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Time-dependent Hartree-Fock computations are performed for the '*O + *Nb system at a laboratory bombarding
energy of 204 MeV. We employ an approximation in which the components of the wave functions perpendicular to
the reaction plane are held constant in time. At this energy the total reaction cross section is comprised of
approximately equal amounts of fusion and deep inelastic scattering. Fusion is found for those entrance channel
angular momenta between /! = 314 and / = 75#; strongly damped inelastic scattering is found above and below
this region. The angular momentum excited in the inelastic fragments is shown to have a different character in the
different inelastic branches and this behavior could conceivably be used as a test to experimentally prove or disprove

the existence of the fusion window.

[NUCLEAR REACTIONS 10(®Nb,x) in time-dependent Hartree-Fock approxima—]
tion. Fusion and deep-inelastic scattering.

I. INTRODUCTION

The successful representation of heavy-ion col-
lisions within the time-dependent Hartree-Fock
(TDHF) theory* has stimulated a variety of investi-
gations employing both two?~ dimensional (2D) and
three®” dimensional (3D) models. These studies
have focused principally on fusion in lighter heavy-
ion systems™! and deeply inelastic scattering in
very heavy systems'?® over a wide range of bom-
barding energies.

At energies of a few MeV per particle above the
Coulomb barrier, TDHF calculations of lighter
heavy-ion reactions exhibit highly inelastic scat-
tering for large impact parameters less than
grazing and for nearly head-on impact parameters.
Fusion is usually observed for a range of impact
parameters intermediate between these two reg-
ions. In these light systems, the magnitude and
energy dependence of the theoretical fusion ex-
citation functions are in general agreement with
the experimental data.”»9:!1+1¢

TDHF studies'?™® have also been performed for
several systems whose composite mass number is
greater than 200. For these systems, and in par-
ticular for the Kr induced reactions,'?'!5 the cal-
culated outgoing fragment kinetic energies, scat-
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tering angles, and mean masses and charges are
qualitatively in good agreement with experiment.
However, mass and charge distribution widths are
incorrectly given.'?'!® Fusion is also observed in
these calculations'®'!® but there are discrepancies
between the theoretical and experimental results.
On the other hand, the experimental fusion cross
section is less than 10% of the total reaction cross
section.?®

In the present study, we report TDHF calcula-
tions of the %0 +%Nb collision at a laboratory
bombarding energy of 204 MeV. Our calculations
are performed using the approximation in which
the components of the wave functions perpendicular
to the reaction plane are held constant in time
(frozen approximation), thereby reducing the 3D
theory to a set of 2D equations.*® This represents
a region of mass which is intermediate between
the heavy systems where deep inelastic processes
dominate the reaction,? and the light systems
where fusion is the major component of the reac-
tion cross section.?? Experimentally, at this en-
ergy, the %0 +%Nb total reaction cross section is
comprised of approximately equal parts of fusion
and deeply inelastic scattering.?® Thus the study
of this system is expected to provide useful infor-
mation on the interplay of fusion and other highly
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inelastic processes within the TDHF theory. In
Sec. II we briefly describe the model using the
finite-range nonlocal Skryme II potential of Ref. 24.
Details of this reduction will be given elsewhere.?*
In Sec. IIT we present the main results of our cal-
culations, and in Sec. IV we discuss the principle
limitations and conclusions of our study.

II. 2D TDHF EQUATIONS

In this section, we briefly describe the reduction
of the 3D equations to 2D form using the frozen
approximation.*”® For a detailed account of the ap-
plication of TDHF theory to describe heavy ion
reaction, we refer the reader to relevant litera-
ture. 1-3,6,7,10

For collisions in which a reaction plane can be
defined (e.g., collisions with two principal frag-
ments), we make the approximation that wave
functions ¥4 (T, t) are given by

‘I’qx(f, t)= Xn(f.l.)¢ fn G'uy t), 1)

where T, are the coordinates which lie in the re-
action plane and T, is the coordinate which is per-
pendicular to this plane. The index A labels all of
the quantum numbers needed in order to complete-
J

