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The permutation symmetries resulting from particle identity are incorporated into a complete and
consistent set of scattering integral equations which are partition labeled and which also possess a multiple
scattering structure. These equations are applied to the investigation of the optical potential for elastic two-
fragment collisions including all identity effects. It is found that, among the standard off-shell extensions for
the transition operators, only the one proposed by Alt, Grassberger, and Sandhas is entirely satisfactory for
the definition of the optical potential. A dynamical integral equation for the symmetrized optical potential is
derived. Several alternative forms of this equation are developed. Various low-order approximations to these
equations are proposed.

NUCLEAR REACTIONS Connected-kernel N-particle equations with multiple
scattering structure including permutation symmetries. Dynamical equations
for the optical potential for elastic collisions of two fragments composed of

groups of identical particles.

I. INTRODUCTION.

Qptical potentials are widely used for the de-
scription of the elastic scattering of two nuclear
fragments. ' 3 From the point of view of nuclear
reaction theory the extant microscopic formulation
of the optical potential possesses two major short-
comings. Until very recently there has been no
fully consistent theory for the calculation of this
potential. 4' Not unrelated to this is the fact that
there is no entirely satisfactory incorporation of
the permutation symmetries arising from nucleon
identity, viz. , the Pauli principle. e'7 In the present
article we show how both of these difficulties can
be overcome by symmetrizing the theory of the
type developed in Ref. 4.

The grafting of permutation symmetries onto the
multiparticle scattering equations of Ref. 4 is fa-
cilitated by the fact that all of these equations fall
into the so-called label-transforming class with
respect to permutations of the ¹ particles. This
means that the techniques developed in Refs. 9 for
deriving symmetrized scattering integral equations
can be utilized. A summary of the pertinent as-
pects of Refs. 9 is presented in Appendix A.

For the sake of simplicity we have confined our-
selves, as in Ref. 4, to only pairwise nucleon-
nucleon interactions. ""We find it unnecessary,
however, to make any commitment as to the nature
of the two fragments. All of the cases of nucleon-
nucleus, deuteron-nucleus, and nucleus-nucleus
scattering are subsumed. We also find it unneces-
sary to restrict ourselves to a definite species of
particle; i.e., we consider the fragments to con-
sist of groups of different species of identical par-
ticles. Thus our results apply both to a collection

of nucleons which are regarded as identical as well
as groups of (identical) neutrons and protons.

This paper is organized as follows. Section II
contains mainly a review of the pertinent aspects
of multiparticle scattering theory along with an
introduction to our notation. We also examine var-
ious off-shell extensions of the ¹-particle transi-
tion operators. The appropriate choice of these
operators turns out to be a crucial feature of our
work. In Sec. III we show how permutation sym-
metries are imposed upon the multiparticle scat-
tering equations of interest to us. The symme-
trized optical potential is defined in Sec. IV using
the symmetrized form of the unitarity equation as
a guide. Section V is devoted to the derivation of
a well-defined dynamical integral equation for this
symmetrized optical potential; this equation rep-
resents the major result of this paper. In Sec. V
a more direct method of derivation is used as
compared with the technique outlined in Ref. 8.
The details of the latter procedure are also pre-
sented here. Several alternative forms of the dy-
namical optical potential equation are developed.
The structure of these equations is explored fur-
ther in Sec. VI along with the introduction of sev-
eral low-order approximations. Qur work is sum-
rnarized in Sec. VII. The appendices (A-D) contain
the derivations of ancillary results,

II. MANY-BODY SCATTERING EQUATIONS

We review those aspects of the multiparticle
scattering theory of Ref. 4 which we require for
the remainder of this paper. ' ' In this section we
suppose that all ¹ particles are distinguishable.
The modifications which arise whenthis restriction
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is dropped are taken up in Sec. III.
A Partition a is the grouping of the N particles

into n, distinct clusters. The arrangement of
these particles within the clusters and the order
of the clusters within the partition are regarded
as irrelevant if the particles are di.stinguishable;
modifications of these conventions are sometimes
required in the case of identical particles. The
unique partitions for which n, =1 and n, =N are
denoted as 1 and 0, respectively. We use Latin
letters a,b, c, . . . to denote arbitrary partitions
of the N particles while Greek letters O. ,P,y, . . . ,
are reserved fog two-cluster partitions. Since we
are interested in two-fragment elastic collisions
the last kind of partitions plays a central role in
our work.

