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The problem of a mathematically consistent description of reactions involving composite nuclei is reexamined in

the case where the individual nuclear states are given in terms of Slater determinants constructed with single-particle

orbitals. The relationship between the single projection method of Peierls and Yoccoz and the double projection
method of Peierls and Thouless is clarified. The general scattering functions are then constructed, and a set of
scattering equations of the Origin-Hill-%heeler type is derived, in which the Hamiltonian and the overlap kernels

can be evaluated directly in the independent particle coordinate representation. Proper boundary conditions are
specified by the procedure of prediagonalization. To simplify the problem to basic essentials, we consider in this

paper the motion of a nucleus in an external potential. The specially simple cases in which the Slater determinants

factorize into the internal and external parts are considered as an illustration. The distortion of a nucleus during the

scattering process is incorporated here by an explicit dependence of the single-particle orbitals of the Slater
determinants on the generator coordinate and momentum. The double projection method is found to be naturally

adaptable for this generalization.

NUCLEAR REACTIONS Generator coordinate methods potential scattering;
distortion effects.

I. INTRODUCTION

The microscopic study of nuclear reactions re-
quires a set of reliable cluster wave functions with
the full Pauli exchange effect. Such wave func-
tions are often easily constructed in the form of
Slater determinants from independent-particle
orbitals. The center-of-mass (c.m. ) motion of
the clusters is then completely neglected in the
description of the clusters, whereas the reaction
problem would consist in deriving in detail such a
motion from the dynamics. Various generator
coordinate methods (GCM) have thus been devel-
oped' to correct the determinantal wave functions
without modifying their single-particle nature.
The single-projection method of Griffin-Hill-
Wheeler' (GHW) and Peierls and Yoccoz' (PY)
has been widely used in the past when the deter-
minant factorizes into a part which is purely in-
ternal and another which depends explicitly on
the c.m. variable. %hen such a factorization is
not possible, the double projection method of
Peierls and Thouless' (PT) should be adopted,
although the PT procedure is more difficult to
apply in practice.

A rigorous treatment of the nucleus-nucleus
scattering problem within the independent-par-
ticle, shell-model formalism can be given"' by
means of the PT or PY-GHW procedure. This
is then a direct extension of the continuum shell
model" (CSM) for the proton-nucleus scattering,

which accomodates projectiles other than single
nucleons. In fact, the problem of localization
of composite projectiles as well as target nuclei
was the initial motivation for such a study. ' More
recently, the GHW-PY type approach has been
applied' ' to several simple systems involving
light nuclei, demonstrating the potential usefulness
of the GCM in practical situations and also clar-
ifying the connection of the GCM to the usual
resonating group method'4 " (RGM). Only the
simple factorizable cases involving harmonic
oscillator wave functions have been treated. It
is the purpose of this paper to reexamine the GCM
carefully so that the nonfactorizable general cases
may also be treated. Since many intermediate
steps in this development may look intricate,
abstract, and often complicated, we limit our-
selves here to the simple model of a nucleus
scattered by an external potential. This model
contains all the technical difficulties of the more
general nucleus-nucleus scattering system, and

no coordinates in the system are wasted because
the c.m. coordinate is, in fact, the scattering
variable itself. Thus, for the N independent par-
ticle coordinate variables x,-, i =i, 2, . . . , N, with
respect to an arbitrary fixed reference frame
0„, we have the c.m. coordinate R and momentum
P defined by (omitting the explicit vector symbols
throughout for convenience)
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(1 2)

(('„"(x) = g X (x, ), (1 4)

where p, is the momentum conjugate to xj The
internal coordinates are then defined by $j —=xj —8,
with the important constraint Z, $, =0. The
single particle orbitals are generated by the equa-
tion

h(x&)q(„(x&) =[K(x,) + W(x&) Q „(x()= e„q(„(x&). (1.3)

The model Hamiltonian that one uses in the con-
tinuum shell model and also in the bound state
shell model to describe a nucleus is usually taken
to be simply

function is constructed by a superposition of the
projected states. The scattering equations are
derived in Sec. III on the basis of such wave func-
tions, and the asymptotic boundary conditions are
specified by a prediagonalization procedure simi-
lar to that developed for the CSM. The factoriz-
able case is considered at each stage of the above
formal development to illustrate the approach.
An important extension of the result to incorporate
cluster distortions during the scattering is con-
sidered in Sec. IV. Both adiabatic and energy-
dependent distortions are examined.