L1 0+ WG, 0+ S [ dFpp@, 00, @, AT

H(T, t)=5~

ly specify a single particle state of charge q.
Equation (1) assumes an approximation in which
the wave function is factorized into the product of
a component which is perpendicular to the reaction
plane and independent of time, and a component
which is in the reaction plane and varies in time
during the collision. In our present work, we
have taken  ,(T,) to be a harmonic oscillator func-
tion, where n denotes the principal quantum num-
ber. The TDHF equations follow in a straight-
forward way from the stationarity of the many-
body action as discussed in previous work.?® We
employ the finite range, nonlocal Skyrme-II force
which allows us to write the action in terms of the
Hamiltonian densityH(T, t) as (& = 1)

§ = fdt.[drll (HG,,t)-i 2 3 G‘",t)(h)\,,(f‘",t)] ’

H(T,,t) =_[dI'LH(f', t), 2)

with the Hamiltonian density H (r, ¢) specified in
terms of the kinetic energy density 7, the two and
three body zero-range potential energy density W,
and the Coulomb and finite-range Yukawa nuclear
potential energy densities as

II)

lr=rlla
+-°fdr ——r———{VL[pp(f‘,t)pp(?' ) +p, @&, t)o, @, 1)] + V,[p, &, hop (¥, t) + pp (X, t)p, (v', )]} .

(Note that the potential W also includes the velocity
dependent Skyrme terms.) The potential energy
density W, the definitions of p,7, and J, and the
parameters of the modified Skyrme II force are
explicitly given in Table I. The stationarity of the
action with respect to variations in the single par-
ticle state ¢f, (T, t) determine the TDHF single
particle equations

08

oD @)
[h'q(?ll’ t) dt ]¢ kn( s t) 0

where kS is the TDHF single particle Hamiltonian.
Instead of solving these equations directly we adopt
the numerical procedure? of using a discrete re-
presentation of the action integral in (2) and re-
quire that this quantity be stationary with respect
to variations of the wave function ¢ %, at specific
mesh points, i.e., we discretize the action before
taking variations. This procedure leads to a set

of two-dimensional finite-difference TDHF equa-
tions

(3)

I

Ehn(a B, @', B 03, B 1) =i L(a, B;1),
(5)

where o, are indices corresponding to the dis-
crete representation of the Cartesian coordinates
defining the reaction plane. Given that the solu-
tions to Eq. (5), at some instant of time (¢ = 0),

are the static Hartree-Fock solutions £3,(r),)

those at a later time are obtained by repeated ap-
plication of an exponential time evolution operator.”
Thus given the solution at a time ¢, the solution

at a time £ + At is

P4t + AL) = Us(at; )5 (t) .

If At is sufficiently small, we may neglect differ-
ences due to time ordering and expand the exponen-
tial as a series

M
Uat;t)=1+ 3 [—iatKy(t)]*/s. (6)
s$=1
For nonlinear time-dependent solutions using
Skyrme forces, the optimal choice of the propa-

gator” is given by
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TABLE I. Definition of the Skyrme II Hamiltonian density as given in Eq. (3).

W(v,t>-to{(2+xo)p,<¥ £)pa(T, 8) + (L= x) [0y, )2+ p,(T, t>21/2}/2
' (tl+tz)[p(r BT .6 -TF,b) ]/4+(t2-t,)z [pglF 2117, 1) = T, F,£)71/8

+-[p,(r £)Pp(E, 1)+ p,(T, 1)y (F, )7,

PE )= pp@,8) + T, 1), T(E,1)=T,@,1) +T,(F,8), T, 1) =T,@,1) +T,@,1),

P7st)=
Rilry,t)=

Xa(@)PRE (T, 1) T, (T, 8) = [xn&)2
| ¢%nbry, )| tr t) = Z x,,(n)zz: Im{¢%, s t) Vb in £}

