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The static pion p-wave self-energy in symmetric nuclear matter is calculated, taking into account the effects of
nucleon particle-hole (ph) and 4-isobar nucleon-hole (4h) states. The residual interaction between ph states is
derived from a Brueckner G matrix which depends on the starting energy and three momentum variables. The
coupling of ph and 4 h states and the 4 h-4 h interaction is described by m and p exchange taking into account the
effects of NN correlations. The resulting self-energies are analyzed in the model of constant interaction strengths
which is commonly used. This analysis yields effective interaction strengths weakly depending on the momentum of
the pion field as well as on the nuclear density. Only in the limit of vanishing pion momentum the strength of the ph
interaction is connected with the Landau parameter G,'. The present calculation yields pion condensation at twice
the empirical nuclear matter density when isobars are included.

NUCLEAR STRUCTURE Particle-hole interaction, nuclear rnatter. Brueckner '

G matrix, isobar configurations, pion condensation.

I. INTRODUCTION

The occurrence of pion condensation in a nuclear
medium has important consequences for various
nuclear systems. The cooling rate of neutron
stars, for example, increases drastically when a
pion condensate is pres. ent'; even the envelope
might be blown off once the central density of a
neutron star reaches the critical value for pion
condensation. In relativistic heavy ion collisions,
where the nuclear system is compressed, pionic
instabilities may show up although the system is
highly excited. ' There also exists the possibility
of the formation of superdense nuclei due to pion
condensates. 4 Although unnatural parity states of
normal nuclei indicate that there are no pion con-
densates present in finite nuclei, ' it has been
pointed out that precritical phenomena may occur
due to proximity to pion condensation. &' Their
occurrence critically depends on baryonic inter-
actions in the pion channel. It is these interactions
which are investigated in the present paper.

Threshold to pion condensation in isospin sym-
metric nuclear matter is characterized bg a double
pole of the pion propagator

D(k, u; p) = [&u —k -m, ' —II(k, &u; p) ]' (l.l )

at (d=0, where k, co is the four-momentum of the
pion, p the denSity of nuclear matter, and II the
proper self-energy of the pion. Units are such
that k=c =1. The density at which the double pole

occurs is called the critical density p «. The pion
propagator obeys the relation

D(k, (u; p) = D (k, &u)+ D (k, v)II (k, m; p)D(k, &u; p),

(1.2)

where D, is the free pion Green's function. It is
the pion self-energy 0 which will be calculated in
the following. Since we restrict ourselves to sym-
metric nuclear matter in this paper, only the P-
wave self-energy is considered; the contribution
from s-wave interaction is assumed to be negligi-
ble.

Since the first papers on the possibility of pion
condensation"' have been published, much work
has been devoted to the calculation of the threshold
density in nuclear and neutron matter, and we re-
fer to the review articles by Brown and Weise, "
Migdal, ' and BKckman and Weise. ' For finite nu-
clei also, this problem has been investigated. ' ""
In all calculations the results show a great sensi-
tivity to details of the effective interactions in the
pion channel including nucleon particle-hole (ph) as
well as 6-isobar nucleon-hole (Ah) interaction. In
most calculations these interactions have been re-
presented by a constant model interaction of the
form g'&7, i,T, T„ familiar from the Landau-
Migdal theory of Fermi liquids although in the con-
text of pion condensation one is far from the Lan-
dau limit (k-0), but needs the interactions for
k-k~, where k~ is the Fermi momentum. A real-
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PION CONDENSATION AND REALISTIC INTERACTIONS 1155

istic interaction as used in this work is far from
being constant even in the Landau limit, where it
still strongly depends on the angle between the re-
lative ph momenta in the initial and final states.
Thus the main point of the present paper is to
determine how far the assumption of constant in-
teractions affects the results.

The present investigation goes beyond earlier
work by Bertsch and Johnson'6 and that of BKck-
man, Brown, and W'cise"" in that it keeps the
full complexity of the interactions dependir~ on
three-momenta, energy, and density when calcu-
lating the pion self-energy in nuclear matter. For
the nucleon particle-hole interaction, a Brueck-
ner G matrix derived from a realistic nucleon-
nucleon (NN) interaction" ~ is transformed into the
ph channe1; the h, -isobar nucleon-hole interactions
are derived from m and p meson exchange poten-
tials taking into account NN correlations.

The formalism considering only intermediate
nucleon ph states is derived in Sec. IIA. Details
formulas for the calculation of the ph residual in-
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FIG. 1. Pion self-energy due to nucleon particle-hole
excita5. ons t'see Eq. (2.1)J.

teraction are given in Appendix A. Section H A, and
with some more details Appendix B also, contain
a discussion of the energy dependence of the ph in-
teraction. To take into account effects from A,-
isobar configurations the formalism is extends in
Sec. GB. The residual interactions between ph and
6-isobar nucleon-hole (Ah) states are discussed in
Sec. III. Results for the pion self-energy are pre-
sented in Sec. IV and analyzed in the simple model
of constant interaction strengths. The final section
contains some conclusions of the present work.

II. STATIC PION SELF-ENERGY IN NUCLEAR MATTER

A. Nucleons only

In this section, we consider the pion P-wave self-energy due to the interaction with nucleons in the
static limit (0 =0). The corresponding Feynman diagram (see Fig. 1) is given by

lf~(k&Q=O)= ~ . ~7' (TSMqk)g p+2&(o p--, (u r(TSMgp&(cr;k)
~@~ s 2wc 21K

S

(2.1)

with the bare pion nucleon vertex

r (&'&M, k)= 1'E t ) "( t -* —t, )&'*M„)(-)' +(-,'s„-,' —s, )&M )('t„-;s, ' ir )rr ',t„',s)--
tyt2 S~ 2 r

=f ( ) 2k'„3, ,3„,. (2.2)

Here f, denotes the pion-nucleon coupling constant, m, the pion mass, and 1'(k) a form factor. The values
of all the coupling constants, masses, and cutoff masses in form factors used in the calculation are given
in Appendix A. Note that without any loss of generality we restrict ourselves to the w' self-energy. The
ph pair carries the quantum numbers of the pion T =1, S =1, and Mz =0, where Mz refers to the direction
of the pion momentum k which serves as the polar axis in the following. The momentum k is also equal to
the total ph momentum. For spin and isospin symmetric nuclear matter, the Green's function in Eq. (2.1)
for nucleons near the Fermi surface may be written as

Zp (2.3)

where the first term gives the pole part of the single-particle (s.p.) propagator with the s.p. energy a~, the
Fermi energy &~ the s.p. strength Z~, and gs(p, &o) is a background term which is weakly dependent on
energy. It is well known" that Zp and g„renormalize the ph interaction and s.p. vertices such as v"'
(reducing its strength). For simplicity, we shall set Z~ = 1 and g„=O for all momenta P throughout this
work, keeping in mind that our final results for H„will be somewhat too large due to this approximation.

The vertex r(p, &o:k) in Eq. (2.1) is determined by the integral equation
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( )= )i=1, M=Op, ;k)= (110k)+ f f,G„(i,p', k, + ')

Xg pi+-, (di g pi ——,())i r(110p&, u&i;k), (2.4)

which is displayed graphically in Fig. 2.
The square interaction block G is a cent~al Quantity of interest in this paper. It represents all inter-

actions between the particle and hole lines irreducible with respect to vertical ph cuts and one-pion cuts.
We shall approximate G by a Bruecimer G matrix obtained from the nucleon-nucleon interaction (see Sec.
IIIA) and subtract direct static one-pion exchange (see also Fig. 2):

110(pi P'i ki ())+ (d') = i|0(pi P'i "i = (d+ ())')+ f I 2 4k

m, m, '+ (2.6)

The explicit transformation of G from the particle-particle into the particle-hole channel is derived in
Appendix A. There it is shown that the interaction does not couple different (TSMz) channels, at least not
for nucleon ph channels. Therefore we suppress these spin-isospin indices in the following.