The partition indexing of the operators which
appear in multiparticle scattering theory is facili-
tated by a partial ordering of the set of all parti-
tions of N objects. A partition b is said to be con-
tained in another partition a, written bc a, if b can
be obtained from a by subdividing one or more of
its clusters. We write bL:a when we include the
possibility of equality. The alternative possibility,
where b is not contained in or equal to a is denoted
by b4a. These relationships are conveniently
represented by the matrices 4 and 4 with the ele-
ments~2

H, =H, +y. . (2.6}

P'=—H -H = 4, ].V). . (2.V)

Then a transition operator corresponding to the
process b -a is given by

T.', ,' =V'+ V'GV',

where

(2.8}

We note that V0=0 so that the designation of the
kinetic energy as Ho is consistent with our nota-
tion. H, generates the dynamics of an N-particle
system in which there are no interactions among
particles in different clusters of a. If there exist
eigenstates

~
Q,(v, )) of H, which represent the sit-

uation where each of the n, clusters are in bound
configurations, then a is called a stable partition.
These maximally connected eigenstates of H, cor-
respond to possible asymptotic states of the sys-
tem and are labeled by channel indices v, which
refer to the collection of internal quantum numbers
of the clusters of a. Here w'e have not explicitly
indicated the dependence of i/, (v,}) upon the cen-
ter-of-mass (c.m. ) momenta of the n, clusters.

The interaction among clusters of a is charac-
terized by the interaction external to the partition
a:

G =(g -H) (2.9)

and

=0, otherwise

+a, b 1 ~o, b &

(2.1)

(2.2)

H =Ho+ V. (2.3)

In. the present article we confine ourselves to the
case where V is a sum of pair interactions V&, ,
namely,

(2.4)

In (2.4} the pair interactions are labeled by the
(N-1) -cluster partitions i ' The com. plications
which arise when interactions are more general
than (2.4) are considered in Ref. 11.

The interaction internal to the partition a is de-
fined as

(2.5)

and the partition Hamiltonian is taken to be

respectively.
The N-particle Hamiltonian H is taken to be the

sum of the kinetic energy operator Ho and the total
interaction potential V:

and 6„g=1—5„~. The scattering operator T, , of
Alt, Grassberger, and Sandhas" proves tobe more
satisfactory for our investigation because of its
symmetrical relationship to the total Green's func-
tion G

In keeping this attribute of partition index syrn-
metry we can express T„& in terms of the symrne-
trical part of T,' ~, viz. , '

Tg ~ $ = 5g~QGQ + pb + 7 (2.11)

and z is a parametric energy the dependence upon
which we suppress in what follows, except when
it is necessary to avoid ambiguity. The scattering
amplitude for the process b-a is the on-shell ma-
trix element (Q.(v,)

~
T,",' Q,(v,)). Since only these

matrix elements are physically significant there
are many other transition operators which one can
choose so long as they are on-shell equivalent to
T,',' with respect to the appropriate channel states
i/. , ,(v„,)). One of these choices, which is dis-

tinguished from T,",by the symmetric role of the
partition indices, is

Ta, g =~a pG~ + Ta, y x

where

G~=(z H~) ~-
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where
a, b Va, b+ Vag+b (2.12)

Several aspects of (2.14) require further elabora-
tion. First, the inhomogeneous part of (2.14) has
the structure

(2.13)

(2.14)

Vs —— &„&.V& &a, &
~

In the case of only pair interactions it has been
shown that the components of w ' which refer to
two-cluster partitions n, P satisfy the connected-
kernel integral equations

I
gy(Ry 8

@fary
8

where W' (c) is the c-connected part of r' and
the prime on the summation sign indicates the
omission of the partition 1. We recall that an N-
particle operator A. is said to be a connected if the
momentum-space matrix elements of A have the
form