G683, )]+ | Fxa @RI )],

to=—104.49 MeV fm®

0=4.01

t;=+585.6 MeV fm’®
t,=—27.1 MeV fm?®
t3=+9331.0 MeV fm®

ay=0.459 fm

V= -444.847 MeV
,=—863.528 MeV

sz(fn, t)= [han(f‘ll; t+At) + hqn(f s t)]/‘2

1 >
- 'éafdr_v.x T)(;J.)z

X{p(F;t) = p(T; t + AL? + p (5 t + ALY - p, (F; )

= 2[20:(F; t)p, (F; 1) — ps (T t + Ab)p,(F; ¢ + AL) —p;(F; £ + At)p, (T3 )]} . )

The presence of the terms involving ¢, in Eq. (7)
ensures exact conservation of the total energy.
The index § denotes the charge state conjugate to
q.

The initial static Hartree-Fock wave functions
for both 0 and *Nb can be obtained from Eq. (6)
using the imaginary time evolution method.?® In
using this technique, the time interval A¢ in the
evolution operator [Eq. (6)] is replaced by an im-
aginary time interval —iA¢

At=iAT,
AT >0,

In addition, one must also Schmidt orthogonalize
the single particle wave functions after each time
step. In this way, the time plays the role of an
indexm, and successive application of the evolution
operator corresponds to an iteration sequence
which converges to the self-consistent static Har-
tree-Fock solutions?®

£, (F;m + 1) = UY( = int;m)es (F;m) . (8)

The finite range Skyrme II potential®?*2? in Eq. (3)
is spin degenerate and this symmetry is preserved
at all times in our calculations. Thus the Hartree-
Fock single particle state A is given in terms of

r
spatial quantum numbers only. The starting guess-
es for the wave functions before one performs the
imaginary time method are products of one dimen-
sional harmonic oscillator functions having quan-
tum numbers u, v,

Egy,(;u):W)\anu (x)XU(y)’ (fl?*{x’ y}) . 9)

Each Hartree-Fock state A is specified in terms
of the oscillator quantum numbers @, u, v), with

a total number of quanta @ =7 + u+ v, and occupa-
tion numbers W§,, .

The initial wave function is comprised of two
separate static Hartree-Fock wave functions for
the target and projectile whose mass centers move
along classical Coulomb trajectories in the c.m.
frame of the composite system. For the '{O pro-
jectile the four neutron and four proton levels
completely fill the @ = 0 and 1 shells and result in
a spherically symmetric Hartree-Fock wave func-
tion. However, for J3Nb the exact Hartree-Fock
solution is a deformed state, and we employ a
static filling approximation to construct a state
which is rotationally invariant.

In the 33Nb nucleus, 40 protons completely fill
the lowest 20 orbitals having quanta @ =0, 1, 2,
and 3. The remaining proton fractionally occupies
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the next lowest level, (n, u,v)=(2,1,1). This level
is bound in the Hartree-Fock potential by 2.5 MeV.
For the neutrons, after filling all of the levels
through the @ = 3 there remain 12 neutrons to oc-
cupy the 15 levels in the @ = 4 shell. Two differ-
ent approximation schemes corresponding to the
occupation of the 12 and 15 lowest levels are com-
pared in Table II where the occupation numbers,
single particle energies, and binding energies are
given. Both solutions are approximately spheric-
ally symmetric and the solution having 12 levels
gives the lowest energy. The resulting bulk prop-
erties of the %0 projectile and ®Nb target are
given in Table III. The results obtained using the
frozen approximation differ from those obtained
with conventional methods using the same two-
body interaction, since the former solutions are
constrained to be harmonic oscillator functions
for the wave function component perpendicular to
the reaction plane. The nonzero value of the mass
quadrupole moment for the %0 arises because the
oscillator parameter b = 2.20 fm does not rep-
resent a minimum in the %0 Hartree-Fock energy,
but corresponds to a minimum for the combined
180 + SNb system.