The more practical problem of nucleus-nucleus
collision will be the subject of a future report.
The general formulation follows, however, mainly
from the results developed in the present paper.

while the correct internal Hamiltonian, for ex-
ample, should be

((„(()= g ((((,. ) v v((„(,)
j 1 j g 1

=H'„"(x) P'/2M-

+ v(], , (~) — W(x, )
j

(1 5)

The determinants which are the eigenstates of
H'„" are then constructed as

4,(x) =~det(((((, (x,)((((, (x, ) q(, (x„)}, (1.6)
1

where c=(c„c„.. . , c„) and x=—(x„x„.. . , x„).
Because of the constraints (1.1), (1.2), and

Z, $, =0, the N-particle system described by (1.5)
is more complex and strongly correlated (the c.m.
correlation), while (1.4) and (1.6) describe a set
of uncorrelated nucleons (except for the Pauli
correlations}. Therefore, the form (1.6} is very
convenient to use in the calculation of matrix
elements and perhaps in the solution of a scatter-
ing problem if a proper theory can be formulated.
It is the main purpose of this paper to construct
such a theory in the simple case of the potential
scattering of a composite nucleus.

Distortion effects during the scattering process
are usually incorporated into the theory either
by a coupled-channel method (CCM) or by the
presence of some optical distortion potentials
in the scattering equations. For slow collisions,
adiabatically distorted basis sets are also often
used. We consider a similar procedure within the
GCM, and show that the GCM of the PT type adapts
itself very naturally to such generalizations.

In Sec. II, we critically review the GCM, both
the single and double projection approaches, and
examine their connections to the RGM and the
CSM. The general form of the scattering wave

II. THE SINGLE AND DOUBLE PROJECTIONS AND
CONSTRUCTION OF SCATTERING WA VE

FUNCTIONS

V (x)= fd(( e" 'xx (x-R'),' (2.1)

where one recognizes a translated shell model
function 4,(x -R') obtained with a displacement
operator Ds =exp(-iR' K). The total c.m. mo-
mentum operator is given by K =K,",P,/if and we

set g =1 throughout. Thus, D& 4,(x) =4,(x -R').
In general, the internal motion contained in the
state 4~r(x) of (2.1) will be q' dependent. (In the
factorizable case, the q'-dependent part can be
isolated from the internal part, as will be dis-
cussed below. ) To obtain a truly internal state
which is independent of q', we define' the zero-
momentum internal wave function by mixing the
q'-dependent 4 .,'s,

v "(((=fax (v )v" "v'"(*)
where the internal coordinate variables $ are
defined by $ -=x -R and where R is the c.m. co-
ordinate of the nucleus. The weighting function
F(q') in (2.2) is left unspecified, but would be
determined dynamically by a prediagonalization
procedure; this will be discussed in greater de-

(2.2)

We first summarize here both the single-pro-
jection method of Peierls and Yoccoz' and the
double-projection method of Peierls and Thouless, 4

which were developed to extract the purely inter-
nal cluster wave functions from a Slater deter-
minant constructed with a set of single-particle
orbitals. Let 4, (x) be a localized shell model
wave function taken as a Slater determinant of
the type (1.6), where x denotes collectively all
the single nucleon coordinates with respect to a
fixed reference frame 0„. Then, following PY,
we may first construct a projected wave function'
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tail in Sec. III.
To see that (2.2) indeed gives an internal wave

function, we combine (2.2) and (2.1) to obtain

q,.*(()=fdq E(q'') f dq's"' *'q (s-d')

