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We discuss the problem of scalar wave multiple scattering in one dimension on a target of n identical fixed
scatterers with delta-function potentials. We consider in detail a statistical ensemble of configurations of scatterers
whose positions are uniformly distributed throughout the scattering region. We succeed in analytically performing a
configurational average (over all scatterer positions) for the wave function for the problem of a transmitted wave
with constant amplitude. We discuss the relationship between this problem and the standard problem of an incident
wave with constant amplitude, From the simple closed form for the average of the wave function, the optical
potential for the system is obtained. We then present the large and small incident particle wavelength limits [with
respect to the length (L ) of the scattering region] for both the average of the wave function and the optical potential.
We also examine the question as to where the optical potential can be approximated by the form it takes in the limit
of infinite n. (The question of where in parameter space this occurs and how we11 the transmitted and reflected
waves can be predicted with this form is discussed in the following paper. ) Furthermore, we consider the large
incident particle wave number limit for the average wave function and the optical potential for a general distribution
of the scatterer positions in the limit of both n and L approaching infinity but with nlL remaining fixed. Lastly,
knowing the simple closed form for the average of the wave function, we prove that the effective field approximation
becomes exact in the limit of infinite n with all other parameters held fixed.

NUCLEAR REACTIONS Multiple scattering, randomly distributed point scat-
terers, one dimension; conIBgurational average wave function, optical poten-

tial; low and high energy limits.

Methods for describing the multiple scattering
of waves have been under continuous investigation
since the turn of the century. ' In the following
preliminary remarks, we shall briefly discuss
several aspects of the problem as introduced by
Foldy. ' The problem of multiple scattering for
pointlike scatters is discussed, and it is shown
that, for s-wave scattering, a set of n inhomoge-
neous equations for the scattering amplitudes can be
derived. The solution of these equations can then
be used to determine the wave function at any point
inside or outside the scattering region. Then in
order to calculate the optical potential (or equiva-
lently the index of refraction), the configurational
average of the wave function must be found. To
expedite the calculation of the optical potential,
energy flux, and other properties, the effective
field approximation is implemented. This means
replacing the average external field by the average
of the wave function at that point. (The external
field is defined as the incident wave minus the scat-
tered wave emerging at that point. ) Using the ef-
fective field approximation circumvents the need
to calculate the average wave function and leads to
a simple expression for the optical potential. This
approximation is expected to hold in the limit of
large n.

The problem of finding the configurational aver-
age for the exact solution remained. In order to
avoid this difficulty, Lax' discussed the hierarchy
method. This meant relating the average of the

wave function overm scatterers with that overm-1
and then truncating the appropriate series at some
value of m by equating the two averages; he termed
the first step the quasi-crystalline approximation.
Waterman and others' extended this concept using
a modified effective field approximation and pre-
sented an expression for the index of refraction
in terms of the forward scattering amplitude for
several different examples.

Several other approaches which include a dis-
cussion of strong multiple scattering (for nonover-
lapping potentials) are briefly discussed below.
In Ref. 5, the potential is written as a sum of sep-
arable potentials, and a system of n inhomogen-
eous equations are found. From the solution of
these equations, the scatterer amplitudes for the
system can be calculated. In Ref. 6, a similar
use of Green's function techniques and separable
potentials also yields a set of n algebraic equa-
tions. The solution of these equations allows the
complex propagation vector in the scattering re-
gion to be determined. In each of the aforemen-
tioned papers, the potentials are expanded in
terms of spherical harmonics and the above cal-
culations carried through. The effective field
approximation and the assumption of closely packed
scatterers are used in Ref. 6. Another approxima-
tion, different from the effective field approxima-
tion, along with the assumption of closely packed
scatterers, is used by Lenk' to calculate different
partial wave contributions.
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Only a few people have dealt directly with the
problem we consider. A series of papers by
Bazer' and Bazer and Karal' are concerned with
the one-dimensional problem of an incident wave
with constant amplitude. In these articles, suf-
ficient conditions for the validity of the effective
field approximation are presented. Fikioris'
calculates three examples for specific values of
the parameters and comments on the validity of
the effective field approximation. Recently, Olsen
and others" have considered the validity of certain
approximations to multiple scattering in a ran-
dom medium with discrete scatterers. Thus far
no one has yet considered the conditions on n, 1
(the scattering strength per scatterer), h (the in-
cident particle wave number), and L (the length of
the scattering region), where the effective field
approximation is valid and where the optical po-
tential simplifies and is still a useful approxima-
tion in predicting the outcome of the scattering.