The G matrix sums all the ladder diagrams in the particle-particle direction, and its starting energy
E = co+ v' is clearly the sum of the energies of the incoming lines. Concerning the analytical structure of
G(E), it has poles which lie in the lower half of the energy plane (ImE~„&0). Having this in mind, the
energy integration in E(I. (2.4) is performed by closing the integration path through the upper half plane,
obtaining

cPp' G(p, p', k, (d+t(I I/'2()n(ip'+%/2i)
kp ig «k/2

lg+%/a I
—

ip -K/2i

G(p P'k &+~ ((/-&»()n(~p'-~/2~)&(p', &(S-f/ (', k)
e „;;„(—~ I p'+ K/21

(2.6)

where I( [(I )) =6(pr- [(I )) is a step function confining (I to the interior of the Fermi sphere. The two terms
under the integral in E(I. (2.6) are related by the transformation k- —k or, alternatively, by a reflection
U of the vector p' in the (z, y) plane keeping k fixed as the polar z axis:

U pi= U(pi Qi pi) —(pi v Qi $i)

One finds (Up+I/2( = ~poli/2 (. Shifting in addition (p'+R/2)-p' and setting (0 ).'(y I/2( one obtains

r (p, ~ g„/„,k) =~'(k) + P
d'p~ ].

Cgf ~ ~ fp j)

x [G(p, p' —k/2; k, a ((), I/2 (+ E~ )r (p' —R/2, e~, k)

+ G(p, U(p' -%/2); k, f
( I/2(+ &g )r(U(p' —Tc/2), c&,k)J,

(2.V)

(2 6)

where the integration now extends over the Fermi
sphere F as indicated by the solid circle in Fig.
4. The total integration space splits into the R
region corresponding to particle-hole states and
the S region corresponding to hole-hole states.

The latter contribute due to the energy dependence
of the interaction. In terms of time-ordered dia-
grams, hole-hole intermediate states occur be-
tween time-overlapping G-matrix blocks as shown
in Fig. 5. In our representation of the interaction

k

+ ( exchange j

(p+ ~,tu')

FIG. 2. Graphical representation of the integral equa-
tion {2.4) to calculate the dressed pion vertex ~ [see
Eq. {2.4)].

FIG. 3. Graphical represents, tion of the interaction
block 6 as it is approximated in the present calculations
[see Eq. {2.5)].
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FIG. 5. Contribution to the integral equation (2.8)
from the region S due to the energy dependence or the
time structure of the G matrix.

and the symmetry (derived in Appendix A)

FIG. 4. The space for momentum integration in the
integral equation (2.8). G(p, p', k, E,) = G(Up, Up', k, E,) (2.14)

the time structure is represented by an energy
dependence of the G matrix. If this energy depen-
dence is neglected in Eq. (2.6) the contribution
from the intermediate hole-hole states which
corresponds to the S region of Fig. 4, vanishes,
since then there are no poles in the Im(d & 0 plane.
Since the actual energy dependence of G(E) is
weak and smooth, one can expand around an aver-
age energy E,

G(E) = G(EO) ~ [1+a(E —Eo) + ~ ~ j . (2.9)

It is now convenient to determine E, such that the
term a ~ (E E,) gi-ves no contribution to the final
results Il„(k), at least approximately. It is shown
in Appendix 8 that this condition leads to

E,=2 d'P e, d'P 1
(2 1P)

~(2«)'e, -e&. -„, r(2«)'e, -e&-;&

In the following, we replace the energy dependence
in Eq. (2. 8) by the average starting energy E, .
Thereby we account for the energy dependence in a
good approximation, but avoid dealing with it ex-
plicitly

Introducing the quantity

e(p, k)=,(v(p —k/2, e»k)+v(U(p k/2)&&~;k))l-
2v k)

(2.11)

the integral equation (2.8) is now obtained in the
form

o(p, k) =1+ „K(p,p', k) o(p', k),
(2.12)

where

K(p, |I';k) = G($ —k/2, p' —k/2;k, Eo)

+ G(p —k/2, U(p' —%/2); k, Eo) (2.13)

2'g dk
o&0&(p e k)= "'o(p, k)

0
(2.»)

Kt '(p&, (&'&,)L f ' '
&(((&, (&';k( (2.1(&&

0

are needed to calculate II„(k). The actual proof
that K&+ does not depend on (/~+ &t&~,)/2 is given
in Appendix A. The self-energy is finally obtained
in the form

Li, (k) =4k i'~"t*
4~ E

(2.17)

and a'" is determined from

dP'P "d(cose, , ) K&"(Ps„p'&,, ;k)
R 4~ ~p —~i@-ai

xu&'&(p', e~, ;k). (2.18)

The integration region R is given explicitly in Fig.
4.

S. Inclusion of 6 isobars

In this section, we will extend the formalism of
Sec. IIA to include the 4 isobar in the calculation

has been used. The integration in Eq. (2.12) is
restricted to the R region; contributions from the
S region cancel. This is important since the sing-
ularity at a&I,

&

——e&N, ~&
is now reached only on the

border of the integration region (see points A in
Fig. 4) and therefore presents no problem for nu-
merical integration. The dimension of the integral
equation (2.12) can be further reduced by noting
that only the $-integrated quantities
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of the static pion P -wave self-energy in symmetric
nuclear matter. We treat the 4 isobar as an ele-
mentary particle in the many-body system, which
is justified according to Ref. 22. Note that the &

isobar has spin and isospin 2. In addition to the
diagram in Fig. 1, we now also have to calculate
the diagrams in Fig. 6. We have to consider both
diagrams because we can distinguish between a
nucleon line and a 4-isobar line. After some
manipulations analogous to those in Sec. II A, these
terms are given in the static limit (&= 0) by

(a) (b)

FIG. 6. Contribution to the pion self-energy when 4
isobars are included. Note that diagrams (a) and (b)
have different time structure.

d~P ro(TSMsk)r~~(TSMs, P-k/2, k) r~*(TSMsk)r~(TSMs, U(P —k/2), k)
d

rsvp z (2~) ee equi-Il
(2.l9)

where the first term in the integral corresponds
to Fig. 6(a) and the second to Fig. 6(b). The inte-
gration extends over the whole Fermi sphere; the
operation U is defined in Eq. (2.7); and the bare
mN4 vertices ~~ and &~* are both given by

r~(TSMsk) = r~*(TSMsk)

(2.20)
t

They can be calculated analogous to Eq. (2.2) by
simply replacing one of the spin-isospin & states
by a & state and using the spin-isospin transition
operators S, T, and S', 2', for w~ and &~*, respec-
tively, instead of o and r, In Eq. .(2.20) f,* is the
mlya coupling constant and I'~(k) is the form factor
for this vertex; the actual values used in the cal-
culation are given in Table II of Appendix A. The

energy denominators in II~ contain the nucleon s.p.
energy e~, the 4-isobar s.p. energy e~-, „-~, and &~,
the mass difference between a ~ isobar and a nu-
cleon. To calculate the dressed vertices T~ and

7~, we have to take into account the coupling be-
tween nucleon particle-hole states and 4-isobar
hole states. Therefore these vertices will couple
to the nucleon vertex &, discussed in Sec. IIA,
which we will denote in the following T„. In Fig.
7 this is shown in terms of diagrams. The inter-
action blocks are again irreducible with respect to
vertical ph, M, and one-pion cuts. The interac-
tion block joining nucleon ph states is the same as
discussed in Sec. IIA but will be denoted by G„ in
the following (see also Sec. III A). The transition
from ph to 4h states is represented by ~&,' it is
discussed in Sec. IIIB. The interaction between
M states has two constituents, G~~ and G~~, rep-g B

resenting forward and backward going diagrams

p
*

Q~i)

0
K~

+

p "~')
FIG. 7. Coupled set of integral equations for the dressed xVN and xV 6 vertices [see Eq. (2.21)J.
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respectively. They are discussed in Sec. ID C.
Details of the ph transformations for these inter-
actions can be found in Appendix A. These equa-
tions allow a coupling of the pion channel (3 = 1,
Mz = 0) to intermediate nh states with & = 1, M~ = 0
and 8= 2, M~ =+2 [see Appendix A, Eq. (A20) and

the discussion following this equation]. Numerical-
ly, however, the coupling to 4h states with ~=2,

~~ =+2 was found to be negligible. Therefore we
mill suppress all spin isospin indices in the follow-
ing, these quantum numbers being fixed at S = 1,
M~ =0, and T = 1. Treating the energy dependence
of the G„block as in Sec. IIA and discarding any
energy dependence in the other interaction blocks,
we obtain the coupled integral equations displayed
in Fig. 7 in the form (see Sec. II A)

r„(p; k) =rg(k)+, [Gk((p, p' —k/2; k)r„(j)r —k/2; k}+G„(j),UQ' —k/2); k)~]2(U(pr —h/2); k)]
~y ~]2)'-k