wave functions. As preliminary to the scattering
problem to be discussed in Sec. III, we consider
here only the general form that the scattering
wave functions should assume. Thus in the fac-
torizable case, a simple superposition of the PY
type functions gives

dR'E, 8 -8' 4, x -R' (2.3)

where I', is the Fourier transform of E„
F,(R-R')=- fdq'F, (q')e "'" " ', and C,(»-R')
=C,(),R -R'). The fact that only the combination
(R R') a—ppears in (2.3) guarantees that COP,T($)
is an internal function of $ only. In the following,
we neglect the (2n') '@ factors throughout to sim-
plify notations, and all the c-number variables
are denoted with primes.

When C,(») factorizes, as, for example, when
the single particle orbitals in 4, are all of the
harmonic oscillator type in their lowest energy
allowed states, we have

where

dq' -q' 4 x

dR' ' 4, x-8' (2.8)

C P" =uPv(R)C '"($)

with

(2 8)

More explicitly, (2.5) immediately reduces (2.8)
to an BGM wave function

C,(x) =G,(R)C "'(&)

and (2.1) reduces to a form

C""(»)= [G (-q')e" '"]@'"(t')

(2.4)

(2 5)

"(d)= fdq f(-q')&. '(-q')s" '
dR' 8' G, A -8' (2.10)

G.(-q')= f d(s q) 'ss

while (2.2) gives

(2 8)

(2.Va)

~I &]K"B

Therefore, Co," of (2.5) with q' =0 and COPT($) of
(2.6) are etlually effective in isolating the internal
component of 4,. Hence, as is well-known, Eq.
(2.1) u)tthout the additional mixing of the q'-de-
pendent states in (2.2) should be sufficient in iso-
lating the internal part for the factorizable cases.
However, when C,(») is not factorizable, then the
q' mixing in (2.2) may be essential to obtain a
dynamically significant internal state. For later
applications, a slightly more convenient form of
C'OdT may be derived from (2.3) by a change of
variable q' =E -E' and dq' =dK', which gives'

C,PT(») ei»'BC, PT(()

The form (2.8) has been used extensively9 '~ in

the analyses of nuclear reactions with elementary
Gaussian models for nuclei, and shown to be more
convenient than the ROM form (2.9). Instead of
solving a set of e(luations for uP "(R), the ampli-
tudes f,(R') in (2.8) are determined directly from
the GEQYV equations. The label c here could cor-
respond to the actual physical channels if C),'"($)
are reasonably close to the eigenstates of the
internal Hamiltonian H„($). Otherwise, one has
to go through the prediagonalization procedure' '
to improve the channel functions. We will discuss
this problem in Sec. III and relabel the improved
channels by d.

For the nonfactorizable case, a similar con-
struction of scattering wave functions using the
C ~ ($) can be carried out. From the definition
of C», (x), (2.Va), we have then

+~~ x,
where

q'*(*)-=f~f ( d()s""q"(()-
x

C
(2.Vb) -=u, (R)C „($). (2.11)

The form (2.5) for C)P»", (») is recovered from (2.Vb)

with the choice F,(K —E') =5(K') in the factorizable
case.

We now turn to the construction of scattering

The form (2.11) is nothing but the usual wave func-
tions in the RGM. However, the use of the 4„
in the construction of a coupled set of scattering
equations for the L, is already an improvement
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over the HGM, because we can now evaluate in
the x variables directly the integrals which are
needed in the construction of the scattering equa-
tions. It should be stressed here also that, when
the asymptotic cluster functions are not available
in an exact form, as is usually the case, the
explicit construction of @AT($) and possible ad-
ditional linear combinations of various 4~~($)
to improve the channel functions are essential
both in the RGM and GCM.