The reason for approaching the problem of
multiple scattering in one dimension is mainly be-
cause of its simplicity in comparison with the
three-dimensional problem. It is, however, of
considerable interest because it is a prototype of
a number of problems in multiple scattering
theory. The wave function can be represented as
the sum of an incident wave plus scattered waves
from all the scatterers. The amplitude of the
scattered wave from each scatterer is obtained by
solving a system of s inhomogeneous algebraic
equations in which the scatterer positions appear
as parameters in the coefficients. Physical mea-
surements can measure an average state and, in
this case, an ensemble average of the wave func-
tion is required. These measurements canbe made
in both one and three dimensions, so that the
ideas from this approach can be directly tested.

Some examples of the three-dimensional problem
include: multiple scattering of sound waves by
bubbles in a liquid; scattering of electrons in liq-
uid metals and other substances such as amor-
phous materials; scattering of neutrons or other
elementary particles by aggregates of nuclei; and
ultrasonic scattering, to name a few. In one di-
mension, some problems are as follows: scatter-
ing from planes, each with adif'ferent index of refrac-
tion than the scattering medium in the case of normal
incidence; the transverse motion of an infinite
homogeneous string with pointlike masses located
at random along a fixed length; or the passing of
a current through a transmission line with lumped
impedances randomly located in series along a
fixed length. In fact, any problem with a discon-
tinuity in the first derivative which is proportional
to the wave function at the discontinuity is des-
cribed by this theory.

The ob]ective of our papers is to determine the
conditions under which a simplified form of the
optical potential might be used to describe a mul-
tiple scattering experiment. Only the one-dimen-
sional problem is considered in this and the fol-
lowing paper. In this paper an exact expression
is calculated for the average wave function given
certain boundary conditions. This expression is
a finite sum which can be expanded as a conver-
gent power series in k. The first form is suitable
for numerical calculations when k is large, while
the second is necessary for small k. The caleu-
lational difficulties make it necessary to examine
these limiting forms of the solution. These lim-
iting forms actually contain all orders of multiple
scattering and are not like the normal Born-type
approximations. We therefore present large and
small kL limits for the wave function and for the
optical pott;ntial from which scattering effects
can be at least roughly calculated. We show that
the optical potential may indeed by replaced by a
simplified form for all kL for most purposes. In
paper II, we extend the analysis numerically to
cover the entire range of kL and subsequently dis-
cuss where a simplified form of the potential can
be used. These results are then compared with
those given by a Monte Carlo analysis of the prob-
lem, so that one can see whether the same con-
clusions are applicable to the physical case.

The outline of this paper is as follows. In Sec.
I, we define the one-dimensional problem and
compare it with a similar three-dimensional prob-
lem. In Sec. II, we find a simple closed form
solution for the configurational average of the wave
function for the one-dimensional problem of a
transmitted wave of constant amplitude. This is
done for a system of n independent and uniformly
distributed scatterers. In Sec. III, we present the
large and small kL limits of this solution and also
an alternate form for the above mentioned solution.
In Sec. IV, we discuss the optical potential in the
limits of smaQ AL, , large kL, and infinite n. In
Sec. V, we present results for the average wave
function and the optical potential which are valid
for large kL, and a general density distribution
for the position of the scatterers as n and L ap-
proach infinity but with s/L fixed. In Sec. VI, we
consider the relationship of this problem to the
standard case where the incident wave has constant
amplitude. In the conclusion, we summarize the
main results. In the Appendix, we prove that the
effective field approximation becomes exact in the
limit of n approachimg infinity with all other para-
meters held fixed.

I. THE ONE-DIMENSIONAL PROBLEM

We consider the one-dimensional problem of n
identical pointlike scatterers with delta-function
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cident wave e ' ", there will also be a reflected
wave re"* (x &L) and a transmitted wave te "*
(x &0). In particular, r and t are complex con-
stants and functions of the scatterer positions.

In the three-dimensional case, for s-wave scat-
tering, a set of equations similar to Eq. (5} occurs,
but in a slightly different form. From Ref. 2, we
find that the resulting wave function can be written
as

potentials. The scatterers are constrained to lie
in the interval 0 to L which we define as the scat-
tering region. The Schrodinger wave equation for
this n-scatterer system is

S2 m 52
$„(x)+

2 I; 6 (x —x, )p„(x) = Eg„(x) .
(1)

P„(x}=—g(x; x„x,. . .x„), and the prime denotes
differentiation with respect to x. The x,. are the
positions of the scatterers and 0 & x, & L. The I;
are the interaction strengths associated with each
potential; we take all I; to be equal to I'. If we
choose units of g'/2m = 1 and consider the nonrela-
tivistic case where E = t'tk'/2 m, then Eq. (1) be-
comes

g(r) = Po(r)+ JAG(r, r,.), (6)
j= l

where g~(r) = ((r) -A~G(r, r,) and the arguments
for the positions of the scatterers have been sup-
pressed. Also, A,. is defined as gp~, with $~