I / /

(Pt ~ ~ ~ P~ ~&
I pg ~ ~ ~ Pz) =&o(Pg ~ ~ ~ P»

I
p& ~ ~ ~ Ps), „,~(P„' —P„)

~=i
(2.16)

where where

.P„=-p~.+ ' ' '+
p~„ t;, = Vg + V),Got; (2.19)

is the momentum of the c.m. of the nth cluster,
the indices j „,. . . ,k„correspond to the particles
in the nth cluster, and the functions
A, (p, , .. . , p„~ pi, . . . , p„) possess no 6-function
singularities. By this criterion the kernels

(2.17)

of the coupled equations (2.14) are y connected.
However, a single iteration of Eqs. (2.14) yields
kernels which are products of operators of the
form

if' ' (&')= &,i 4 ~8, ~
~, g (2.18)

which either vanish (y =6) or a.re connected (y 45)
and it is in this sense that we say that Eqs. (2.14)
are connected-kernel integral equations.

We presume the validity of the underlying as-
sumption of N-particle scattering theory~5 regard-
ing scattering integral equations of the connected-
kernel type. Namely, we suppose that the connec-
tedness property implies the compactness of the
kernel and this in turn implies the possibility of a
consistent solution of the integral equations. Equa-
tions (2.14), then, constitute a well-defined sys-
tem of scattering integral equations for the two-
cluster partition-indexed operators 7 ' . The
physical two-cluster to two-cluster transition op-
erators then follow trivially from Eq. (2.11). It is
easy to show that the z -a transition operators
with n, & 2 can be obtained from those with n, =2
by quadrature rules without the solution of any
further integral equations.

Equations (2.14) have the desirable feature of
possessing inhomogeneous terms with a manifest
multiple scattering structure. For example,

is the two-particle transition operator on the N-
body space. This structure is a consequence of the
direct relationship of (2.10) and (2.11) to the usual
definitions of the transition operators in contrast
to alternative formulations'6 which involve integral
equations with exactly the same kernels as Eqs.
(2.14). This relationship is also responsible for
the fact that one can use Eqs. (2.14) to derive a
consistent theory of the Feshbach" optical poten-
tial for elastic two-fragment collisions. The ob-
ject of the present investigation is to extend these
results to the case when the fragments are each
comprised of one or more species of identical par-
ticles.

III. SYMMETRIZED SCATTERING EQUATIONS

The connected-kernel equations (2.14) are parti-
tion labeled and possess a manifest multiple scat-
tering structure and are referred to as PLMS
equations. " Such equations have many desirable
features particularly in regard to the formulation
of approximations. This is demonstrated in Refs.
4 and 11 for the case of distinguishable particles.
We next derive the symmetrized form of (2.14)
which is appropriate to the situation where there
exist groups of identical particles in our system.
This is very easy to do with the aid of the formal-
ism of Ref. 9 which is outlined in Appendix A. This
Appendix also contains all of our notational con-
ventions regarding permutations.

In order to apply the results of Ref. 9 we need
only establish that the kernels and homogeneous
terms of (2.14) are label transforming. This prop-
erty is defined in Appendix A.

The pair potentials V;, transform under the per-
mutation P (=S in the manner
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U(P) V,U(P) ~= V~(,),
U(P)V'U(P) = V "'

U(P)VaU(P) = V», I»,I.

(3.2a)

(3.2b)

(3.2c)

U(P)V» U(P) =V

where P(i ) is evidently another pair partition.
With the aid of (3.1) and lemma 1 of Appendix A it
follows that

terms of (2.14) which preserves the label-trans-
forming characteristics of (3.9) and (3.10) will
generate an approximate but label-transforming
solution. This provides a simple criterion for the
preservation of permutation symmetries in the
course of approximations.