A slightly more convenient form of 313, (») can
be obtained' from (2.7b) [by the change of variable
(I' =E-IC' in (2.3)),

B. (x) fdKJ.=( K)B;( )-x

dE' dR'5, E',8' e' '" " '4, g -8',
(2.12)

E,(K'B') = fdK,E,(K K')f, ('K)e' x. (3-.(3)-'
This is the main result of this section. Since
(2.12) with (2.13) will be the basis of our discus-
sion of the scattering formulation in the next sec-
tion, we briefly examine their stxucture a little
further. First of all, when E,(K-K') =6(IC') for
the factorizable case, (2.12) immediately reduces
to (2.8). Secondly, we can define 4 ~T in a compact
form using the displacement and boost operators

Ds. =exp(-iR' ~ K) and Br. =exp(iK'. R). (2.14)

Thus (6.8) can be written as

III. POTENTIAL SCATTERING OF A NUCLEUS

In this section, we formulate the complete scat-
tering and structux e problem by means of the wave
function, E(l. (2.12). A set of coupled e(luations of
the GHW type is derived, which depends explicitly
on the generator coordinates E' and 8'. The
boundary conditions on the scattering amplitude
functions F,(K', R') are determined by the pre-
diagonalization procedure.

The Hamiltonian of the system is given by

H =A'(R) +H„(()+ V(R, $) =H'" + V, — (3 1)

where K(R) is the c.m. kinetic energy operator
for the moving nucleus, H„(() is the internal
Hamiltonian for the nucleus, and V(R, $) is the
interaction potential. The scattering equations
for 5, are obtained from the variational principle

6[I]/56:,.(Z") =0, (3 2)

where Z" —= (K",R") denoted collectively and the
variational functional [I] is defined by

more than one nuclei are involved in a collision.
Then the total c.m. variable has to be projected
out altogether, as the physical H does not depend
on it. The complete antisymmetrization of all
of the nucleons involved also complicates the prob-
lem. These problems can be handled more con-
veniently in the GCM approach and will be care-
fully discussed in a second paper. The next sec-
tion of the present paper rather deals with the
scattering of one nucleus by an external potential,
which is simpler but stiD of physical interest.

[I]=~, +(e „[H-Z]e,}„. (3 3)

B,*(x) = fdd fdd IF(K''B )DFFB'„B, (x), '. ,
(2.15a}

~'5' E',8' g.D~ @ x,
(2.15b)

where

5'(IC' R') =-6: (K' R')e ' (2.16)

Finally, note that the amplitude function P, (K',R')
is, in general, not an arbitrary function of two
variables, but specificaQy dependent on the cluster
structure factor E, through (2.13}. This is an
important point because boundary conditions on

5, can be explicitly derived using (2.13), as will
be discussed in Sec. III.

The projection procedures considered in this
paper are especially simple, because the c.m.
variable 8 is, in fact, the scattering variable.
The situation becomes more complicated when

Here, the bracket indexed by x means integration
with respect to all the single-nucleon variables
x&, the 4, is a trial function given by a finite sum
of O'PT,

4, =+@~T(»),

and X, is an asymptotic amplitude parameter in
[The expression (3.3) should be evaluated

carefuQy, with possible regularization factors
if necessary. But this does not affect the final
equations we derive below. ] Thus, (3.2) gives

(3.4)

H, , (Z",Z') =(di)»- (»-R")~H ~43» (»-R')}„
&.", (&",~') =&@.'-(» -R")~@."(»-R')&„(3.6)

g fdd [E . (Z Z ) EK', ;.(.Z Z",)]I'F;-(Z ) 0", ''=
(3.5}



B. G. GIRAUD AND Y. HAH%

with

@Ic'(» Rq) e(E' (B R')@ (» Rq) (3.7)

dZ' -=dK' dR' .

The exp(-iK' R') factor in (3.7) may easily be
absorbed in the P,.(Z'), as in F,'. (Z'), which re-
sults in slightly simpler boundary conditions for
0.",.(Z'), but we stay with the form (3.5) for F,.(Z')
here. Although the scattering Eqs. (3.5) are quite
similar in form to the GHW equations one obtains
with (2.9) and used in Hefs. 9-13, the presence of
X' and X" in addition to R' and R" in (3.5) greatly
complicates the task of solving them for P,. Such
complications are, however, intrinsic to the prob-
lem when the cluster functions 4, are not factoriz-
able. Even the asymptotic boundary conditions
are not easily obtainable, although they are an
essential part in completely defining the scattering
problem itself.