= P'(r,.). Upon substituting r = r,. in Eq. (6), we ob-
tain the following system of n inhomogenous alge-
braic equations for the external fields (I)':

I
= g (r.) +g pp G(r r ) (7)

where the prime indicates that the sum does not
contain the term with l = j. Solving for the exter-
nal fields and substituting into Eq. (6) yields the
desired solution for P(r). In most cases there is
no simple reduced solution for g(r) and so, to find
the average value of g(r}, a large number of ran-
dom distributions of scatterer positions must be
considered and, each time, Eq. (7) must be solved.
For large values of n, this is very time consum-
ing, even with present computer techniques and

computer speeds. Returning to one dimension,
we obtain a result similar to Eq. (7), except that
there is no singularity in the scattered wave at
the scatterer's position. We can rewrite Eq. (5}
by taking the i = j term in the sum on the right to
the left-hand side and defining g~ = (1 —I'/2ik)g(x; )
and g,g' = I'g(x, ); we obtain in either the physical
or unphysical cases,

q„ (x}+ k'y„(x) = r g 5(x —x, )y„(x) . (2)
i=1

This is known as the reduced wave equation. The
system has a harmonic time dependence so that

P„(x, t) = g„(x)e '~', where &o is defined as a func-
tion of k by an appropriate dispersion relation.

In order to solve Eq. (2), we need to specify the
boundary conditions for the wave function. One
approach is to consider a wave incident from the
right with a normalized amplitude of unity. An
alternate approach (though of less physical inter-
est) is to take the wave to be incident from the
right, but to have a transmitted wave with an am-
plitude normalized to unity. These two cases will
be dubbed the "physical" and "alternate" cases.
Actually, both are physically realizable, but the
first is much easier to establish experimentally.
We discuss only the physical case in the remainder
of this section.

Equation (2) can be converted to the Lippmann-

Schwinger integral equation

x) q,(*).„I:=f Gx .~v(x x;N(x x*', '„'
i= l

q (x} e tkx+ e-N]x-x&~
~ (x )

r"
2zk i=I.

At x=x~ and with P, =— g(x, ), this becomes

(4)

ikx) + eik le xi 1

P
r

a&a.i=1

Equation (16) is a system of n inhomogeneous al-
gebraic equations in the g, . Apart from the in-

(5)

(3)
where $0(x) is a solution to the free-space wave
equation, G(x, x') is an appropriate Green's func-
tion, and U(x', x, ) = I'5(x' —x,). U(x', x, ) is re-
ferred to as the reduced potential since we are
dealing with units g'/2m = 1. For the physical
case, G(x, x') =e "~' * ~/2ik for all x, x' and P,(x)
=e-'" so that

q' = q, ( )x+g, Q P'G(x„x,), (8)

where g, = I'(1 -I'/2ik) . This result is identical
in form to that in Eq. (7}. Because there is no
singularity in the one-dimensional problem, it is
easier to express the results in terms of l as in
Eq. (5) or later as in Eq. (11).

II. THE AVERAGE WAVE FUNCTION

Returning to the one-dimensional problem, the
next step toward calculating an optical potential
is to determine the average of the wave function.
Unfortunately, the determinant associated with
the inhomogeneous equations in Eq. (5) is depen-
dent on the position of the scatterers, and per-
forming the integrals analytically is not possible.
We therefore turn to the alternate case, on which
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we focus our attention for the i emainder- of this
paper.

In the alternate case, the transmitted wave has
constant amplitude and is taken to be e '~ for
x ~ 0. The Green's function is

,) 9(,)
sxBk(x —x } (9)

For any particular random distribution of scat-
terer positions, we relabel the scatterers so that

x, -x„,for all i between 1 and n. Evaluating Eq.
(8) at x = x& with G(x~, x,} taken from Eq. (9}, we
obtain

tt

(j)~ = e '"*~+—Q e(x~ —x,}sink(x, -xr)g, . (10}

The determinant of the coefficients of g, in Eq.
(10) is triangular in form with unit elements on
the diagonal, and is accordingly unity. Thus there
is no denominator term for i)„(x}in the alternate
case, and the resulting average wave function will
be different from that in the physical case. Solving
for the i), and using Eq. (8), we obtain

d„(x)=r '"~ „- gd(x —r, )sink(r, —r, )d, ,(x).
(ll)

The quantity P,~(x, ) is the wave function for i —1
scatterers at the point x„where we take )j),(x,)
to be e '"~. For x&L, there are two other waves:
an incident wave ae ' and a reflected wave be' '.
Both a and b are complex constants depending on
the positions of the scatterers.

The alternate and physical wave functions can
be related. In fact, we can obtain the solution
to Eq. (4) by calculating the coefficient of e '~ at
x =L in Eq. (11) and then dividing Eq. (11) by
this term [which is just the determinant of the
coefficients of (j), in Eq. (5)].