III. RESULTS

We have studied in detail the %0 + ®Nb collision
at a laboratory bombarding energy of 204 MeV.
At this energy, the reaction cross section is com-
prised of approximately equal amounts of fusion
and deep inelastic scattering. The experimental

TABLEII. Comparison of twodifferentfillingapproxima-
tions for the valence neutronsin %Nb. The harmonic oscil-
lator length parameter isb =2.20 fm. Both solutions are
approximately spherical and the lowest energy solutionis
used inthe present study. Note: Wf =1 doesnotcorres-
pond to unitoccupancy because of spin degeneracy.

=-711.6 MeV E=-697.6 MeV

A n o m v W2 E,MeV) W, E, (MeV)
1 2 1 1 1.0 -9.7 0.8 —-6.6
2 0 2 2 1.0 -8.9 0.8 -6.1
3 1 2 1 1.0 -8.8 0.8 -7.3
4 1 1 2 1.0 -8.8 0.8 -7.3
5 2 0 2 1.0 -7.9 0.8 -5.2
6 2 2 0 10 -8 0.8 ~5.0
7 0 3 1 1.0 -7.8 0.8 -17.6
8 1 0 3 1.0 -7.0 0.8 -6.2
9 1 3 0 1.0 -17.0 0.8 -6.2
100 3 0 1 1.0 -6.6 0.8 -2.4
11 3 1 0 1.0 -6.6 0.8 -2.4
12 0 1 3 1.0 -5.8 0.8 -5.6
13 0 0 4 0.8 -5.1
14 0 4 0 0.8 -5.0
15 4 0 0 0.8 +2.1

analysis of this system is presently being carried
out®® and comparisons will be given at the end of
this section. In our calculations, the inelastic
part of the reaction cross section arises from the
principal branches of the deflection function as
shown in Fig. 1. The c.m. scattering angle and
the outgoing kinetic energy of the fragments are
given as a function of the entrance channel angular
momentum . One of the inelastic branches occurs
for angular momenta near grazing, for which the
damping of the kinetic energy of the fragments is
strongly dependent on I. The other branch corres-
ponds to small entrance channel angular momenta,
or nearly head-on collisions, for which the out-
going kinetic energy is approximately independent
of I. In the %0 +®Nb system, these two distinct
inelastic branches are separated by a region of
angular momenta where fusion occurs. We cal-
culate upper and lower limits for fusion I, and

1., respectively; elastic branches are separated
by a region of angular momenta where fusion oc-
curs. We calculate upper and lower limits for
fusion [, and I, respectively,

l,= 16£1.0,
1.=30.5:0.5.

The existence of an intermediate range of fusion
angular momenta in this way is a characteristic
feature of previous TDHF fusion studies of light
mass systems.”™!

In Fig. 1 the c.m. scattering angle goes to zero
for small impact parameters with the subsequent
interpretation that in this region the projectilelike
fragment “passes through the target.” The large
angular momentum limit of the TDHF deflection
function is compared to the classical deflection
function for pure Coulomb scattering (dashed
curve). Here one observes that for large I, the
TDHF deflection function smoothly goes over to
pure Coulomb scattering with the subsequent ident-
ification of a classical ¢, m. Coulomb rainbow
angle 6, and corresponding angular momentum I,
where do/dl|,, = 0. In our study, these are g, ~ 14°
and /,~ 100+ 5. One should note that this is not
the usual ; point definition for grazing adopted in
experimental work.?®

In Fig. 2 we present the outgoing kinetic energy
of the inelastic fragments as a function of the c.m.
scattering angle. Each point corresponds to a par-
ticular initial angular momentum, the triangles
are points from the lower inelastic branch with
I<l., and the circles are those points from the
upper inelastic branch with I>1,. The points are
joined by a solid line in order to guide the eye.
Here the scattering is strongly peaked in the for-
ward direction exhibiting mostly negative angle



1068 SANDHYA DEVI, STRAYER, IRVINE, AND DAVIES 23

TABLE III. Static Hartree- Fock solutions obtained using Eq. (8). The harmonic oscillator
length parameter is =2.20 fm. The imaginary timestep is A7=0.0025 x10~%! sec.