+ 3 Q GQ y
—k 2; k &~~

' —k 2; k + G~, U ' —k 2;kg~ U ' —k 2;k)

(2.21a)

r', (]I k) = r", (2)+f, It ((I ]I'-k/2; k)r (II' —k/2; k) ~ U((), U(2' —k/2); k)rr(U((l'-k/2);2)]
R 2r ~y ~]i I]'

' —k 2 k ~ '-k 2 k G~~, U '-k 2 yk)T~ U '-k 2;k
2W) f() —f ]p ~]

—(dg

(2.21b)

r (k, k)=r (2)+f [U ((),)2 —k/2(k) (]2-k 2/;k) +U~( ()U (I(' —k/2);k)rQU(() —k/2);2)]'
22 2" ~ y & ]U -i]

'-k 2;k ~ '-k 2;k+G~~, U '-k 2);k &~ U '-k 2;k) .
~V -~]e-I] —(dK

(2.21c)

The integration area for nucleon ph states is again restricted to region R (see Fig. 4), whereas the hh
phase space ranges over the entire Fermi sphere. In addition to Eq. (2.11)we define

o~($; k) = ~ [&~(ll —k/2; k)+ &~(U(li —k/2); k)] . (2.22)

Using the symmetry relation (A15), the integral equations reduce to

rr (2;k)=1+fK( , ])k„)]k, rr (](', k)rk(k)f 2 „K ((),])",k', ()2;2), (2.222)
~y -&j~ -~j

k ((kk)=1+ . . . „K ()),])",k) k„(f',k)r f, „K (2, ])';kl rr (])",2),
(2.23b)

where K„ is defined in Eq. (2.13}and

K~(j),p', k) = G~(p —k/2, j$' —k/2; k)+ C~(jl —k/2, Upi —k/2); k),

K~~(1),p', k) = G~~~(p —k/2, $' —h/2; k) + G~s~($ —k/2, U(ll' —k/2); k),

and lastly

r.(k) 2f,*r,(k)
r]00((k) 3f,I'„(k)

(2.24)

(2.25}

(2.26)

The dimension of the integral equations can be further reduced by eliminating the P dependence as in Sec.
QA. The final equations which are solved numerically are

dO'0 "d(co«r }K22"(P~. P'e~' k}
0'g P y pi

= + 2 ON V'
8 4' ~ I I]' -ll

dP P"d(cose„)K(U)( pe„p e„;k) „), ,
g 01'

(2.27a)



1160 DICKHOFF, FAESSLER, MEYER-TER-VEHN, AND MUYHER

d~'~' d(cos8() }ff o (@~(,~8~ ~;k o' '( ' 8 k
R I y'-Zl

dp'p"d(cos8(. ) ff(o)(p8„p 8„;k) „)
%IT &y -&iI -~i —~~

(2.27b)

where the Q-integrated quantities are defined as in Sec. IIA. The solutions o(o)(p, 8~;k) and o~(o)(p, 8~;k)
are then used to calculate the total pion self-energy

))(),, „,q, „,q 4q. f.r, ()) j&PP*a(eose, ) „"'(),Hi;)')

R 4v

16„,f,*I" (k} ' dPp'd(cos8 ) o (0)(p 8 .k)
&n- &tp-fi —~~

(2.28)

III. DISCUSSION OF THE INTERACTIONS

A. Nucleon-nucleon ph interaction

k'
e(k}=

~ —Vo,2m B
(3.1)

where the constants m~ and V, are determined
self-consistently. Kinetic energies were used for
the particle spectrum, the so-called "standard"
choice. Since our calculation of the pion self-en-
ergy is sensitive to ph-excitation energies, we
will use a more physical single particle spectrum
by taking a continuous choice across the Fermi
surface for this calculation. First we have con-
sidered the m~ approximation (Landau choice) for
the whole spectrum,

Our approximation to the irreducible ph-inter-
action block will be a Brueckner G matrix with
direct static one-pion-exchange (OPE) subtracted.
We have used two different bare interactions as
input for the G-matrix calculation. One is the
Reid soft-core potential" supplemented in higher
partial waves (J&2) by an OBE potential. The
other is one of the Bonn potentials, the so-called
HM2+n. (550).20 Both potentials are realistic in
the sense that they describe the NN data. The
Bonn potential, however, has a weaker tensor
force. Nevertheless, in a lowest order Brueckner
calculation it yields satuaration properties which
are similar to those for the Reid potential. There-
fore it is interesting to see whether any significant
differences show up in a calculation of the pion
self-energy. To obtain the G matrix for nuclear
matter, the Bethe-Goldstone equation has been
solved in momentum space using the matrix in-
version technique as it is described in Ref. 23.

For the hole energies the effective mass approx-
imation is used:

I

This is used in all calculations of the pion self-
energy. As a prescription for the effective mass
for a specific force at a specific density we have
used the Landau effective mass calculated for this
specific G matrix. It is worth noting that the Lan-
dau effective mass m~ agrees quite closely in each
case with the Brueckner effective mass m~ defined
in (3.1}. Another continuous choice for the single
particle spectrum we have used is to approximate
the calculated Brueckner energy for holes,

k'
e(k) = + (kk' ~G(&(k)+ E(k')}~kk'), k &kz

k'&kg

(3.2}

and the particle energies by a power series in k

up to k', with the restrictions that this series
closely reproduces (3.2) below k~; at k~ the en-
ergy and its derivative with respect to k are con-
tinuous, and for k & 2.5k~ the energy becomes
purely kinetic. In the following we will call this
a "Brueckner spectrum. "

The particle-particle G-matrix elements are
calculated in momentum space using the LSJ rep-
resentation. The starting energy has been chosen
as discussed in Sec. IIA and Appendix B [see Eq.
(2.10)]. For each ISJ channel, or more precisely
due to the tensor part of the interaction LL'SJ
channel, the G matrix can be represented as a
three dimensional array depending on initial and
final relative momentum and the total c.m. mo-
mentum of the particle-particle states. The trans-
formation to the particle-hole representation is
discussed in Appendix A. Numerically it involves
some angular momentum algebra and a three
dimensional interpolation. The matrix elements
for the mesh points of the momentum variables of
the particle-hole (ph} representation have to be
calculated from the three particle-particle mo-
menta. In calculating the ph-matrix elements,
particle-particle LSJ channels were considered up
to J= 4. The higher partial waves are dominated
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(3.3}

where 5 and & denote Pauli spin and isospin ma-
trices, respectively. The tensor operator is de-
fined by

S„(g)=(38,.Q5, Q —5, '5,q')/q'

and fi=~@,-$,}. The functions f, f', g, etc. of
Eq. (3.3) depend only on the angle between p, and

(3.4)

by one pion exchange (OPE). Since we have to
subtract the direct piece anyhow, we have sub-
tracted the Born approximation of OPE in LSJ rep-
resentation from the G matrix up to J= 4 and have
added the exchange piece of OPE separately in
plane wave ph (SM~T) representation. " There is
some ambiguity in this subtraction of OPE because
the bare interactions contain OPE with some form
factor. Since the Reid potential is only defined
phenomenologically, this form factor is not de-
fined. For the HM2+ 4, the form factor is eikonal
defined in terms of Mandelstam variables for the
free nucleon-nucleon scattering. In view of this
we have decided to neglect the form factor here,
slightly overestimating the repulsion in the inter-
action only for very high pion momenta.

To get some feeling for the interactions which
are used we list in Table I the Landau parameters
which are appropriate for the pion channel. The
general form of the Landau interaction is ( ~p, ~

= [y, [=~,)
F~ (5x 52)=f(5x 52)+f (5x 52)rg'r2

+ l@5„5,}+g'(5, ti.)&, &.]~, o.

+P 84, 5,)+&'(5,A}r, &.](~~& }'S,.(a),

p, and therefore can be expanded in Legendre
polynomials like, e.g. ,

N, f(P„P,) = QF, P,(cose).

To get the dimensionless numbers E„F'„G„etc.,
which are called Landau parameters, one multi-
plies the functions f, f', g, etc. with the density
of states N, at the. Fermi surface

2k~m+
0 2

1r

The density of states contains the Landau effective
mass m* which is calculated from the Landau
parameter F, by

m+
1+ ~F

m

Note that these parameters apply strictly to the
limiting case of the ph momentum, which in the
calculation of pion self-energies is equal to the pi-
on momentum, going to zero.