The integral equations for the class-labeled op-
erators w

' can be written down immediately as
a consequence of theorem 2 of Appendix A:

Next, let us introduce the auxiliary operator ~B, 8 gy6, 8+ ge. y7ys 8
MS (3.11)

tf' =Vf' + Vf'GfVf,

where

(3.3)
(A. 7n

eon
(3.12)

a, S
Vf =~&. ~&a~ V'&f~ .

f I
(3.4) (3.13)

I
W" (c) = (r» },,pter'

f
(3.5)

where (A '), z refers to the elements of the inverse
of the matrix 6, , Qne can easily demonstrate
using |)»2,y= ~~(f1) ~(g), lemma 1, and 4g 5, 10-i2

(3 6)

that

We note that t&' ——7". Both Vf' and Gf are easily
shown to be label transforming and therefore so is
tf'. The significance of tf' for our analysis arises
from the relation

E '"=N- -„, Q @ W"'0(y}GO (3.14)

where

and the remainder of the notation is defined in Ap-
pendix A. We recall that partitions P and y refer
to some specifically chosen (canonical) members
of the equivalence classes P and y, respectively.
Also we note that by theorem 4 of Appendix A the
physical scattering amplitudes are obtained from
the on-shell matrix elements of the class-labeled
AGS operators

th

~e~8 Gn 8 +V8 +~ (3.15)

(n ')p(.),~&.) =( ')., ~ ~ (3.7)

Then we conclude from (3.5), (3.7), and the label-
transforming property of tf' that

n nV-=N- - 8 V-
8 ey8 „Q

and

(3.16)

U(P)W"(c)U(P)'= W"""'[P(c)],
namely, TV" is label transforming as well. The
partitions c and P(c) are physically equivalent so
that the permutation symmetry transformation
preserves the connectivity structure.

From (3.8) and (2.15) we conclude that the in-
homogeneous and kernel terms of the PLMS equa-
tions (2.14) are label transforming, viz. ,

(3.8)

U(P)Wet »)U(P)t WP&n) yP&))) (3.9)

U(P)W '0(y)GOU(P)'=W ' '0[P(y)]GO. (3.10}

Then theorem 1 of Appendix A assures us that the
solutions of (2.14) are label transforming as well,
although this conclusion is already obvious from
definition (2.12). The fact that (2.14) is a label-
transforming set of integral equations allows us to
obtain from it a set of integral equations for the
physically relevant class-labeled (Appendix A) op-
erators ~ ' . It is important to remark that any
approximation to the inhomogeneous or kernel

G,".»»
=N-, () Q (R,5 ()G()».

eQe
(3.17)

Equations (3.11)-(3.14) are the symmetrized
PLMS equations and they represent the principal
result of this section. These equations are used in
Sec. V to formulate a consistent theory of the op-
tical potential which incorporates the permutation
symmetries of the system which arise from par-
ticle identity. These equations can be applied to
other aspects of nuclear reactions as well.

We conclude this section by quoting the results
of Ref. 9 concerning the values of the normaliza-
tion constants N; and the number of equivalence
classes for the case of physical interest, namely,
a system of N neutrons and Z protons. (If all of
the nucleons are regarded as identical one simply
sets X=0, e.g. , and equates Z with the total num-
ber of particles. ) Any two-cluster partition con-
sists of a cluster of n neutrons and z protons with
n+z ~ 1, while the other cluster contains N -n
neutrons and Z —z protons. Evidently each pair of
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C(N, Z;2) =(N+1)(Z+1)-2. (3.19)

If N and Z are not both even, the two parts can
never be identical and there are two compositions
for each partition so

P (N, Z) =Mg(N, Z;2), (3.20a)

while if both N and Z are even there is only one
composition corresponding to the partition into two
equal clusters. Thus in this case

P-(N, Z) = —|C(N, Z; 2) —1] + 1 . (3.20b)

IV. SYMMETRIZED OPTICAL POTENTIAL

We consider the elastic scattering of two nuclear
fragments whose asymptotic states l(t) () (v6 )) cor-
respond to the channels defined by the equivalence
class p of partitions. The physical scattering
amplitudes are identified with the on-shell matrix
elements

integers (n, z) corresponds to an equivalence class
of two-cluster partitions. If c(-(n, z), the number
1V - of distinct partitions in n is easily shown to
be

/N (Z'
N~ =N(„g& —— (1 —~5nrg2 n5z(2. s) ) (3.18)