In order to calculate the optical potential, the
average of the wave function must be calculated.
We present the details of this calculation for an
independent (uncorrelated) uniform distribution
of the scatterer positions. In this case, the prob-
ability distribution becomes

p(x„x„.. ., x„)= p(x, )p(x,).. .p(x„), (12)

where p (x,) = 1/I. is the probability distribution of

(d.(*)).= I;(r)d( N r, (*),
0=o

(15)

where we have defined I0(x) = e ' and for p &0

(16)

Using Leibniz's rule for differentiating an integral
with limits dependent on the variable with which
differentiation occurs, from Eq. (16) we obtain
(for p &0)

r,"(x)= k'r, (x) + -I, ,(x) . -
In evaluating I~(x}, the following type of integral
appears:

J = g ~C 4f-& SXBk X~ —X~ I lg
0

(18)

with 0 & s & q —2, 2 & q &p + 1, and 1 & p & n, and
x„„=x. Writing sink(x, -x, ,) in terms of expo-
nentials and integrating by parts s times, we find

the position of an individual scatterer. The aver-
age wave function is then

(d,(x))„=J .. . "„dx,dr, . ..dx, . (13)(j)„(x)

0 0 0

The subscript n outside the angular brackets im-
plies that an average over all n scatterer positions
has been performed.

We evaluate Eq. (18}by examining the terms of
pth order in (I'/k) in Eq. (11). Using p,(x) = e '~
in Eq. (11), we can recursively calculate )j)„(x}.
In this way, we find that the pth order part of
(j)„(x) for x&x~ is

(j)~(x) = sink(x -x~) sink(x~ -x~,}.. . sink(x, x,)e-'~~.
(14)

There are (~) terms of this type in Eq. (11), where

(~) is the standard combinatoric notation for nl/
(n —p}!p! . Since the scatterer positions have been
ordered so that x, ~ x„„we must include a factor
pt to count the number of different orderings
possible. Thus, the average value of )j„(x) is ob-
tained by summing over all orders of I'/k. It is

(19)

(20)

embox 1 ~
r ~«y e$kg

2 .(s+ 1)! 2ik ~ 2ik) (s -r)! (2ik)'+'

The structure of the terms in Eq. (19}allows us to decide on the final form for I~(x}, except for the num-
ber of contributions to terms in e"~. We therefore take the general form of I~(x) to be

)
ix d))g ~ (2ikx) & ~ ( 1y ) d))& (2ikx)~

(p I)! '~ ~-(p i)t

Substitution into Eq. (17) yields, for p & 1,
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p + i - 1't (P + l - 1
+g,p I ) and +(P

The P = 1 solution can be directly calculated, and it determines the initial conditions A» = 1 and Bg p 1
as well as the overall sign. Inserting these results into Eq. (20), using Eq. (16), and rearranging the coef-
ficients, gives the average of the wave function as

(21)

Without Eq. (21}, we would have to generate an
ensemble of configurations for the positions of the
scatterers and calculate the average numerically.
In the physical case (where no such simple re-
duced form exists for the average) the situation is
even worse, for Eq. (5) must be solved to find the

P, first. The process of inverting Eq. (5) is very
time consuming as n gets larger, so that Eq. (21)
saves a tremendous amount of computational time.
Unfortunately, for calculational purposes Eq. (21)
is not very suitable for small kL when transcribed
to a computer because of large cancellations in the
sums. For this reason an alternate form is deriv-
ed for small kI.[see the discussion of ((I(„(x})„
toward the end of the next section] .

Lastly, we comment that the integrals in Eq.
(16) can be performed analytically if P(x) = 1/L is
replaced by a normalized polynomial, sinusoidal,
or exponential distribution. Whether or not the
combinations can be simply arranged and what
sums can be explicitly performed are questions
in need of further study. In Sec. V, we are able
to make some statements about the large k be-
havior of the average wave function and optical
potential for a general distribution.

1I (» P
(n)

~

P ye-(ax ( Iy-( (a~]
kM, 2ikx

inI'x

irx "-'
2kL

This term must then be added to [1+ (ii"x/2kL)]"
e ' to obtain (p„(x))„ to first order in 1/k. An

important question to answer here is: "When can
the result of Eq. (23) be neglected with respect to
[1+ (fTx/2kL)]" e '"?" An examination of the
ratio of Eq. (23) to Eq. (22) is required to find
where this ratio is far less than unity for any
fixed set of parameters. In general, as the den-
sity of scatterers increases or kL decreases, it
becomes necessary to include more terms in the
summation over l in Eq. (21).