Since we treat the energy dependence of the G
matrix in our calculation of the pion self-energy,
we include in brackets the values of some para-
meters calculated for a starting energy defined
by E|l. (B5}. Mainly the G,' parameter is affected,
being effectively somewhat smaller. The tensor
parameters are unaffected. At this stage it is also
useful to define another measure of an interaction
strength in the pion channeL We define an inter-
action strength y„ for an interaction of the form
y„o, o2r, &, (central interaction) to have the value

TABLE I. Landau parameters for the interactions Reid and HM2+ &, at the two densities
at which our calculations are performed. In the Bethe-Goldstone equation a starting energy
W= -10 MeV has been used. The numbers in parentheses are calculated for a starting energy
which has been chosen according to Eq. (BS). The parameters are normalized by multiplying
with the density of states No= 2k+m*/~2.

kp = 1.40
Reid

kg = 1.77 kg = 1.40
HM2+ 6

kz = 1.77

G()

G,
'

G~

Ho

Hg

H2

Hs

H4

0.60 (0.60)

0.81 (0.75)

0.02 (-0.01)

0.05

0.04

-0.60

-0.87

-0.81

-0.61

-0.44

0.52 (0.52)

0.84 (0.79)

-0.06 (-0.09)

0.01

0.05

-0.77

-1.17

-1.22

-1.06

-0.86

0.62 (0.62)

0.74 (0.70)

0.18 (0.15)

0.03

-0.01

-0.63

-0.94

-0.81

-0.60

-0.42

0.55 (0.55)

0.72 (0.69)

0.20 (0.19)

0.07

0.01

-0.79

-1.32

-1,29

-1.08

-0.84
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3 for the 5-funct ion piece of direct static oPE
For example the Landau parameter G,' for the Heid
potential at k~=1.4 fm ' gives a strength of 0.48
according to the conversion

(3 5)

B. ~-isobar nucleon-hole ph interaction

This interaction provides the coupling between
nucleon ph and M states. When only one meson
is exchanged in this transition, this meson must
have at least isospin one since at one vertex a nu-
cleon (f = —', ) is converted into a n isobar (f = ~).
Therefore we will consider m and p exchange for
this bare transition potential. We will use g- and
p-range propagators [1/(m„,'+k')] in the transi-
tion potential although this tends to overestimate
the strength" since energy transfer reduces the
matrix elements. The main reason for this choice
is that in summing the diagrams for the pion pro-
pagator [Eq. (1.1)] one usually considers only free
pion propagation in intermediate states; however,
as soon as intermediate ~ isobars appear in the
self-energy diagram the same problem of an over-
estimate arises. Therefore to be consistent in
this respect we have chosen for nonrelativistic
static p- and p-range transition potentials.

There are of course other processes which can
contribute to this interaction. Especially the
treatment of short-range correlations seems to
be important. Instead of solving a coupled set of
Bethe-Goldstone equations, we have taken into
account the effects of correlations between nucleons
by calculating an effective transition potential

(see Fig. 8). This is a pure tensor transition
which tends to be of relatively long range, the
short range p exchange canceling the short range
piece of Tt exchange. Numerically this means that
for the second term of Eq. (3.6) one gets a negli-
gible contribution because the 'So correlation func-
tion and the longer ranged, purely tensor transition
amplitude peak at different relative momenta.
This means that the contribution from correlation
effects is very snail for NN to Nb transitions.

There is, however, another source of repulsion
in this channel which is rather large and originates
from the bare transition potential. To make this
clear, consider the central part of the relevant
ph matrix element (S =1, T =1) for the bare v-ex-
change transition potential [see Eq. (A.28)],

m' 9m'+k' 9m'+(p —p)' '
ff l 2

(3.7)

where k is the total ph momentum, p, and p, initial
and final relative momentum, and f„f,* the coup-
ling constants discarding form factors for simpli-
city. The first term is the direct piece which has
to be subtracted. Note, however, that the second
part, the exchange piece, is strongly repulsive.
In fact, if we define an interaction strength y~
for the 5 function of the direct piece to be --,'
analogous to the NN case [see Eq. (3.5)], we see
that the 5 function of the exchange piece has y~

G~ = 1+G„—V~, (3.6)

where G~ is the nucleon G matrix, Q is the Pauli
operator, e the propagator for intermediate nu-
cleons and V~ the bare transition potential. To ob-
tain the irreducible interaction block C~, direct
QPE has to be subtracted and a particle-hole trans-
transformation must be performed (see Appendix
A).

To calculate G~ in the particle-particle direc-
tion one simply takes a nucleon-nucleon correla-
tion function in a specific LSJ channel, matches
this with an L,SJ channel of the bare transition po-
tential, and integrates over intermediate relative
momenta. Because we consider an NN to Nb,
transition, the isospin must be one. This means
that the most important contribution is expected
to come from the 'So correlation function. Due to
angular momentum and parity conservation, how-
ever, the only transition channel is the 'So-'D

N

YYYYY

So , T=1

FIG. 8. Only contribution to the NN-N4 transition
potential (3.6) where NN correlations could be impor-
tant. It almost vanishes, however, due to momentum
mismatch.
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=+-,'. The factor & in Eq. (3.V) is due to spin iso-
spin coupling. To understand how this 5-function
part contributes in spite of NN correlations, we
have to consider diagrams for the totg/ pion pro-
pagator. Consider part of a diagram where a pion
propagates from a ph to a M state. There is, of
course, also an exchange diagram (see Fig. 9}.
The sum of the diagrams 9 is zero in the antisym-
metrized particle-particle channel for an L =0
to L' =0 transition due to the S =1, T =1 nature of
the interaction. In the calculation of the self-ener-
gy of the pion, diagram 9(a} is reducible and has to
be subtracted. Thus one gets a contribution from
one pion exchange in a T =1, 'S, particle-particle
channel. In such an L = 0 to L' =0 transition one
gets a contribution from the 5-function part of the
one pion exchange. A similar consideration about
the presence of the 5-function part of the OPE is
also valid for the 'S, and 'S, NN interaction. In
the NN case, however, the exchange part is by a
factor of 4 smaller than the direct part. In addi-
tion to this repulsive 5-function term, more re-
pulsion comes from the exchange contribution of
p exchange. The direct part of p exchange does
not contribute since it is not compatible with pion
quantum numbers. Therefore there is repulsion
in this transition channel which is not due to short
range correlations.

C. b-isobar-hole 6-isobar-hole interaction

In this subsection we will discuss the contribu-
tions to this interaction from the particle-particle
direction. Then we can distinguish between two
types of contributions, the first has a 6 isobar
in the initial and final state contributing to G«',
this means that after ph transformation these pro-
cesses are so-called "forward going" [see Figs.
10(a) and 10(b)] because the n isobar cannot be a
hole. The other type has two 6 isobars in the ini-
tial or final state and gives "backward going" dia-
grams contributing to G~~ after ph transformation
[see Fig. 10(c}].

We will first discuss the processes in Figs. 10(a)
and 10(b). Two cases can be considered, some-
times referred to as direct (b} and exchange (a)
terms. The simplest contribution to direct pro-
cesses is again the bare transition potential. There
is, however, the problem that such transition po-
tentials contain one b, b;meson vertex on which
there is very little knowledge. In a one-boson-
exchange picture any meson that contributes in the
NN case contributes here, too. But whereas for
example the o meson is constrained by a fit to NN

data, no such restrictions are present here. In
view of these uncertainties and also because the
contribution from Fig. 10(b) turned out to be small
if only n and p exchange are considered, we have
chosen to set all hb-meson vertices equal to
zero. As a consequence of this the leading term
of the ~ self-energy is zero, and therefore we
mill neglect any self-energy contribution to the
6 propagator, which means that the 6 isobar
s.p. spectrum is pure kinetic energy. Since both
effects mork in opposite directions, inclusion of
hh-meson vertices would make the dA-M interac-
tion more repulsive, working against pion conden-
sation; a single particle spectrum for the b, iso-
bar similar to that for a nucleon, on the other
hand, would make the bh energy denominator
smaller, favoring condensation; we believe that
quantitatively our procedure does not lead to large
uncertainties in the final results. For diagram
10(a}we consider w and p exchange multiplied with
a correlation function. Since the correlation func-
tion corresponding to Fig. 10(a} is not known, we
make the minimal assumption that the 5-function
pieces of the interaction are suppressed by the

(b)

(a) (b)

FIG. g. Two diagrams that contribute to the total pion
propagator. The boxes in diagrams (a) and (b) are the
same, representing any process which connects the
parts of the diagrams explicitly shown.