Sy QZg

where the factor involving the 5 functions relates
to the degenerate situation where both clusters are
identical. It is somewhat more difficult to calcu-
late the number of equivalence classes which are
contained within the 2"' —1 two-cluster 'parti-
tions. This number is identical with the number

P.(N, Z) of partitions of the pair of integers (N, Z)
without regard to order into the two nonempty
parts (n, z} and (N —n, Z —z). If one distinguishes
the order of the two parts such a partition is called
a comPosition. The total number C(N, Z; 2) of
compositions of (N, Z) into two parts is

and we have used the superscripts i and f to rep-
resent the kinematical states of the two fragments.
In the case where all the particles are distinguish-
able P =P and the first two terms in the definition
of T() (), Eq. (3.15), vanish. This has the simpli-
fying consequence that in order to obtain an inte-
gral equation for the optical potential one need
only find an integral equation for 7 ' = T~ '~ =T& 8

in which the singularities responsible for the dis-
continuity across the P-elastic unitarity cut have
been explicated.

When some (or all} of the particles are identical,
P generally includes more than one partition. Since
the partitions included in P are physically equiva-
lent (lemma 2, Appendix A) they must be treated
on an equal footing. It is this requirement which
complicates the incorporation of permutation sym-
metries into nuclear reaction theories. This is
because if all P e P are physically equivalent one
must deal with all of the operators Tz z democrat-
ically, yet from the point of view of the underlying
reaction theory each of these operators represents
a distinct collision process. In a theory of the op-
tical potential this entails the handling of all of the
discontinuities across the unitarity cuts arising
from the singularities in the Green s functions Gz,
where P c P. Although this does not seem to have
been realized in previous discussions of the opti-
cal potential, the choice of off-shell extension of
the transition operators for P &P is a significant
aspect of such a singularity analysis.

In order to provide a rationale for a choice of
off-shell extension for the transition operators we
consider the unitarity condition for the transition
operators T,",&.

(4.2)

(4.3)

(4.4)

T,",,'(+) —T,",.'(+)'=V' —I '
2Tri g -T, (,()+)(P,( v)5(E H,)T,",,'(+)',-

C V

where we have introduced the projector
n&

6'.(~.)= . ... f(&+ )})( (~ i&i ~ ~ ~ &.,))(( (~ '+i ~ ~ ~ +.,)),
u=j

and the dependence of the asymptotic states on the c.m. momenta P„, 1 ~ k ~ n„of the bound clusters has
been made explicit. In (4.3), T,"(+),()e.g. , means T„"~) evaluated at z =E +Q, Z ~ 0, q -0+ [cf. Eqs. (2.8),
(2 ~)].

In the discussion of the optical potential we are only interested in matrix elements of (4.2) between the
states &())),(v, )

l
and l(t),(v, )) . However, it should be noted that these matrix elements are not necessarily

on-shell. Thus, although we have

and these asymmetric terms do not contribute to (4.2) on-shell, we cannot ignore them off-shell. In the
case when all particles are distinguishable, we need to consider (4.2) only when a =5 and the term (4.4)
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vanishes identically. This is not the case in the physical situation of interest to us and we seek, there-
fore, a more symmetric expression of multiparticle unitarity.

Specifically, the transition operator T, ~ satisfies the unitarity condition

T.,,(+) -T,,.(+)'=205. , -2vf g [T.„(+)-6.„G,(+) '] 6',(v, )6(E -H, )[T,„(+)'-6,,G,(-) '].
C~ VC

(4.5)

When one considers only the matrix elements of (4.5) of the type specified previously in connection with
(4.2), Eq. (4.5) can be reduced to a simpler more symmetric form '

T. ,(+) —T, .(+)'= —2~f g T. ,(+)6,(v,)6(E H, )-T, ,(+)'.
C~VC

Now the symmetrized AGS operator is

T;;(+)=Fr; q g N,T.,—,(+),
aE'a

(4.6)

where b is the canonical partition of the equivalence class 5. From the label-transforming character of
T, ,(+}'and the properties of (R, it follows that

Ta.,(+)'=F-7.,;+ +-.T;„(+) .
age

(4.8)