In order to derive the complete boundary condi-
tions for the functions P, (Z'), we first have to
determine the cluster amplitudes E,.(IC') in 4rP.
Equation (2.13), combined with the form for f,. (EC),

wiB then provide an explicit form that P,. should
assume. Thus, using (2.3), we construct another
functional for the prediagonalization purpose

q"(()= jqqv. (q')q. ((,q'),

with

q. (q, q') fq» q" '*-='q. '(q »') . -(3.10)

The variations in E;.(q"),

5[8]/5Z,, =0,

give

Efqq (q (q ')"I» ( "q-q)'
l
»Iq((, q'))».'(q') =q.

(3.11)

The solution of this diagonalization problem pro-
vides a set of eigenstates labeled d. %e stress
that this label is now that of a physical channel.
Although (3.11) is fairly complicated to solve, it
is a prerequisite in treating any scattering prob-
lem. Since the correct asymptotic boundary con-
ditions are not available in general, the internal
parts of 4,. have to be first isolated and then suit-
ably combined to provide such information. In

the case of factorizable 4... the q' mixing in (2.2)
is not available. This means that F». (q') become
constants in (3.11).

The main complication in evaluating the kernels
in (3.11) is of course the use of the internal vari-
able $. After all, the principal reason for using
the GCM over the HGM is to avoid such direct
use of $ and A as much as possible during the
actual calculation. It is therefore desirable to
rewrite (S.ll) in a form which contains the d»
integrations directly. In fact, Eq. (3.11) is not
exactly the form one encounters in solving the
scattering Eq. (3.5); however, we show below
that Eq. (3.11) is completely equivalent to the
prediagonalization of (3.5) defined by

Q fq» (q (q '»' )—'
c'

x iH„(Q E'i 4,. (» --R'))„5',.(Z') =0.

(3.12)

Here, the integration inside the bracket is over
all the x, variables, i.e. , dx=II", ,dx,-=-dgdR. As
a result, (3.12) contains four integrations over
dfC'dR'dR d$. On the other hand, (S.ll) with (3.10)
contains four integrals over the slightly different
set of variables dq'dR'dR "d$. Therefore, to prove
that (3.11) is equivalent to (3.12), it is necessary
to connect these two sets of integrations and to
show that E». (K') P». (IC', R'). The integrands
are then the same in both expressions, under the
exchange of (-q') for E' and (-q") for IC".

First of all, the d$ integration is common to
both cases. Also d&' in (3.12) and dq' in (3.11)
play exactly the same role. Noting that the kernel
of (3.12) depends only on the difference (R' -R"),
we can replace 0'; (&',R') by 8,'.(-&'), followed
by K'- (-IC'). Then, the dR' integration in (3.12)
can be carried out explicitly as in (3.11); the R
dependence appears then only in 4, through the
combination 8, -8", so that the dA" and dR inte-
grations are equivalent. Thus, (3.12) and (3.11)
axe exactly the same, and the prediagonalization
with either form will give the same E~;(IC') and
E . Consequently, the new scattering function
with more physical channel functions (labeled d)
is given by

(3.1S)

where

q"'=g Jq» fq»q (»»)q" t"-'». q (*-»)

(3.14)
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IF ~ (K' B') = fdKIF (K K')F, ( -K)e'-
{3.15)

@~' =&d(R)@d'"(t), (3.16)

0;*'(()=1 fee B (0')e'"'
C

x dR'e'& "4 ~ x-A' . 3.1V

Now the boundary conditions on 6,.(E', R') can
be derived. From (3.16) and (2.11), we expect
that the momentum space wave functions jd(-E)'
in channel d assume the form

E(luation (3.14) is e(luivalent to the RGM function

for F,'. (E',R') than {3.19), without the exp(iE~ R')
factory fox' example.