FIG. 10. Diagrams (a) and (b) show the different con-
tributions to forward going diagrams while (c) gives the
contribution to backward going diagrams. The ph trans-
formations are shown explicitly.
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correlation function. " If we now subtract the
reducible one-pion exchange, and keep in mind
that the total one-rho exchange does not contribute
since it has the wrong quantum numbers, only
the subtracted 5-function pieces remain.

Now we come to the second type of contribution
to the hh-M interaction [Fig. 10(c)j. Again we
have the bare m- and p-exchange long range transi-
tion potentials, but in addition we include the ef-
fects of short range nucleon-nucleon correlations
by defining an effective transition potential ana-
logous to Sec. IIIB,

G~~ = ~~~+ G~ e (3.8)

where G„, Q, and e have the same meaning as in
Eq. (3.6) and V~~ is the bare transition potential.
To obtain the contribution to the irreducible inter-
action block G~~~ direct QPE has to be subtracted
and a ph transformation must be performed (see
Appendix A). The second part of Eq. (3.7) now has
two contributions from S-wave correlation func-
tions (both 'S and 'S,). In addition both S-wave
transition amplitudes are possible. Therefore,
in this case there is a non-negligible contribution
from short range correlations. Numerically this
contribution is almost independent of the momenta
involved, at least in the relevant region defined
by the integration interval of the integral equation
for all considered total momenta. The reason is
that the correlation functions are not sensitive
to initial relative momenta, and, on the other
hand, the transition amplitude is very flat so that
upon integrating over intermediate relative mo-
menta the result is not very sensitive to initial
and final relative momentum. This is valid for
both S-wave contributions, which are in fact al-
most equal. Since there is not more than 5/0 varia-
tion in these matrix elements we have represented
this contribution by a constant interaction strength.
If we define an interaction strength y« for this
interaction analogous to y& and y~, we find this
contribution to have y« = 0.25.

IV. RESULTS AND DISCUSSION

A. Nucleons only

The calculations have been performed for two
densities, the first being approximately the em-
pirical saturation density k~ =1.40 fm ' and the
other being k~ =1.77 fm ' which corresponds to ap-
proximately twice this saturation density. First
we will discuss the results when only nucleon
particle-hole states are considered. In Fig. 11
the results are displayed for k~ = 1.40 fm ' = 276.2
MeV/c. Here we do not plot the self-energy but
the inverse of the pion propagator (at &v =0 and

with an extra minus sign) as a function of the pion
momentum k. In this plot pion condensation would
occur, according to Eq. (1.1), when the inverse
of the propagator crosses zero; this defines the
critical momentum at the same time. It should
be recalled that in the present work the pion self-
energy is calculated in the static limit only.
Therefore the results for the inverse pion propa-
gator displayed in this figure have a physical.
meaning only if the curve reaches the critical
point. For reference, also the inverse of the free
pion propagator is plotted. Two curves are drawn
for the Reid potential, the difference being the
choice of the single particle spectrum. Since there
is hardly any difference in the interesting region
K, -k~ between the two curves, we will in the fol-
lowing only discuss results which are obtained
with an m* spectrum. Also plotted in Fig. 11 is
the result for the HM2+ 6 interaction. %'e conclude
that this way of plotting the results does not dis-
tinguish between the two interactions at this den-
sity, which is below the threshold density for
pion condensation.

Since it is one of the central aims of this in-
vestigation to study the role of the interaction, we

1.5—

1

LA
C)

CO

I I I I I

100 200 300 QR 500

K [MeV/c I

FIG. 11. The inverse of the static pion propagator D
[see Eq. P.l) with co = 0) as a function of the momentum
of the pion field. The dashed curve displays the free
propagator Do ~. The dashed-dot and the solid curves
are obtained calculating the pion self-energy II for a
Fermi momentum kz 1.4 fm = 276.2 MeV/c using the
NN potentials HM2+ 4 and Reid soft core potentials,
respectively. While for these two calculations the
single particle spectrum is characterized by the Landau
effective mass m* only (&=k2/2m*) a "Brueckner spec-
trum" and the Reid potential were used to obtain the
dotted curve.
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have analyzed our results in a simple model. If
one assumes that for a given pion momentum k
the interaction G can be represented by

y„(k}o, o,r, ~ f„andif one uses an m spectrum,
then the pion self-energy can be cal, culated analyt-
ically with the result

(4.1)

Now for each pion momentum k one can determine
an effective strength y„(k) such that Eq. (4.1) gives
the same result as the calculation using the full
interaction G of Eq. (2.5) Applying this model,
one neglects the dependenceon the relative ph
momenta. This analysis only determines an aver-
age strength of the full interaction G in the pion
channel, which, for example, also contains a ten-
sor component that cannot even be represented
by {7g 0'pe T2 Resu its of this analysis are given
in Fig. 12 where the extracted y„ is plotted as a

Y 0.5

I

100

I

200

I I I I

XO I00 500 600

K [MeV/c 1

I

700

FIG. 12. Effective interaction strengths in the pion
channel as defined in Eq. (4.1). The strengths are de-
duced from the calculation of pion self-energies for
two different Fermi momenta and two different NN po-
tentials. They are represented by a solid curve (k&
=1.77 fm, Reid), a dotted curve (1.4 fm ~, Reid), a
dashed curve (1.77 fm ~, HM2+ b), and a dashed-dotted
curve (1.4 fm ~, HM2+ b). The dashed-dotted-dotted
curve is obtained if only the central part of the Reid
potential (kz ~1.4 fm ~) is considere. The relation
between p and the Landau parameter Go is given by Eq.
(3.5).

where II„' ' is the pion self-energy due to nucleons
without ph interactions.

2 m*k
II„"'(k,II =0) =- ~ 4k'I „'(k),~ P„(kl2k~) .

(4.2)
Here f„is the Lindhard function in the static
limit

p„(~)=2 1 — ln
1 (1 —v') 1 —x ~

function of the pion momentum for both densities
and for both forces. These results show that for
k~ =1.4 fm ' there is hardly any difference be-
tween the Reid and the HM2+ 6 in the critical re-
gion k -k~, whereas for k~ =1.77 fm ' the HM2+ b,
is slightly more repulsive. However, taken as a
function of the pion momentum, the curves of both
forces show opposite behavior and only cross more
or less in the critical region for both densities.
At small momenta there is in all four cases a
characteristic increase; furthermore, all four
curves approach, in the limit pion momentum to
zero, the Landau limit Go [when yz is converted
into G,' following Eq. (3.5}]. Note that this limit
is not the Go calculated from the G matrix with
starting energy 2m~, but for a starting energy Eo
according to Eq. (B5). Since in all four cases the
latter is somewhat smaller, this can be inter-
preted as a weakening of the interaction because
it has to simulate the contribution from diagrams
with time overlapping G matrices as discussed in
Sec. IIA. We note that the phase space for this
contribution is largest in the limit k to zero and
decreases monotonically with k (see Sec. IIA).
Another interesting conclusion can be drawn from
the limit of the curves for k to zero. It seems that
here the contribution from the Landau tensor pa-
rameters somehow averages out although indivi-
dually they are rather large (see Table I). To see
how in general the curves are buil t up from cen-
tral and tensor components, we have performed
calculations where the interactions were averaged
over the spin projections in the S =1, T =1 ph
channel thereby obtaining the central part of the
interaction. Since the result in all cases is rather
similar we only show the result for the Reid potential
at k„=1.40 fm ' as the dashed-dotted-dotted curve
in Fig. 12. Indeed we see again the Landau limit
for k to zero, but as k increases the contribution
from the central part starts to fall off more and

more rapidly. The conclusion therefore is that an
important part of the repulsion in the pion channel
is due to a tensor component which does not ori-
ginate from direct single pion exchange because
this is properly subtracted [see Eq. (2.5)]. This
tensor component is increasingly important for
increasing momenta.