Using (4.7) and (4.8) it is straightforward to obtain the permutation symmetrized form of (4.6) if the "ker-
nel, "T, ,(+) 6',(v, ) 6(E -H, ), is label transforming. This is easy to show because T, ,(+) has this property,
while the label-transforming character of 5(E -H, ) is obvious from the identity

-2vi5(Z -H, ) =G,(+) -G,(-) .
Also, if c'=P(c) then -from (4.3}and (A19}we infer that

U(P)6', (v,)U(P) = 6', , (v,), (4.9)

where because c and c' are physically equivalent v, , = v, . Then using theorem 2 of Appendix A, where the
inhomogeneous term in (A16) is identified with T, ,(+), we infer the symmetrized form of the unitarity
relation (4.6):

T- -(+) -T- -(+) = —2mi PT;;(+)egv;)5(E -H;)T- -(+)~.
CP VC

(4.10)

We are interested in the elastic scattering of two fragments which are in the ground state configuration
v~ of internal quantum numbers. ~~ The form of (4.10) relevant in this case is therefore

T8. 8(+) —T g ~(+) = -2viTg ~(+)6'~(vq)6(E -H~)Tq, ~(+) + inelastic terms.

Equation (4.11) suggests the introduction of the optical potential 'o„,(P) via the, integral equations

T r. S(+)= U~~(&)+ &~~(P)ZI (+)T r, 8(+) = &y~(P) + T g, 8(+)Zg(+)&y&(P),

where we define for any two-cluster partition P,

Zg(+) = 6'a(&8)Ga(+)

(4.11)

(4.12)

(4.13)

The form (4.12}guarantees that it is possible to describe elastic scattering of the two fragments corre-
sponding to the equivalence class P in the total c.m. frame by means of the one-body Schrodinger equation.
This equation contains a complex, one-body potential in momentum space which is real 3 at energies below
the inelastic threshold:

u;(k'/k) =(qb (k')
f
V.„(P) i@-,(k)) . (4.14)

In (4.14) we have suppressed all quantum numbers except for the relative momentum k between the two
fragments of p. Finally, since all the partitions p cp are treated on equal footing, Eqs. (4.11) and (4.12)
and consequently 'Vg(k' ~k} are independent of the choice of the canonical partition P.

Equation (4.12) can be regarded as an integral equation for the optical potential, viz. ,
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A

Equation (4.15) is used to obtain dynamical integral equations for 'U„,(P} in the next section.
From (4.12} the unitarity relation satisfied by T i a(+} is seen to be24

Ta a(+) —Ta a(+) = —2 ttiT a a(+)a'a(va)5(Z Ha-)Ti a(+)

+[&a, a(+)g a(+) + I][&.,t(p) —U.at(p) ][1+ga(-)Ti,i(+}] . (4.16)

This indicates that Eqs. (4.12}are consistent with
the requirement that '0„,(p} has no discontinuities
across the p-class elastic unitarity cuts but does
not prove it. [Note that the reality" of the optical
potential below the inelastic threshold obviously
implies the vanishing of the inelastic contribution
in (4.16) for subthreshold energies. The converse
is not necessarily true. ] This reality requirement
for 'Oa(k' ~k) appears more difficult to satisfy if
we introduce the optical potential via

&a, a(+) = U';t(p)+ U';t(p}ga(+)~a, a(+)

= U.",t(p)+ &s, a ga(+)U"t(p) (4.1'I)

The reason for this is that although a relation
similar to (4.16) follows from (4.1V), the counter-
part of (4.12) for Ta a(+) contains extra asymme-
trical terms arising from V' —V'. The presence
of such terms requires that the second term in
the analog of Eq. (4.16}for Ta a(+) does not vanish
even below the inelastic threshold so 'U,'„'(p} need
not be real in this instance. In this connection we
remark that we are unable to prove using the tech-
niques developed in Sec. V that u,",,(p) is free of

A

any P-class elastic unitarity cuts. Therefore we
discard (4.17) as a useful definition of the optical
potential in the case where identical particles are
involved.