B. The small kI. limit

It is worthwhile examining ((}(,(x))„ in the limit
kL «1. In this case, where we approximate
sink(x —x, ) by k(x —x, ) and e '~( by 1 ikx, (fo—r
p &1), (t(~(x) reduces to

III. THE SMALL AND LARGE kL LIMITS

y, (x) = k~(x-x, )(l-a, ) Il(x, -x, ,).
The solution for I~(x) is now

(24)

A. The large kI. limit (25)

(( ()) =(( ~ 'e „**e.-'". (22)

If we retain the I = 1 term in the sum over / in
Eq. (21}, and use the fact that Q~, p (~)y~ can be
expressed in terms of the binomial expansion of
(1+y)", we can find the next order in 1/k contribu-
tion. Employing this technique, we find, forn-2,

The amount of labor required in calculating
{P„(x))„canbe reduced further in the limits of
large and small kL. For kL large enough, the
first two terms in Eq. (21) can be assumed to dom-
inate. In this instance,

Using this result, we find

si iu H,„„(~x)
( )

(2 )) gg( ) 2(2
(25)

where n = f',(nI'/L}+ if I' & 0, and a = (n ~I'~/L) if
I' &0. The functions H~(c-'x) and H~„(ox) are
Hermite polynomials of order 2n and 2n+1, re-
spectively, with the indicated argument. Regard-
less of how Eq. (26) is written, in the limit of
large n, we obtain
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ik
&g„(x))„™cos(ax) ——sin(ox) . (2'I)

Whether or not a specific n is large is determined
by the size of the last term in the sum in Eq. (26).
Using Stirling's approximation for st and (2s) t, s
is seen to be large if I'x /nL «I. The above re-
sults are valid for kL « i only. Further terms ini' should be kept as kL increases.

The function Ip now is

„(-fkx)'
Ie lg fs(p)x (2 l) I

This yields the recursion relation for j, (p),

(30)

f (p& =f (p)+f (p-1} (31)

C. An alternate form for &f„(x)&„

The above approach may be utilized to rewrite
&g„(x)&„ in quite a different way from that pre-
sented in Eq. (21}. By expanding the exponential
and sine functions in Eq. (14), Eq. (26) can be ex-
tended for any kL, to read

The constants f, (p) are determined from the re-
cursion relation for Ip, repeated here for conven-
ience,

Ip= -k Ip+ —Ip, .p p L pl~ (29)

IV. THE OPTICAL POTENTIAL

The reduced wave equation in a medium with a
potential V(x) is

y '(x) + k'q(x) = V(x)g(x), (33)

where $(x) is the wave function of the projectile.
Equation (33) defines the optical potential V„(x)
= V(x) if we identify P(x) with &P„(x)&„. For exam-
ple, integrating Eq. (2) over all the scatterer
positions, we obtain

&q„(x)&„"+k'(g„(x)&= pl'&P„(x; x))„,,
where

(34)

&y„(x;x)&„,=-&q„(x;x„... , x,. „x,x„„.. . , x„)&„,.
(36)

We can make this identification (independent of j )
since, with x& = x in Eq. (11},we find

&4.(»; «)&. , = &4. (x)&. , (36)

where we have relabeled x&„,x&~, ..., x„as x~,
xj„,..., x„~. Upon using the effective field ap-
proximation

&y„(x)&.= (4. ,(x)&. „ (3'I)

Eq. (34) becomes

is ascertained. Similarly, with the appropriate
changes in I' it may be possible to repeat the above
procedures with n different scatterers; however,
the actual calculation of such a quantity may be
laboriaus. Further investigation along these
lines should be carried out if a closer approxima-
tion to physical situations is desired.

whose solution gives
&y„(x)&„"+ k'&y„(x)&„= V„(x)&q„(x)&„, (38)

(n+ I &/2)) (32)

The initial terms f, (0) = 1, fo(P) = 1, and f,(P) = 1
for all I and for p ~1 are obtained from Eq. (26).
[I/2] is defined as I/2 for l even and (I —1)/2 for
l odd.

The choice of Eq. (21) over Eq. (28) would ap-
pear preferable. In the former, there are only
a finite number of terms to consider. However,
as can be seenfrom Eq. (26) or Eq. (28), in the
limit of small kI. there are 2p terms in k ' for
each order in (I'/k) from Eq. (21) which must ex-
actly cancel. This presents calculational difficul-
ties with Eq. (21) and evidently small kL calcula-
tions are much easier to handle in Eq. (28). This
will be discussed further in paper II.

We have not yet discussed the possibility of in-
cluding either a nonuniform distribution for the
positions of the scatterers or correlation effects.
For n identical scatterers, the application of the
recursion relation approach may yield fairly sim-
ple results once the form of the general solution

with V„(x}=pl' and p = n/L.
We define the quantity V„=- pI', as this is the

limiting form of the potential as n approaches in-
finity. That is, lim„„V„(x)/V„= 1.