+. Inclusion of 6 isobar@

Since it is clear from Fig. 11that both forces give
similar results, we will now only discuss results
for the Reid potential. with inclusion of 6 isobars.
We see that inclusion of isobars does not lead to
pion condensation at normal nuclear matter den-
sity. However, from Fig. 13 it is clear that at
k~=1.77 fm inclusion of isobars establishes pion
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condensation. In this figure we have also plotted
a curve where we only took into account the result
for II„[see Eq. (2.28)]. If we compare this curve
with the result for nucleons only with the same
force (Reid), which is also plotted, we see that
inclusion of M intermediate states here leads to
extra repulsion for II„. This also demonstrates
that there is a considerable influence of M states
on nucleon ph states in the pion channel. The
additional term II~ in Eq. (2.28), which describes
the contribution from the direct coupling of the
pion to the bh states, is rather attractive. At the
density considered in Fig. 13 the inclusion of this
isobar term even yields a phase transition to a
pion condensate at values of the pion momentum
roughly around k =k~.

Since we do not learn very much about the inter-
actions by looking at Figs. 11 and 13, we have
analyzed the results again in a simple model.
Assuming as in Sec. IVA constant interaction
strengths, one can solve the coupled integral
equations (2.21) analytically which then yields for
the total pion self-energy II = II„+II~ the following
contributions:

II„(k) = II~+'(k) [1+(y~ —y ~) li '~~(k)/k']/E (4.4)

+ (y„y~~ —y~2)II„"'(k)II~0'(k)/k'. (4.6)

The interaction strengths were defined in Sec. III,
11+' is given in Eq. (4.2), and II~~

' which repre-
sents the pion self-energy due to a single b;iso-
bar-hole excitation is

f* 16 ,II~ '(k) = —~
8

O'I'~'(k) U~(k),

where

U~(k) =2 d'p
(2lT) ()—(( y f(

—&g

(4.7)

(4.8)

The energy denominator in the last equation con-
tains the difference between an isobar energy and

a nucleon hole energy and therefore depends on
the shift Vo of Eq. (8.1) for the hole energy. In the
calculation Vo =100 MeV has been used, a value
typically obtained in Brueckner calculations. From
our numerical calculation we get II„and II~ ac-
cording to Eq. (2.28). Therefore, since we al-
ready determined y„as a function of k, we can
extract y~ and y~~ by requesting that Eqs. (4.4)
and (4.5) give the same values for II„and Il~ as
obtained from the complete calculation. The re-
sults of this analysis are displayed in Fig. 14 for
k~=1.40 fm ' and in Fig. 15 for k~=1.77 fm ' as a
function of the pion momentum. In addition we
have plotted a y„which can be extracted from the

II~(k) = li~~ '(k)[1+ (p~ —p„)II„"'(k)/k']/E, (4.5)

where

E = 1 —y„ii„"'(k)/k' —y~~li~ '/k'

0 200
k 'CMev/c }

I 00 600

0.5-

FIG. 13. The inverse of the static pion propagator D
[see Eq. (1.1) with u= 0] as a function of the momentum
of the pion field at a Fermi momentum k+=1.77 fm ~

=349.2 NeV/c. The Reid soft core potential has been
used for the NN i.nteraction. The full curve represents
results for the total self-energy with inclusion of iso-
bars, whereas the dashed-dotted curve gives the result
if only contributions displayed in Fig. 1 are considered
calculating the dressed vertex with inclusion of isobars
[see also Eq. (4.4)). For a reference this figure also
contains the results Do for the free pion (dotted curve)
and if the isobar contributions in calculating II are at
all neglected (dashed curve).

200 300
k [MeV I c ]

400 500

FIG. 14. Effective interaction strengths y~ (dashed
curve) and y~z (dashed-dotted curve) as obtained from
analyzing the self-energy according to Eqs. (4.4) and
(4.5). The solid curve represents y~ which is obtained
with the assumption y~=yz=yz=y&z fsee Kq. (4.9)].
The calculations are performed for k+=1.4 fm ' using
the Reid soft core potential.
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V. SUMMARY AND CONCLUSION

dd

05.
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FIG. 15. Effective interaction strengths at k+=1.77
fm . For further details see Fig. 14.

calculated total self-energy under the assumption
y„=y~ =y~~ which is frequently used. ' Under this
assumption the total. sel.f-energy II reduces to

Il(k) = [11'„"(k) + 11,"'(k)]i(1—y.,[II"'(k)+II,"'(k)/k']) .
(4.9)

Therefore we can extract y„when we request
Eq. (4.9) to reproduce the calculated value for
ll(k}.

For both densities we see that y~ roughly starts
at the value 3 as a function of the pion momentum,
which coincides with the strength of the 5 func-
tion of the exchange part of OPE as discussed in
Sec. IIIB. As k increases, y~ also increases in
both cases due to the increasing importance of the
exchange part of p contribution. The bare transi-
tion potential should give only a small contribu-
tion to y«. This can be understood by looking at
the details of the ph transformation for single
v and p-exchange interactions (see Appendix A).
By inspecting the recoupling brackets (A27) we
see that the ph transformation leads to a large
contribution from the exchange part if only one
d is involved (dh-ph). The exchange parts are
small if only nucleons or two isobars are involved.
We remark here again that for bare transition po-
tentials only the exchange pieces of m and p con-
tribute because the direct piece of OPE has to be
subtracted and the direct piece of p exchange is not
compatible with the pion channel quantum num-
bers (S=l, M~ =0, T=1).

Finally, we see that the curves for y„show for
both densities a rather flat behavior with a value
which lies between 0.4 and 0.5, which is at the
lower limit of assumptions made in other inves-
tigations.

The aim of this paper has been to check some
of the assumptions commonly made when deter-
mining the threshold density for- pion condensates
in nuclear matter. The assumptions concern the
irreducible interaction blocks in the nucleon par-
ticle-hole (NN-NN) and the d-isobar nucleon-
hole (dN- dN} channel as well as the interaction
(NN- dN) coupling both channels. These interac-
tions are complicated functions of three momenta,
one energy, and the nuclear density, in general,
but are usually replaced in a simple model frame
by constant interaction parameters y„, y«, and

y~, respectively, and are often even assumed to
be equal, y„=-y„=y»=y~. It should be realized
that the threshold density for pion condensation
depends sensitively on these interactions.

We have, therefore, checked the model assump-
tions by constructing the interactions explicitly in
terms of a Brueckner G matrix (NN-NN) and x
and p meson exchange potentials, modified due to
NN correlations, in the (ÃN-Nd) and (dN dN)-
channels. The present investigation goes beyond
the earlier work by Backman and Weise" in that
it keeps the full complexity of the interactions
and solves the coupled integral equations for the
pion sen-energy numerically. Also, different
choices for the particle and hole energies are
studied, and the symmetries of the interactions
in the pion channel are discussed in detail. The
numerical results have then finally been inter-
preted in terms of the simple model of constant
interactions, requesting that this model repro-
duces the self-energies calculated for the realistic
interaction. This determines effective parameters
y» y~, and y» which depend on the pion channel
momentum k and on the nuclear density p. Results
are obtained for two densities (kr = 1.40 fm ' and
kz = 1.77 fm ') and two realistic NN potentials
[Reid, "HM2+d (Hef 20)]. I.t is found that the
parameters are similar in size, y„-y, -y,~=y„,
and that y is only weakly dependent on k and p.
In the region of the critical momentum k- k» the
results are almost equal for the Heid and the OBE
potential. Concerning the k dependence of y~, it is
found that the contribution from central interaction
decreases with increasing k at almost the same
rate as the contribution from tensor interaction
increases keeping the sum almost constant.