In Ref. 4 the necessity for developing a consis-
tent dynamical theory for the same off-shell ex-
tension of the optical potential as employed in con-
ventional reaction theories was stressed. This
was in order that comparisons between the two
modes of approach could be facilitated. We have
apparently violated this stipulation here. However,
it seems evident that a "conventional" optical po-
tential operator for the elastic scattering of two
fragments containing identical particles has not
been defined previously in the context of standard
reaction theory. Thus, we are proposing Eqs.
(4.12) as the appropriate starting point for an op-
tical potential formalism under all circumstances.

- We note that this coincides exactly with the con-
ventional definitions' in the case where all the
constituent particles are distinguishable.

V. DYNAMICAL EQUATIONS FOR THE OPTICAL
POTENTIAL

In this section we address our principal question,
namely the development of consistent dynamical
equations for the determination of the optical po-

70'', , 8 ~0., 8 + ~&a0 C ~y ~ 8 (5 1)

We are interested in the discontinuity structure of
the kernel and the inhomogeneity of Eq. (5.1}with
respect to the two-cluster (ground state ) elastic
unitarity cuts. It is shown in Appendix B that the
part ' of W"(c), designated as X)[W"'(c)]„,which
possesses a discontinuity across the y-elastic cut,
ls

a[W"(c)]„=V',g„V'„5, ,
We infer from (5.2) and (2.15) that

X)(W,' )„=V,g, V„

and also

~[W"'(X)G,]„=V,g, V„G,5, „.
In connection with (5.4) we note that

V„g„V„Ga——V„'g„—V„s'„(v,}Ga .

(5.2)

(5.3)

(5.5)

Since the last term in (5.5) is continuous across
the y-elastic cut we can take as an alternative to
(5.4)

&[W '(&)Gal. =V;g, 5, . i ~ (5.6)

The choice (5.6) is preferable for our purposes,
i.e., for dealing with the off-shell extensions of
the transition operators used in (4.12},

Now we wish to construct an optical potential
g„,(p) free of all 8 e p elastic discontinuities. To
this end we subtract all of these discontinuities

I

tential '0„,(p) defined in Eq. (4.12). We also estab-
lish that 'L3„,(p} is free of all p-class elastic uni-
tarity discontinuities and therefore that it posses-
ses the characteristics we conjectured for it in
our discussion of Eqs. (4.12) and (4.15) in the pre-
ceding section.

Underlying all approaches to the optical potential
is the segregation of the elastic unitarity discon-
tinuities from some effective interaction. When
there are particle permutation symmetries, sin-
gularities in several physical equivalent channels
must be handled simultaneously. The present ap-
proach is based upon the multichannel generaliza-
tion of the method of Ref. 4 along with the specifi-
cation of the AGS off-shell extension for two-clus-
ter transition operators.

We consider the unsymmetrized PI,MS equations
(2.14) for P =P,
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from the kernels of (5.1) to obtain the P-class non-
singular operators

K„(P)=W '
(y)GO —V„'g„6(y cp) (5.7}

and then we introduce operators A, (p) as the solu-
tions of

A;(P) =6., ,+ QK„(8)A;(8). (5.8a)

Here 6(y cP)=1, if y eP, and is zero otherwise.
Equations (5.7) are well-behaved integral equations
since their kernels become connected after one
iteration. This is shown in Appendix C. We also
observe that from (5.8a) we obtain

Equation (5.8b) is of great usefulness in deriving
alternative expressions for the kernel and driving
terms of the integral equation for 'U„,(P).

Using (5.7) and (5.8a}we obtain 'from (5.1)

T"'=+A&(&}WM's'+ ZA~(8) Z 1'ega'r '

BEE
(5.9)

An important feature of (5.9) is that for u c P it
couples together only those 7'~ with y cP. This
is the set of operators we expect to be rele-
vant to the definition of 'U„,(P). U we let o, =P cP
and use (2.11) in (5.9) we obtain a set of equations
which couple only those T„~ with y cP:

(5.8b)

where

QA„'(P)I-(P) =+A,'(P)
~

WM's'-Q ~~gPx'6(& E'6))l -Z P'l&(&.)6 ~(& &&) +~, G:,'+~-', ,
y X

(5.11a)

and it is shown in Appendix D that
IIII

I~(P) = Q W"'(a) + W"' (P)
~
GO+6„, ~6(y c P)

oCg

x6(PcP)G, '. (5.11b)

Equations (5.11) yield alternative forms for the
inhomogeneous term of (5.10) and each suggests
different approximations. We return to this point
in Sec. VI.