This is true for any fixed set of values for the
parameters L, k, andI'. In general, I may be
complex, but we consider only real 1 in this paper
paper. We also find that lim„~V„(x)/V„= 1. Thus
in these two limits, the optical potential is local-
density dependent. We have defined a local-den-
sity dependent potential as one which depends on
k and I' and locally on the density, but has no
boundary dependence (no L dependence in this
case) The arguments in the preceding paragraph
hold true for any distribution of the scatterer
positions. Although we have only considered p(x, )
= 1/I, , it is possible that other distributions (such
as Gaussian) might lead to a potential which, in
some less restrictive region of parameter space,
would be local-density dependent.

The optical potential can be written in a very
succinct form by using the recursion relation in
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Eq. (20) and the definition of &g„(x)&„ from Eq.
(15). We find

V („) ~ Q . ,(x)&. ,
&8.(x)&.

(39)

We return briefly to a discussion of units. Having
set 5 2/2m = 1 implies that each of p, I', and k has
the dimension [L '], L being units of length, and

V„(x) has the dimension [L~]. The wave function
and optical potential are each a function of three
dimensionless quantities n, I'x/kL, and kx. This
leads to important scaling properties, a further
discussion of which is postponed until paper II.

In the Appendix we prove that lim„5" = 0, where

pr
1+ (irx/2kL)

The real part of V„(x) is

and the imaginary part is

(42)

flected waves calculated. These details are dis-
cussed thoroughly in paper II.

As an example of the determination of R such
that Eq. (41) is satisfied, we consider the large
kL limit. Using Eq. (22) and taking n

~

I'
~

/O'L « I,
we find

&4. , (x)&. ,
&4.(x) &.

(40)

That is, lim„V„(x)/V„= 1, and in this limit the
effective field approximation is exact. We can
see why this is true by the following qualitative
arguments. As the number of particles gets large,
it is not unreasonable to assume that taking out
one particle should not significantly affect the
average of the wave function. The main difference
between &/„,(x)&„, and (P„(x)&„ is the fact that the
pth term in the former contains (™~')rather than

(~). Another difference is that there are only n-1
terms in &P„,(x))„, as compared to s terms in

&P„(x)&„. If the terms where ("~') and (&) differ
significantly can be ignored, so that only the first
po terms in each need be retained, then the poten-
tial will be approximately pi'(I +pgn) As n .in-
creases, we would expect the differences to go to
zero, that is, pgn-0, even if po has some mild
n dependence. Another problem is to ensure that

&g„(x)&„ is nowhere zero, for in that case, V„(x)
would be undefined. One physical argument sug-
gesting that this is true for any values of the para-
meters is the fact that there is always a trans-
mitted wave. In one dimension each scatterer af-
fects the wave function directly, but no one scat-
terer can cause complete reflection, and there-
fore, no zero can occur.

Having determined a simple limiting form for
V„, we are in the position to ask: "When can the
optical potential be approximated by V„'P'* We
choose to answer this question by finding values of
R—= n~l' ~/wkhere 5&e for some small positive
value of c, where

(41)

In paper II we present bounds for R as a function
of kI. below which 5 & e for e = 1/s and e = 0.1.
The real part of the potential (estimated here by
V„) can then be supplemented by an approximation
to the imaginary part and the transmitted and re-

Equation (41) then implies for R = n
~

I'
~

/k and
R & 2n[v c/(1 —e)' '] that 5&~. If we choosee =1/n,
then the magnitude of the ratio of imaginary to
real parts of the potential is 1/'v n. In calculating
the transmitted and reflected waves, we would
then use ReV„(x) = pi" and ImV„(x) = —pl'x/2kL.

An alternative to using 5 would be to use

V„(x)
V„

(43)

5'-=[A.(x)&. —&4„,(x))„,
~
. (44)

Of course lim„„5' =0 implies that lim„„V„(x)
= pI'. Bazer and Karal' have shown that as n gets
large, 5' varies as R'/n, which is the same be-
havior exhibited by 5. (In their notation I'/k = is/2
and R =2iP.) They also show how to calculate these
higher order in 1/n corrections. However, in the
lowest order correction, they must assume n

satisfies the appropriate sufficient conditions.
These give rather large values of n for moderate
values of R. In paper II, we have shown the region
of validity in R for 6 && for several n over the
entire range of kl-. In the alternate case, the
limits of R are both necessary and sufficient and
a function of ki-. They are much less restrictive
conditions than those of Bazer. '

In the example just discussed, 5&1/n is equivalent
to 5& 1/~n. Using 5 then is a much more restric-
tive condition on R, one which is not really neces-
sary since we supplement Re V„(x) with an imagi-
nary part. In the limit of small kL, V„(x) is es-
sentially real, and 6(& will be equivalent to 6&&.

