region r'-~.

When 4 c "factorizes" as

(4.3)

h"(x„r) = r(x, )+ U(x„r) (4.4)

with

U(x„r') —U"(x,)+ Ue(x, ) . (4.5)

Then,

the single integration form (3.25) can still be ap
plied, because the dk' integration induced by (3.24)
for f~"(r') is unaffected by the additional r'-depen-
dence of 4,.

Instead of introducing the separate distorted
functions 4," and 4 f in (4.1), it is often more con-
venient to generate a set of "molecular" orbital
basis functions (cp"„(x,)};the single-particle Ham-
iltonian is given by

x C ~e[$e+R R' —a(r —-r'); r']
k"(x;,r')p"„(x„r')= e„(r')y"„(x„r') (4.5'i

and thus

(4.1}

dk'
C

x

(4.2)

with the asymptotic property that as r'-~
e"„(r')—e"„oree

pe (x, , r') -C["„(x,) or y e(x,.) . (4 6)

The antisymmetrized function in (3.15) can be con-
structed as

(4 .&)

(eik" (( r'[@ ([ r rq ~ rz)} @,(( r r( ~ rI)

dR'det y'~ $,"+R-R'+ p r —r';r' p", (2+R-R + p r-r';r'
~ ~ ~ cj",„[]"„„+RR'+ p(r- r');r'](l[",-„[p„+R—R' —a(r —r'); r']

A+1

~ ~ ~ y",„[&e+ R -R ' —a(r - r'); r'] },

where
+N +N e&k"~(x~f NA~e')

Ci A

ply e xg/Ng f' g + j (j (g
C) Cy

The "traveling-wave" factors in y" are introduced
to construct the proper phase exp[ik' ~ (r r~)] in-
(4.V} with correct exchange symmetry. Thus
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8. MomentumMependent distortions

From the general property of the optical poten-
tial for the two interacting composite nuclei, we
expect that the single-nucleon state should be
momentum-dependent, as much as it is cooxdi-
nate-dependent. Thus we may consider explicitly
for the functions in (3.16a)

4,($,r- r') 4,-($, 1' —r', h ) . (4.10)

Here again we want the k' dependence to induce no
polarization when r-~. Note that we have used in

(4.10}the h' generator coordinate variable, rather
than the q„' and qs in (3.V). This is physically more
reasonable and also greatly simplifies the formula-
tion. In fact, (8.15) and (3.16) are essentially un-

changed, as the dh" integration in (8.16b) can still
be carried out without having the 4,'s mixed in.
Thus, just as with the potential scattering dis-
cussed in I, the momentum dependence of the basis
set does not complicate the formalism when the
PT projection is used and the propex generator co-
ordinates are chosen.

In the factorizable case, the dk' integration in-
duced by (8.24) can not be carried out without in-
cluding the 4,'s, so that the scattering equation
will still have both dk' and dr' integrations ex-
plicitly.

C. Coordinate and momentum4ependent distortions

The most general distortions within the com-
plexity of the present formulation (of double pro-
jections) are represented by the r' and h' depen-
dent basis functions, ag

(4.11)C,(~, r y) 4,-(],»-r; h', r-) .
Obviously (4.2) willi (4 I) or ('4 10) can be gener
alized trivially to the present case, as

O' Cr'p' k' r' 8
x(e"' "'4,(g, r-r', h', ~~))f, (4.12)

with the scattering equations for 6' (h', r') given by
(3.1V) and the boundary conditions specified by
(3.22), as long as the self-energy kernels remam
r& and r&& independent at large distance.

As noted above, the factorizable case does not
simplify as much because of the k' dependence of

ek' ~r S, k', ~ e"„.],r-r;r .
(4.9)

It can be noticed that the orthogonality among the
functions q"„for each fixed r& is lost when f((}" are
constructed in (4.6), but this is only a technical,
minor complication.

the basis functions; both dr' and dk' integrations
appear in (8.1V).

D. TDHF

Finally, it is of some interest to study the con-
nection between the formalism generated with the
scattering functions of the form (4.12} and the
time-dependent Hartree-Fock (TDHF) procedure
employed in recent years in the nucleus-nucleus
collisions. The TDHF equations are generated by
the projections

&6~
~

y}=&6y (ff ~a }, (4.13)

where P is the TDHF solution, then f@=h(P) p
with h(P) the Hartree-Fock Hamiltonian, and 6P
is a set of particle-hole states. %e do not show
here the explicit dependence of P on the variables
$, r and A. In a x'estricted TDHF, however, the
~ph) set is replaced by the parameter-dependence

of P, as $(n, P, y ~ ~ }. Then, (4.18) becomes in-
stead

etc., also for the other parameters, resulting in
a set of linear coupled equations in a, P, ~ ~ ~ (but
nonlinear in a, P ~ ~ ). We denote the solutions by
n(t), P(f), ~ ~ ~ . Then, instead of (8.1V), we have
for example

h'-=a(f} and r -=P(f) (4.15)

so that one may use time as a generator coordi-
nate,

dt, tp ~ t, pt

V. DISCUSSION

(4.16)

A description of colliding nuclei in terms of
Slater determinants is very convenient from the
practical computational point of view and also in
satisfying the Pauli principle among all the nucle-
ons. However, the centex' of mass motion of these
nuclei is more difficult to treat, especially when
the numbers of nucleons NA and N~ are not large.
In addition to the usual kinematic corrections,
mixing of the independent particle coordinates can
often introduce spurious states which can serious-
ly affect the very scattering process one has to
analyze.

In I and the present article, we have presented
a systematic theoretical construction, with the im-
proved boundary conditions obtained by the pre-
diagonalization procedure. Inclusion of the coordi-
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nate- and momentum-dependent distortions should
be especially useful in reducing the number of
coupled channels, and still capable of representing
the physical situations with reasonable accuracy.
By its very nature, the formalism in its general
form is fairly complicated. But, in the case of

factorizable orbitals, with some distortions,
actual calculations are probably within the present
computational capability.

Several practical applications and possible cor-
rections to the usual TDHF procedure are under
investigation.
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