It should be realized that the approximations
made in the present work, e.g., taking the bare
reaction matrix for the nucleon ph channel, hardly
account for the full irreducible interactions. "2'
Therefore attention should be paid to the general
results concerning the functional dependence of the
parameters on k and p rather than their absolute
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values. With y - 0.4-0.5 extracted here and the
self-consistent, p-dependent effective mass (com-
pare Sec. IIIA), pion condensation is obtained at
about twice the normal nuclear density. However,
empirical nuclear data indicate that the effective
interaction is more repulsive (y„-O.V + 0.1),
shifting the threshold density to considerably high-
er values. " The importance of the present inves-
tigation lies in the fact that it confirms the gener-
al assumptions of the simple pion condensation
model and it therefore establishes a more solid
basis for an empirical analysis of pion condensa-
tion based on extrapolation from data at normal
nuclear density in the framework of this model.
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APPENDIX A: THE PARTICLE-HOLE
TRANSFORMATION

p k+=—+—
~

p k
q 2 2' (A 1}

In this appendix, the transformation of the two
body interaction from the particle-particle (pp)
into the particle-hole (ph) channel is derived, and

symmetry properties are discussed.
In Fig. 16, 2Q denotes the two-particle momen-

tum flowing vertically in the pp channel, and k
denotes the ph momentum flowing in the ph channel
from left to right. Matching momenta of the in-
dividual lines, one obtains the relative pp momen-
ta g, and q from the relative ph momenta p, and

p2~

Q+q Q-q kP--
2

kP

Q+ q
1

pp —channel

Q-q p, k
1 2

kP
2 2

ph-channel

FIG. 16. Particle-particle (pp channel) and particle-
hole momenta Qh channel).

p1, 2 (pl, 2& 1, 2t p1, 2) t

gl 2 (01,2 1,2 P1, 2)

and relations (Al) are expressed by

(As)

q, ,'=-,'[k'+p'~2k(p, cose, -p, cose, )], (A4)

cose»-— (p, cose, -p, cos e,) +

tan[rp —
2 (y, + (f),}]

P, sin6}, +p, sin~,
p sine p sine

' ' p' &2]. (A6)

The spins in pp channels are coupled to

sp sp sm = sp mp sp mp sm spmp
tftp ~ 75p

x Is~m &

Since the z axis is parallel to k, we have y, =y,
=y, where y is the azimuthal angle of p, and this
yields

tan((p, ) = tan(y, ) = tan(y)

p, sin&, sing J p2 sin~, sing,
p sin~ cosf g

—p2 sin~2 cosf2
If we now rotate around the z axis with an angle
—,(P, +P,), this becomes

where p = p, - p2 and

W (p, +p,)l2. (A2)

and in ph channels to

1(s~s„)SM&= P (s~m~, simaISM& Is~~&( —}'&' &

SA ™h
Choosing the direction of k as the z axis, polar
coordinates are introduced:

Isospins are coupled in the same way. The trans-
formation of the 6 matrix has then the form

&(t, t,}1',{s,s,)SM
I G(p„p„u) I (t, t,)2', (s,sgS'M'&

= Q ( —)' 2&~( t21+) ~ 2

Q $(s~s2)SM, (s sge' SMI(s~s~)sm, (s2s~)s'm')Ifg T
t

g $ t gtlty S St
3 4

x((t, tJt, (s,s4}sm IG"(q„q2;Q) I (tzt~)t, {s~a)s'm'&, (A7)
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with the spin transformation bracket

(AS)

{(s~s~)SM, (s~s4)S'M'
I (s~sJsm, (s~s)s'm'} = g (-) & ~&s~m~, sm —m~ I

SM)(-) 4 4&s~m~, s4-m4I S'M')
lsgsl2753t$4

x (s,m„s,m, Ism)&s~„s,m, I
s'm') .

Using the relations of the Clebsch-Gordan coefficients

&s~m„smm~ Ism) = (-)'~"2 '&s~m» s~m~ I
sm) = (-)'&'4& '(s~ -m„sm —mm Is -m)

one finds the symmetry

((s,s,)SM, (s,s JS'M'
I (s,s,)sm, (sp, )s'm'} = (-) ' """'~"'"~~*~~"4

x((sy, )SM, (s~s,)S'M'
I (s~,)s' -m', (s,sos —m}. (A9)

Also, these brackets vanish unless M -M'=m -m'.
Since the interaction conserves isospin, the brackets (As) can be summed to give the sj symbol in Eq.

(A'?) for the case of isospin. This is not possible for the spin case, since the interaction couples differ-
ent spin channels, in general. In the following, we shall not write all the isospin indices and summations
explicitly, for convenience; they are easily restored in the final formulas. On the other hand, we shall
keep the individual spin indices s„s„s„and s, to allow for nucleons (s = 2) as well as for isobars
{s=—,') and their various combinations.

The pp interaction as obtained from a Brueckner calculation is given in a partial wave representation

(sm IG' (q, q; Q )Is'm')= g g &Im„smIJM)&l'mI, s'm'IJM) Y, (D~q»~)Y~, „.(emq»~)G„, ...(q~, q~;Q,),
Zlf $mg, l'mg

(A10)

which transform into pp momenta

(Als)g=gl(Upl 2) —(?2» —
2» q g)» h! q2( pl, m) (ql» w el» q 1)»

according to the relations (A4)-(A6). Taking into account Eqs. (A11)-(Als) and noting the symmetry of
spherical harmonics

where s and s' stand for (s,s4)s and (s,s,)s', respectively; and the weak dependence on the center-of-mass
momentum Q is taken into account only by an average value Q„. Again we note that q», = q», = q» and m,
-m', =m'-m =M'-M [see Eq. (AS)]. This implies that one can extract in Eq. (A10) a factor exp&(M'
-M)q»} which is independent of the summation variables.

The partial wave amplitudes G„, , satisfy the symmetry

(A 11)

Now, in the integral equation (2.12), the ph interaction is needed for the momenta p„p, as well as for the
mome nta

Up, =(p„v e„~,), Up, =(p„& e„4,), (A12)

Y, (v —6, »?») = (-)' Y; „(6,q»),

one obtains from Eq. (A 10) after relabeling summation indices

&sm
I
G"(~ q "» Qa.) I

s'm'& = (-)'"'&s' —m'
I
G"(qu qs» Q») I

s —m& (A 14)

Inserting Eqs. (A9) and (A14) into Eq. (A?), an important symmetry relation for the ph interaction

&(t~, t~)T, {s~s,)SM
I
G~"(Up„Upm;k)

I (t~, t )T, (sp~)S'M') = (-)s' '"'" x&{t~t )T, (s~s2)SM I G~(p~, p;k) I (tgJT,
x( s,s JS 'M') (A15)

is obtained. Here we have restored the isospin dependence giving an additional phase (-)'~~~~~~4 which
cancels with the spin phase (-)'&"&~&"4. For nucleons with spine s = & only and the pion channel (S =S'=1,
M =M' = 0), Eq. (A15) is identical with the symmetry relation (2.14).

In this section, it is shown that the ph interaction depends on the azimuthal angles f, and ft) ~ only
through the difference»t», —»t», and that, accordingly, the integral equation (2.12) separates into»t»-chan-
nels.
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Inserting Eq. (A10) into Eq. (A7}, one obtains the ph interaction in the form

(SM
~

G "(p,p;k) ~S'M') =exp(-iMQ +iM'p ) x Gss s,s,(p e,p 8, p —p;k)
with

(A 16)

G „,„,(p,e„p 8„$,—p, ;k)=exp -2(M —M')q+2 (p -p )
.M+M'

$~$2 S~ $3$4 ~ ~ $j$4 $SZ $2$3 $ PB

m, s'm'

(I
~

JM}(ll I I ~
~gM)

[(2l +1)(2l'+ 1)]'
JM gml, ~ m

(A17)

exp[-i(M -M')ql]= exp(-iMQ, +iM'$2)

x exp -j(M -M')P

M+M'
2

where the angle ql = ql —(p, + $2}/2 also is a func-
tion of (p, —$2) alone, according to Eq. (A6).