‘o it
Binding energy (MeV/nucleon) -6.744 —7.652
Kinetic energy (MeV/nucleon) +13.713 +17.283
Nuclear potential energy (MeV/nucleon) -21.425 =27.777
Finite-range -27.519 —-41.,131
Zero-range +6.094 +13.354
Coulomb potential energy (MeV/nucleon) +0.969 +2.843
Mass rms radius (fm) 2.850 4.394
Mass quadrupole moment (fm?) 0.340 0.034

scattering.

As stated previously, we find fusion for those
angular momenta between I, and I,. We adopt the
operational definition of fusion established in pre-
vious work”°®"!! and classify as fusion those cases
for which the composite system undergoes more
than one complete rotation regardless of the sub-
sequent evolution of the system.'®

In Fig. 3 we display as a function of time the
density contours projected on to the reaction plane
1="T0. We have followed this trajectory for times
longer than 2.5%X1072! sec. during which the com-
posite system appears to undergo more than three
complete rotations.

In Fig. 4 we show as a function of time the rms

40 5
N |
20 —8g %_:-__n ------
5“? 0 | \\ﬁ_
E-20 N,
S NN
-40 AN
-60 N
I\

“Ecm. NN

3
%

E (M_eV)
8 B
Z

L_E
s A
o \X
O 10 20 30" 80 90 100 110
L(h)

FIG. 1. The c.m. scattering angle in degrees and the
outgoing kinetic energy in MeV as a function of the en-
trance channel angular momenta!. The initial c.m.
energy E .. , the entrance channel Coulomb barrier
Ejp, and the grazing angle 6, are indicated on the figure.
The dashed curve is the classical Coulomb deflection
function for the entrance channel.

radius of the system for the angular momentun
1=0,50, and 100. The case I = 50 corresponds to
fusion, I = 0 gives strongly damped inelastic scat-
tering, and =100 is for a grazing collision. For
the latter two cases, the radius rapidly decreases
and then increases as the fragments collide and
separate with a time which is less than 1072! sec.
The fusion case exhibits a similar behavior within
the same time scale. For times up to 2%X1072! sec
the radius slowly increases as the system under-
goes rotations and vibrations. For longer times,
the radius increases fairly rapidly, even though
the corresponding density contours show a compact
coalesced system characteristic of TDHF fusion.
This rapid increase of the rms radius is due to

200 ]
—E (95) .
s oo
160
(90)
o ! _
8q
N
(5]
E - |
w 8o = (80)
i (78) _
40 | - EB—
- B9 @0y (o) (0) |
. 1]

-50 -40-30-20 -I0 O 10 20
6  (deq)

FIG. 2. The outgoing kinetic energy of the inelastic
fragments as a function of the c.m. scattering angle.
The triangles are the points from the lower branch and
the circles the points from the upper inelastic branch.
The numbers in parentheses are the entrance channel
angular momenta. The quantities E, , Eg, and 6,
are shown for comparison.
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-7 -85 0O 85

-85 O 85

17 -85 O 85 I7
x (fm)

-85 O 85 7

FIG. 3. Density contours in the reaction plane for angular momentum ! =70 as a function of time in units of 104
sec. This is a case which undergoes more than two complete rotations and corresponds to fusion.

a shift of the c.m. of the system induced by the
prompt emission of a small mumber of nucleons.?°
This is in part due to our use of reflective bound-
ary conditions, and in the present work we post-
pone any detailed investigations of this phenomena
since it probably has no direct bearing on the iden-
tification of fusion.