Bazer' has shown for any distribution of the
scatterer positions that the effective field approxi-
mation becomes exact as n approaches infinity.
For the physical case he shows that lim„„6'=0,
where
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V. THE GENERAL LARGE k SOLUTION

Some very interesting results can be determined
for a general density in the limit of large n and

large L such that p, =n/L is fixed. Retaining the
statistical independence of the position of the scat-
terers, we can define the general density p(x) in
terms of the single particle distribution p(x) as
follows:

perty

1 f (x)dx =1.
L

Also, for convenience, we define

5(*)=f 5(*)5*.
0

(46)

(47)

p(x) = nP(x} = p,f(x) . (45)

This set of equalities defines f(x) which, because
p(x) is normalized to unity, has the following pro-

We can reexpress the large kL limit for (())„(»))„
in terms of p„g(x), and n. To find ((})„(x})„,we
need to replace Eq. (14) with the general form of

y,(),

y~(») =f(x~}sink(»-x~)f(»~, )sink(x~-x~, ). . .f(x,)sink(x, x,)e—'~&.

Using Eq. (48}, we find

(48)

I,(x) = f (x~)I~,(x~)sink(x —x, )dx~ .
0

(49)

This relation is useful in a step by step determination of I (x), starling with I,(») =e "*. Expanding the
sine function, ignoring terms proportional to k for m greater than one, and for cases when f(0) =0, we
find

i X

I,(x) =e "*
2 ) g'( )x/p! —

2 ~ p, f(x)g' '(»)/(p —1)!+p()' t f(x,)g' '(», )dx,/(p-2)!
2k (

X Xp X2
+ po f (», ) f (», 5) " f'(xg)d»5, &»2 (50)

2k'n
(51)

In the limit of infinite n, we find that

lim(i()„(x))„=exp[ ikx+ir-g(x)/2k].
n~~

(52)

So that flux is at least conserved, Eq. (52) should
be divided by 1 —p(x)I'/4k'. Actually, if we had

kept all terms to order p(x)f'/k, we would have
found a reflected wave and a total flux less than

unity. This latter fact is because of the statistical
nature of the problem.

Using Eq. (33), the optical potential in this limit
becomes

Even in the case of the uniform distribution, we
saw that it was difficult to ascertain exactly what
relation exists for p(x) such that the second term
in Eq. (50} can be ignored; we can only demand
that the second term be far less than unity. Never-
theless, for sufficiently large k, the average of
the wave function becomes

I

a uniform distribution, and also a polynomial dis-
tribution, one necessary condition in neglecting
terms of order 1/k in Eq. (50) is p(x)1'/k'«1.
Avoiding any ambiguity, we assume that both p(x)1
«k' and p'(x) «p(x)k. These two conditions are
just those required for the application of the %KB
method or equivalently the Eikonal approximation
in one dimension. The limiting potential will be
called V„(x) and is p(X)1' under the above assump-
tions. " The two conditions can now be put in the
familiar forms V„(x)«k' and [1/V„(x)] [dV„(»)/Cx]
«k. The average wave function can then be re-
written as

X

lim(4„(4))„=exp -' [5' —5(4)r]'('d j. (54)
0

Under the above conditions, the potential and
average wave function satisfy the criteria of a
local-density dependent function; that is, there
is no dependence on the length of the scattering
region for a fixed density p, in the large k and in-
finite g limits.

4k 2px k)
limV„(x)=p(x)1" 1 — 4„, +2 ( }k ~.

p(x)1', p'(x) & (53)
VI. THE ALTERNATE VERSUS THE PHYSICAL CASE

The above form for the potential may be suspect,
as the last two terms in the parentheses may al-
ready be negligible. For example, in the case of

Although it is instructive to have a solution to
the reduced wave equation in a form which allows
an analysis of limits to be made without the neces-
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sity of numerical analysis (or inverting the set of
n equations for each random distribution and then
averaging), the solution is unconventional in that
the resulting optical potential represents that
which produces a transmitted wave of the same
amplitude each time. How can we relate this re-
sult to the conventional one, where the incident
wave always has the same amplitude? Since the
essential difference lies in the normalization fac-
tor relating the two wave functions for a specific
single configuration, if this factor is independent
of the scatterer positions, then the results for
(rl)„(x))„and the optical potential V„(x) will be simi
lar. There are three conditions when this may be
true. First, if 4 is very small then the determi-
nant of the matrix in Eq. (5) is 1 —nI'/2ik, which
is independent of the scatterer positions. Second,
in the intermediate region of I'/k and kI, it is
possible that the effects of the determinant may
average out since V„(x) is a ratio of functions [see
Eq. (40)]. Third, for large kL the functions e'"r
are rapidly oscillating functions and so the re-
normalization factor may not affect the results for
V„(x) significantly. These estimates are not un-
reasonable, as it has been shown that in the physi-
cal and alternate cases the optical potential ap-
proaches the same limit. A more detailed com-
parison between the resulting optical potential in
both instances will be presented in paper II, where
we find that in the regions we are concerned with
the above qualitative estimates are verified.