Equation (3.5), with (3.19) and (3.12), forms
a dynamical system one can solve for the potential
scattering of a nucleus. Construction of a set of
basis functions 4~~T is already a significant
improvement over the initial 4 „because the
internal states are isolated by the projection
method and the channel desex iption aftex the pre-
diagonalization px'ocedux e should be more real-
lStlC.

The development of the theory presented above
is rather abstract, and we illustx'ate the structure
of the theory in the simple factorizable case for
@,. With (2.4}, we have for (3.11), after some
algebra,

&*-(-q"}Ie- ~ -n;.;eoj
C

X dg Gc& ~g c& g Oy 3 20

(3.18)

with a~ =0, except for the initial channel, and the
T«. are half-off-shell T matrices. Thus, fxom
(3.15) and (3.18), we finally have

6'. (E R ) =I'.(E -E)u s"~'"'

E" E~g
dEFF dd ( F dl de p(( (EFF EF)

Eq -E" +if

(3.19)

hence 6:,, =Z, PK. , where of course the &', »e
alx'eady available from the prediagonalization of
(3.11) and (3.12). With the definition (2.15b), we

will have a slightly simpler boundary condition

e...,, = dt e,';,'* g a„~ e ~'. ~ ~,

n. .. = d(4,"'~
& 4,'

As expected from (2.5) and (2.6}, the q' depen-
dence of &,, (q') is not necessary in this case, so
that we may set E;(q') =E; =constant. These
constants axe, of course, determined by the
diagonalization of the matrix e. ..-e s;.; (with
proper allowance for the known factors G, and

G, ,).
On the other hand, the problem posed by Eq.

(3.12) requires a prediagonalization process based
on the equation

(e ~ — ~ e ) f dK fdB fde'0 (K' B')e'"''". ''"e ""'B (0')0 (K"'-K'+0')=0
C

(3.21)

E(luation (8.21) depends only on (R' R"), ex--
cept for the 5~ (E',R'), which suggests immediate-
ly that 9'~;(R', E') are in fact functions of E' only.
Thus we replace (F,'.(E',R') by 5';(-E'). The dR'

integration can then be carx'ied out in the variable
(R' -R"), which results in a factor 6(IC' -q').
Finally then,

g 0, (K)(e,... —e. ..e ) fdK FI;(-K')6, (K')=0, '

(8.22)

which is exactly the form (3.20). Thus we have
shown explicitly again in the factorizable case

l

that the diagonalization using (3.11) is completely
equivalent to the px ediagonalization required in
(8.12).

Evidently, the (R' -R") dependence in (8.21) is
a conse(luence of the commutativity of H„(() and

E, and not a result of the factorizability of 4,.
On the other hand, the simple result of (3.20)
with P~ (q'} =constants, is a direct cones(luence
of the factorizability of 4,. %hen we generalize
4,. in the next section to incorporate distortions,
some of these properties will be lost in the inter-
action region. However, asymptotically they are
retained in order to be able to specify the asymp-
totic boundary conditions.
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IV. DISTORTION EFFECTS—COORDINATE AND
MOMENTUM-DEPENDENT BASIS

FUNCTIONS

Distortion of the nucleus during the nuclear
collision is often taken into account in a reaction
theory by including in Eq. (3.13) several channels
which are strongly coupled to each other. As is
well known, such a procedure has its limitations.
Firstly, as the number of important channels to
be included grows, the computation for the solu-
tion will become prohibitively complicated very
quickly. Secondly, there is always the lingering
question of the effect of other channels which are
being neglected. Thirdly, even if we can take
into account a sufficient number of them, the
separation of internal parts from 4, becomes dif-
ficult even in the factorizable cases. ' Of course,
there are known procedures to approximately over-
come some of these difficulties, for example,
introducing a set of pseudostates or by construct-
ing effective optical potentials for the various
channels.