In Fig. 5, for the case of head-on collisions
(1 = 0) we show density contours in the reaction
plane as a function of time. Here we observe that
the projectile like fragment passes through the
targetlike fragment. Even though this type of
transparency phenomenon is a systematic feature
of TDHF fusion studies, 3'!'*'¢ the experimental
evidence for its existence is still indirect and in-
conclusive.3!:32

In Fig. 6 we show that the outgoing kinetic en-
ergy as a function of the average angular momen-
tum excited in the inelastic fragments. The tri-
angles denote those points coming from the lower
inelastic branch, and the circles those coming
from the upper inelastic branch for angular mo-

menta above fusion. Here one observes a clear
separation between the two branches. The lower
inelastic branch exhibits a wide range of excited
angular momenta focused in a narrow region of
outgoing kinetic energy while the upper branch is
a strong function of the outgoing kinetic energy.
In our model, freezing the degrees of freedom
perpendicular to the reaction plane yields a mean
angular momentum aligned perpendicular to the
reaction plane. This approximation is consistent
with the classical model calculations of Vanden-
bosch® which show that most of the angular mo-
menta transferred in deep inelastic scattering is
aligned perpendicular to the reaction plane. In
the work of Vandenbosch, the mechanism for ang-
ular momentum transfer is particle exchange.

In Fig. T we compare the angular momentum
transfer and the mean projectilelike mass as a
function of the entrance channel angular momentum
1. For the upper inelastic branch we find that the
angular momentum transfer increases as particle
transfer from the projectile to the target in-
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50 | FIG. 6. The outgoing kinetic energy of the inelastic
fragments as a function of the mean angular momentum
excited in the fragments. The triangles are the points
from the lower inelastic branch and the circles those
from the upper inelastic branch. The number in paren-
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FIG. 4. The rms radius of the composite system as
a function of time for three different angular momenta.

-70-85 0 85170 -85 O 85170 -85 0O 85 70
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FIG. 5. Density contours in the reaction plane for
angular momentum? =0 as a function of time in units
of 10~2 sec. This is an example from the lower in-
elastic branch in which the projectilelike fragment
passes through the targetlike fragment. (Note that the
density contours are not symmetric about ¥ =0 because
of small interpolation differences in the plotting pro-

gram.)
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FIG. 7. The mean angular momentum transferred
and projectilelike fragment mass as a function of the
entrance channel angular momentum!. The dashed
curve is the angular momentum excited in the frag-
ments using the macroscopic model discussed in the
text.
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creases. However, for the lower inelastic branch,
as we decrease [, we observe that angular momen-
tum transfer decreases as the mean projectilelike
mass is roughly constant, possibly suggesting that
particle transfer has equilibrated and that angular
momentum transfer decreases as the total angular
momentum available decreases. In Fig. 7 we also
compare the angular momentum excited in the
fully damped fragments with that obtained using a
simple macroscopic model (dashed curves). In
this model® one envisions frictional forces acting
between the fragments to slow down the rotation
until a rigid “sticking” configuration is obtained.
The total internal angular momentum [, is then
given by the expression

lex= _—;g'l'igz'_ L,
uR*+ 9, + 4,
where 4, and 4, are the moments of inertia of the
two fragments (assumed spherical), p is the re-
duced mass, and R the separation of the centers
of the two fragments at scission. In the %0 +%Nb
system this gives

1=~0.541,

which is the dashed line. One should note that the
above simple model neglects angular momentum
transfer induced by mass transfer, and is in rea-
sonably good agreement with the TDHF results
for the lower branch in which the particle transfer
in TDHF appears equilibrated.

Using the sharp cutoff approximation, ’*® we cal-
culate the reaction, fusion, and total inelastic
cross sections (g,, 0;, andg;, respectively) for
the cases shown in Fig. 1. The inelastic cross
section can be divided into the partially damped
component o, and the fully damped component o .

0; =0, +0, ,
TS
o=z ), @I+1),

The fusion cross section arises from those angular

momenta between I, and [,,

o =%i(21+ 1),

I=le
and the reaction cross section only depends on the
grazing angular momentum 1.,

1
o =%§;(21+1),
1=

where in the above the relative wave number is
given in terms of the reduced mass p and the c.m.

energy E, ..