CONCLUSIONS

In summary, we have obtained a tractable solu-
tion to a one-dimensional problem of scalar wave
multiple scattering for g identical pointlike scat-
terers with 5-function potentials and whose posi-
tions are uniformly distributed throughout the
scattering region. We have calculated a simple
reduced form for the average of the wave function
in the case of a transmitted wave with constant
amplitude and shown that as pg approaches infinity
the effective field approximation becomes exact.
As a consequence of this, we find Iim„„V„(x)/pl'
= 1. In this paper, we also briefly discuss where
the optical potential can be replaced by pI to
within a given accuracy. In paper II, we extend
this discussion to answer the more general ques-
tion as to where a simple form of the optical po-
tential can be used to predict the outcome of the
scattering. Further, we have presented results
for the large k limit as n- and L, approach infinity
with n/I. fixed, in the case of a general probability
distribution for the position of the scatterers.
The average of the wave function is shown to be

APPENDIX

In Sec. IV, we gave a qualitative outline as to
why V = pl . Here, we show that if the wave func-
tion has no zeros then V„=pI'. The proof is bro-
ken into three parts. First, we show that the
infinite sum over l in Eq. (28} is bounded for
any value of p. Second, we show that there exists
a p = p, (n) such that the sum over p for p ~ p, (n) is
bounded and goes to zero as n approaches infinity.
Third, we show that the remaining sum over p
implies that V„=pI'. Following this, we discuss
why there are no zeros in the small and large kI.
limits.

The expression for the average of the wave
function can be written as

n

&y„(x))„=g (",)
P

},k, (kx),

where

(Al)

h~(kx) = Q ' (-ikx)'/l! . (A2)
r=o (2k+ l)!

[I/2

As the coefficient of (-ikx}'/l! is less than or
equaltounityforany l or p, then

~ h~(kx) ~
converges

to M(kx), where M(kx) is less than e'* for any p
greater than zero. The next two steps involve
breaking the sum over p in Eq. (Al) into two parts.
We shall show that the sum over p from po to n
is bounded by some function which goes to zero as
n approaches infinity.

First, we examine the behavior of )y ), where

2 r) pr
y =M(kx)()- (A8)

If we replace (P by 2" and use Stirling's approxi-
mation, then for large p and n we find that ~y ) is
bounded above by

rr)) -=r" M(kx) ( &4p
(A4)

Defining r=p/n, y(p) becomes

M{r~)(r" )r)c)-
4~ (A5)

For fixed r =ro, there exists an n(ro) such that for

local-density dependent and equivalent to that ob-
tained in the WKB approximation, with the corre-
sponding potential being the density times the
scattering strength of an individual scatterer.

This work was supported in part by NSF Grant
No. PHY78-11629.
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n &n(~,)

2'~ o~rjL
4ron

where a is an arbitrary small positive real num-
ber. Then, s(ro) is determined by replacing the
inequality by an equality and solving for n. The
sum over y(p) from peto n is bounded by the infin-
ite geometric series 2i~~ c~=a~o/(1 —c}. This is

0
less than 2t& = 2 exp(-ron

~

fne ~} and so the sum
over y(p) goes to zero exponentially for fixed ro
and any z &

~
as g approaches infinity. The same

conclusions can be drawn if (~) is replaced by (~ ')
in y. Thus we need only consider the sum from 0
to po in the arguments to follow.

The final step is to show, using only the remain-
ing terms in p, that V =pI'. Each term in the
sum over P in the numerator of Eq. (39) differs by
that in the denominator by pin times the pth term

in the denominator. However, since we divide by
the denominator, the maximum difference these
terms contribute to the potential is just pFp/n.
Summing over all p from 0 to po implies that
[V„(x)/V„—1] is of order p, /n= r,. Therefore, in
the limit of ro going to zero or n approaching in-
finity, we find that V„(x)/V goes to unity.

In the small and large kL limits we can show that
(g„(x))„has no zeros for physical values of the par-
ameters. From Eq. (26), which expresses (g„(x))„
in terms of Hermite polynomials of order 2n and
2m+1 since the roots of different order Hermite
polynomials are distinct, when the real part is
zero the imaginary part cannot be zero. In the
large kL limit, examination of Eq. (23) once again
reveals that there can be no zeros. In the qualita-
tive arguments presented above, l could be com-
plex and we might expect no zeros to occur for k
and x real, al'though this has not been shown here.
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