In this section, we show that the formalism
developed in Secs. II and III can be naturally ex-
tended to incorporate such distortions. To mini-
mize the number of explicit channels in (3.5), a
set of distorted cluster states are introduced; the
distorted Slater determinants are dependent on
the generator coordinate variables, R' or E', or
both, so that the nonlocality and energy-depen-
dence of the actual scattering process are ade-
quately reproduced. Precise choice for the single-
particle potential W(x, ) in (1.3) depends, of course,
on the dynamics. A rough estimate of 8' may be
obtained by examining the optical potential cor-
responding to channel d, with the channel cluster
function 4, rn($) -=~d). Then we have"

v, =&uivis&, +(aiv z, , H viv), (4.&l

where Q, =I, —
~
d), (d

~

. Because of the Green's
function [Q~(E+ia H)Q„] ', U, is n-onlocal in R,
and is also energy dependent. Thus, if we are
to describe the elastic scattering in the d channel
with a single determinantal function 4~", then
the W potential for the single-nucleon states y "
should reflect the similar nonlocal and energy-
dependent properties of (4.1). Therefore, 4~4«

and W" can, in general, depend on the R and E
variables for the c.m. motion of the nucleus, as

h~(x, ;R')y ~(x,. ;R') = e~(R')y ~(x„R'),
h (x,. ;R') =K(x,)+W'4(x,.;R'), .

(4 3)

with the important constraint that, as R'-~, we
return to the undistorted case of Sec. I, as

e~(R')-e„,
W (x(,'R') —W(xi),

V."(x„R')-V.(x;).

(4.4)

They are completely equivalent to the usual
"molecular orbital" states, and much simpler
to deal with, since the model here does not allow
nucleon exchanges. As in Sec. I, Slater deter-
minants 4;~(x,R') can be constructed as

4 ~(x R')
1

~
det[y,', (x»R')y~~(x»R') ~ y~(x»R')])

(4 &)

with the obvious property that again, as R' -~,
4~(x;R')-4, (x) . (4.6)

The projection procedure (2.1) or (2.2) for the
construction of internal wave functions is no longer
valid with C~(x;R'). We have

D~C ~(x R') =C ~(x -R';R') =4~~(),R -R';R'),
(4.7)

so that (2.3) becomes

4 = dq'I' q' dR'e "' '4' $,R -R' R'

E'. This is, of course, not the most general
procedure, but probably the simplest. In the
following, we consider in sequence R distortions,
K' distortions, and (R', K') distortions.

A. Adiabatic distortions (R')

We first consider a set of adiabatically distorted
single-particle states localized near the origin
0, which are now explicitly dependent on the
generator coordinate R'. Such states are con-
venient in describing a slow collision of a nucleus
which can easily be distorted. Thus, instead of
(1.3), we consider' a new single-particle potential
W~(x,. ;R'), which is centered near 0, and gen-
erates a set of orbitals

C "~(~ R K) and W4«(x. R K). (4.2) dt'F t' 4~ $, t';R —t' (4.8)
Since we are going to apply the projection pro-

cedures of Sec. II to the determinantal functions
4„ the explicit dependence of 4~~ on R and E'

may be incorporated in these C, through their
dependence on the generator coordinates R' and

where t'=-R -R'. Evidently, from (4.8), the re-
sulting 4 „will be an explicit function of both
$ and R. With the asymptotic property (4.6) for
large R', however, we expect that 4;~($;R)
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4,(x -R') =G,(R -R')4'"'(g) (4.10)

where

C "'(()= & '~'(aug) '@ exp(- ~'/4a')

Go(R -R') =s (a/)t2) ~exp[-(R -R') /a ]

The strength constant a may then be replaced by,
e.g. ,

a -a(R') =a, [1 —e ~0 ].

-C~T($) as R-~. This is a consequence of the
fact that 4~($, t';R —t') is peaked around the
value t' =0, so that its dependences on R and R'
are similar. Thus 4);~ defined by (4.8) becomes
purely internal in the limit of large R.