K®= 2uE. . .

Our TDHF results are compared with the experi-
mental data of Ref. 23 in Table IV and in Fig. 8.
In Table IV, the experimental grazing angle and
grazing angular momenta are obtained using the
i point method of Ref. 29. The TDHF total re-
action, inelastic, and fusion cross sections are in
general agreement with the corresponding experi-
mental quantities. In Fig. 8 the experimental
cross section, (d%/dS dE ;)1 iS shown as a func-
tion of the outgoing laboratory kinetic energy of
the fragments and their corresponding laboratory
scattering angles. The TDHF outgoing kinetic en-
ergies and scattering angles in the laboratory
frame are obtained from the corresponding c.m.
quantities in Fig. 2 using the final masses from
Fig. 7. All TDHF energies below about E,, ~ 175
MeV correspond to negative angle scattering and
have been reflected to positive angles to compare
with the experimental data. The dashed part of
the TDHF curve are those points from the upper
inelastic branch while the solid part of the curve
comes from the lower inelastic branch. From
these comparisons, we conclude that the TDHF
results are in general agreement with the experi-
mental data.

IV. SUMMARY

We have carried out TDHF calculations of the
160 + ®Nb system at a laboratory bombarding en-
ergy of E;,, = 204 MeV using the 2D frozen approxi-
mation.*”® This approximation is known to give
very good results in light systems when compared
to fully 3D calculations using Skyrme type local
potentials. In our work we have employed the fin-
ite-range nonlocal Skyrme II interaction and have
treated neutron and proton single particle wave

TABLE IV. Summary of scattering results and com-
parison with experiment.

Quantity TDHF Experiment?

I () 30.5+0.5

I, (t3] 76.5+1.5

I, (k) 100.0+5.0 98

0, (deg) 14 16

o¢ ®(mb) 271 £9

oy ¢(mb) 1220 +£277

0y (mb) 1492 +286 1354

oy (mb) 1375+73 1350

o, (mb) 2853 +326 2704

2 Reference 23.
® Fully damped.
¢ Partially damped.
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FIG. 8. Comparison of the experimental contours of
[d%c/dQd E)y,p, (Ref. 23) with the TDHF results. The
solid circles refer to TDHF inelastic scattering, with
results for angular momenta above fusion connected by
a dashed curve, and results for angular momenta below
fusion connected by a solid curve.

functions separately. We have ignored the spin-
orbit part of the interaction so that spin-up states
are degenerate with spin-down states. For the
SNb target we have used a static filling approxi-
mation for non-closed shells, and thus in our cal-
culations Nb does not have the correct stiffness
with respect to deformations. At this energy, we
find 45% of the total reaction cross section is
fusion and 55% is inelastic scattering. Fusion
occurs in an angular momentum region between

two branches of strongly damped inelastic scat-
tering. The lower branch comprises 16% of the
total inelastic cross section and extends from [ =0
to 1= 30. The upper branch extends from I = 78 to
the grazing angular momentum [, = 100+ 5. The
grazing angle is 14° in the center of mass and the
inelastic scattering is peaked in the forward dir-
ection. We calculate the mean angular momentum
excited in the fragments as a function of the out-
going kinetic energy and observe that this quantity
has a different behavior in the different inelastic
branches. This suggests that the experimental
determination of this quantity may help to prove
or disprove the existence of the TDHF transpar-
ency window.
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FIG. 3. Density contours in the reaction plane for angular momentum =70 as a function of time in units of 10~
sec. This is a case which undergoes more than two complete rotations and corresponds to fusion.
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FIG. 5. Density contours in the reaction plane for
angular momentum ! =0 as a function of time in units
of 10-2 sec. This is an example from the lower in-
elastic branch in which the projectilelike fragment
passes through the targetlike fragment. (Note that the
density contours are not symmetric about ¥ =0 because
of small interpolation differences in the plotting pro-

gram.)