The interaction (A17) is periodic in (p, -$2)
over a period of 22 except for the phase exp[i(M
+M ) x (y, p2)/2] which is periodic over 42, in
general. We therefore define the Fourier trans-
forms

G &„&,,„,(p,e„P,8,; k)

1 9'2 eon (4lty-y2)/2
4~d(a a )

4m

x G,„,.„,(p,e„p,e„y, y„k)
which satisfy the selection rule

(A 16)

&s~, s~ = o(n&

if n +M+M' is an odd integer.
Due to the (p, —$2) dependence of the interac-

tions (A16), it is now obvious that the integral
equation (2.12) can be decomposed into P channels
(n = 0, al, a2, . . .). The interaction appears in the
combination

Here the full spin indices for the ~ elements would
be (s,s,)S, (s ss,)S', (s,sos, and (s~s)s', respec-
tively, but are not written explicitly, for conve-
nience. According to Eqs. (A4) and (A5), the vari-
ables q„4„q„and 42 in the pp channel depend on

p, and $2 only through (p, —$2). The azimuthal
angle y = y, = y2 has been isolated in Eq. (A17),
using Y, (8, q) =[(2l+1)/4v]' sd,"'(8)exp(imq) and
the selection rules of the transformation brackets.
This yields the phase

4SS TS'hf'(Pl it&2 2l } TSS TS'S'(Pl ltP2 21

—( )" 'GT"S'J-S, T S'S'

x(P,e„p2(v 8,} k)
(Alg)

where we have again written the isospin depen-
dence explicitly. The elements &'"' obey the sym-
metries
K'",'„„.Q&, (v —8,},p, (v —8,);k)

=( )'" ~ "'K~
~& „.„,(f,e„P,e„k),

(A20}

TSN, T S'bf'(Pl ll P2 2i k}
=(-)""' '"K',"', (P 8,P.8,;k),

and vanishes if (n +M+M) is odd (see above).
Only the n =0 channel can contribute to the pion
self-energy in Eq. (2.1). Since the pion channel is
(S=1, M =0) the interaction K only couples to
channels with M' even. Using the symmetry rela-
tion (A20), which yields e.g. , Kz'~T~, ——0 for S+S'
odd, it canbe seen that the only channels to be con-
sidered are those with (S=1, M=O) and (S=2, M
=+2). Therefore for the case of nucleons only
(S, S'~ 1) the pion channel couples only to itself.

ph transformation for single 7t'- or pwxchange interaction

We start by noting that a m- or p-exchange inter-
action can be decomposed in a tensor and a central
part. It is important to make this decomposition
otherwise one has to use the more general ph-
transformation discussed above. We first give
the general form of the interaction for m exchange:

I"(q) = — ' ' I' '(q) I" '(q)
T

f. f, ~,()~.( ). , [ „( )+q&, 'L,]
m ppz +qt f

(A21}
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and for p exchange:

v(~q=- ': r'(q)r, '(q)"'"'"'"'"'"~ ~
P p

&. '&.~y.y
2 p 0 PQ'30 2 2 1' 2y

P P

(A22)

where f,'(f,') and r,'(q)[rt(q)] denote the w(p) bary-
on-baryon coupling constant and form factor for
vertexi and

f$$(q) =3K, ' qt'$ '
q —I, ' I$

=[24w]'~$g (2p, 2 —p, I00)[E xI' ] $F (q).
(A23)

The momentum of the exchanged pion (rho meson)
is q. The operators 4', and V', stand for the vari-
ous spin and isospin operators connected with ver-
tex t. These operators are o($'}, 8(T), and 8'(T'),
which have the following reduced matrix elements:

& $ II o II -$'& = & $ II $ II ~$& = $6,
(-.* II 8ll-,') = (-.*IITII-,'&=2,

&-,
'

II 8'
ll $& = &$ IIT' ll $ &

= -2.

In contrast to the general ph transformation one
can keep track of direct and exchange contribu-
tions. To make this point clear, let us consider
the first step of the ph transformation

((b,b$ ')8~$Tbfr
I
V'"I(b$b )8'Ms'rbfr&

2 2 S1+1S2 O2 ~$ — 2 2 t1 1t2 T2 T~T S303S4 04 S Mg — t3+ 4 74 T~T

x & ~ $ x'$ $4t4" I
~

I
$o$t$'$ $o$ $ $& (A26}

where a.s. (antisymmetry) means that one has to consider the identity or nonidentity of baryon 1 and 4
and of baryon 2 and 3. The following pp matrix elements are then possible:

(1}For b, =b4, b$=b$, either

(s o t T s (T4g rI v (I's (F t T, s o$t r &
—Is t r s 0'$t T &j (i)

or

~&s1 l ot1$t s4 44 41 —&s4o4t4&4, "o.t".IL
V"Is$o$t$ $1 s$o$t$ $& I

where the exchange also influences the momentum dependence. (i) and (ii) are equivalent here.
(2) b, = b„b$ $$b$ In thi. s case one has matrix elements (ii}.
(3) b, $'b$, b, =b, . In this case one has matrix elements (i).
(4) For b, &b„b, 4 b„either

(s $0$t$r~, s4o4t4r41 v''I s$o$t$~$& s$o$t$$ $&

or

-&sP'it$ru s4o4t4r41 v
I s$o$t$ $f s$o$t$ $) v}

s III I s s IIF s 6 6. direct
3 () &, , I,&&, , ll.& . . . , ( )

A26
s, s, S

&(s,s, ')8 II f, && 4', '
ll (s,s, ')8'

&
=

W5(-)'$+'$((28+ 1)(28'+I)]"'(s il I, li s,&(s, li 4$ II s,&

1 1 2

(exchange),

depending on the interaction.
It is clear that in cases 1, 2, and 3 one has a direct and an exchange contribution, while in case 4 one

either has a "direct" piece or an "exchange" piece. The actual formulas can be derived using standard
angular momentum recoupling techniques for the spin and isospin parts of the interaction. For the tensor
piece one gets the following reduced matrix element:

r

where the minus sign for the exchange has not been included. It is sufficient here to give the reduced
matrix element because one can apply the Wigner-Eckart theorem. We use here the definition of the re-
duced matrix element of Ref. 28. For the central piece one finds
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!

' —
—,
' (-)'s"4(s,lll:, lls, )(s,ll E~ll s,)6s, (direct)

(-)*'~4' ' ' (s IIE!I )&s IIV!Is ) (exchan e)
! S4 S3 1

(A27)

As an example we will give the ph matrix elements for m exchange for the pfN-N4 transition potential.
Taking the spin quantization axis along the direction of the total momentum k, one gets neglecting form
factors for simplicity:

(k, p, ;(; —.'-')S~sr! V!k,p, ;(-,'-,'-')S kf;T)

f,f,* 16 k' 8 ks
2 Ss 1 Ts1 NSr NS Nss0 9 pg 2+ k2 9 ~ 2+ kf f 2

(5i —Ps) i is.u'+r S 2

s s s s

(24m)~' I's „„((p,-"p,))[(2S+ 1}(2S'+1)j'"
M'

X 1 1

s s

41 ~2} s T T-6s s 6„,„8,
( ), (-)

'
s' s m, +Lp, -p2) 1

2 1 . (A 28)

The terms in the matrix elements with k come
from the direct part, those with (j$, —tis) from the
exchange; both parts have been kept separate with
respect to central and tensor pieces (tensor con-
tribution+ central in that order)

The last part of Appendix A is devoted to a table
of the coupling constants, masses, and cutoff
masses whichareused in the calculation (Table II).
We have taken at each vertex a form factor of the
form [(lV -m')/(A'+ k')] where A is the cutoff
mass, m the mass of the exchanged meson, and k

its momentum. Note that the AN-coupling con-
stant was taken from the HM2+ & interaction.

APPENDIX B THE AVERAGED STARTING ENERGY

In this appendix the averaged starting energy E,
to be used in the input G matrix is derived. Noting
that G(E) is smoothly dependent on E, we expand

G(E'&+ E&t ) = G(EO)'[1 + N (6&—Eo/2)+ (1(E&t —Eo/2)+ ' ' ' ]

and determine Eo in such a way that the self-ener-
gy

2r 6~ —EI

x [7(p -Q/2, s~; k)+ v(U(p -k/2), e~; k)j

0.978

1.956

1200

5.416

9.192

1800

TABLE II. Coupling constants, masses, and cutoff
masses {both in MeV) that were used in the calculation. does not depend on n in linear order. Approxi-

mately, this is achieved by neglecting al.l the ex-
plicit dependence on p and p' in the ph interaction
G(p —%/2, p' -%/2, k; e~+ e~'). The integral equa-
tion (2.8} for the vertex 7(p -%/2, e~; k) then has
the form

ANd

ms

mN

1200

139

938.9

~Nd

md

1800

770

1236

~(e~)=r"'+2G(E, ) 1+o. e~- —aE d 'p' ~!e
2 gp(2Ã) apl 6I / j(

+2G(E,)n 2, ' ' ~(e, ).P 6~i -Eo/2
p 2X}

Cent

—6 ]~i
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Choosing E, such that

(B4)J d 3p ~, -S./2
(2~)' cp alp-kI

all the terms of r(ep) linear in a cancel when in-
serted into Eq. (B2). With up =P'/2m~ —V„ez
=p~'/2m~, and a=%/2p„, one obtains

l —a' 1 —aa'+ —', — 1n

1 — ln
2a 1+a
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