The scattering functions can be constructed
either with (2.8) in the factorizable case or with
(2.12) in the more general cases (with a slight
change in the R'-dependent Slater determinants)
as, for example,

4, (x)=fd)( fdR 'P, (K'', R')e' '" " 'O, ( -R R )", '

(4.9)

The scattering equations that F,(K', R') satisfy
are exactly the same as (3.5). This is the very
point mentioned earlier that the forms (2.12) and
(3.5) already contain the GCM R' and K', so that
(4.9) is perfectly a natural extension, with the
potentially powerful means to improve the theory.
The prediagonalization program defined by (3.12)
will be slightly more complicated because the
kernels are no longer functions of R' -R". [Pre-
viously, this property allowed us to connect Eq.
(3.12) to Eq. (3.11), and to drop the R' dependence
in F~ (Z'). ] However, there are no more compli-
cations of principles, and the resulting S~; and
E can be used to specify the necessary boundary
conditions similar to (3.19). In all these manip-
ulations it is clear that one introduces some c.m.
spuriosity, but this disadvantage should be com-
pensated by the advantage brought about by the
introduction of the polarization effects controlled
by R'.

Instead of using only the nuclear internal Ham-
iltonian H„($) in (3.12) for the prediagonalization,
we may also include the interaction term V($, R)
during the prediagonalization. Then, the resulting
E" will be explicitly R dependent, as expected
from the general consideration of an adiabatic
picture.

A simple example of an R'-dependent distortion
effect may be found in the harmonic oscillator
model for the dineutron scattering by a fixed po-
tential. The determinantal function is given by

By replacing R' by R -t', with t' =R -R', it is
explicitly seen that the R and R' dependences of
4,(x -R') at large R and R' are indeed similar.

B. Momentum-dependent distortion {K')

When 4,(x) depends explicitly on the GCM vari-
able E', as

C,(x) —4,(x;K'), (4.11)

We now let the basis functions 4, depend on
the both GCM variables R' and K', as

4,(x) -4+'(x; K', R') . (4.12)

The formalism here naturally follows along the
line of Sec. IVA with very minor changes in nota-
tion. Thus, (4.12) provides the most general ap-
proach within the limited framework in which we
require the distortion variables to be identical
to the GCM, R', and E'. Otherwise, additional
averaging procedures have to be introduced. The
model (4.10) provides a simple example in which
a, -a(R', K').

V. DISCUSSION AND SUMMARY

Description of a many-nucleon bound system
by one or more Slater determinants is most con-
venient but, by the very nature of such a composite
function of single particle orbitals, it becomes
difficult to separate out the c.m. variables which
are needed in treating the scattering problem. We
have carefully studied in this paper such a theory
in the case of potential scattering of a nucleus.
Our main result is the scattering Eq. (3.5) with
the boundary conditions indicated by (3.19), where
the cluster mixing functions F';((I') are to be ob-
tained by the prediagonalization (3.12). Such a
formalism should be useful in describing the scat-

the entire formalism of Secs. II and III should be
applicable without change since, as discussed
after Eq. (2.1), internal structures are already
momentum dependent. Thus, the resulting for-
mula should be much simpler than that described
in Sec. IV A for the R'-dependent distortion. Such
a possibility of including some distortions without
additional complications should be useful in prac-
tice, especially in high energy collisions, because
a proper adjustment of the basis set as a function
of the scattering energy is difficult to make in the
RGM. In fact, this additional. E' dependence
mixes in 4, 's, which are basically different sets
of functions for each K'.

An example of such a parametrized state is
given by the model of (4.10), with a, -a(K').

C. Coordinate and momentumMependent distortions
{K'and R')
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tering of light nuclei by a heavy closed-shell
nucleus which provides an effective scattering
potential V.

From a practical computational point of view,
the factorizable case would be most interesting.
As noted earlier, the formalism then simplifies
a great deal and we have indicated in this paper

how the general formalism reduces in such cases.
The important problem of incorporating the cluster
distortions in the basis determinants has been
considered, without increasing the number of
coupled channels. The general nucleus-nucleus
scattering will be treated later using the basic
result of this paper.
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