The Green's function g„ is evidently label trans-
forming. Then using the results of Sec. III we

. find that

U(P)K„(P)U(P) = W ' [P(y)]G

f'(„)gJ &„)6(P(y) cP) .
(5.12)

It then follows that

U(P)A, (P)U(P)'= A '„',(8) . (5.13)

It is important to note that the P-class character
of A~(p) and K~(p) is invariant under permutations.
Evidently P~(p) is label transforming and so we
conclude that the driving terms of (5.9) also pos-
sess this property. It then follows from theorem
2 of Appendix A that the symmetrized form of
(5.9} is

T g g =B(g) + X(P)T g, ;, (5.14)

where

l
and

(5.16)

C(H) =X(P) B(P)g- (5.18)

Special cases of the preceding equations were ob-
tained in Ref. 4 corresponding to P =P. In partic-
ular, the counterpart of (5.17) in this case posses-
ses a driving term and a kernel which are mani-
festly free of elastic P-class unitarity singulari-
ties. It is easy to show that this is the case for
(5.17) as well.

The p-class singularity-free character of B(p) is
obvious from Eqs. (5.11) and definition (5.16). The
structure of C(P) is slightly less evident. We
write

C(P) = Q RgC j8{P)6'8(pq),
8&8

where

C (P) = Q A (&)[1' g fs(P }Gs] ~-
(5.19)

(5.20)

Henceforth we suppose that (5.14)-(5.16), e.g. ,
are referred to the parametric energy F- +is al-
though we continue to suppress this dependence.
Then if we multiply (5.14) on the right by

[1 -g~v„,(P}] and use (4.15) we obtain a dynamical
equation for the optical potential:

'U., (P) =B(8)+C(P)&., (P), {5 17)

where

&(6)= Z &a ZAi(~)1'a&t
g6g

(5.15)
From (5.8b) we have the identity
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which can be used to rewrite (5.20) as

c',-Q)= 5„-—E &a(p)
~eB

(s.21)

~I

AB TP'" a G, . 5.22
y' a&B

It is now manifest that Ca Q) and thus C(P) are free
of elastic P-class singularities.

An alternative derivation of these results em-
ploys the multichannel effective interactions con-
sidered by Hedish, "for example. ' These operators
are defined in terms of T a for 0(, P cP by

T a=*a,a(p)+Z 'u, ((p)g), T„,a,
&eB

T,a=&~, a(I )+~ T,kg'k'uk, a(p} ~

}tGB

(S.23a)

(5.23 )

(s.24)

We remark that in (5.10), (5.20), and (5.22) the
label P can be replaced by an arbitrary partition
XcP.

It is clear that s @a Q) is label transforming.
Then the application of theorem 2 of Appendix A
to (5.24) yields (5.17) with

(s.2s)

Then in a manner similar to the passage from
(5.14}to (5.17) we can use (5.23b) to convert (5.10)
into a set of dynamical equations for a@a (P}:

'u„;Q) =g aa(j)I~II Q)+ Z CaQ)(p, (V,)~, ;Q) .

~;Q) = 6. ,
The form for Ba (P) defined by (Dl) and (5.11a) is
especially convenient for our purposes because of
its multiple scattering structure. Then ignoring
all but pair-clustered terms we have with (6.4),

(6.4)

tion of the input (6.2) and (6.3).
Bg(k' Ik) and Ca(k' Ik) are defined in terms of

Ba(P), Eq. (Dl), and Ca Q), Eq. (5.19), respec-
tively. %e call attention to the four alternative
forms (5.1la), (D4), (D6), and (D8) which we have
derived for Ba(P). Each of these forms generates
corresponding alternative expressions for Caa(g)
through (5.18}. This diversity suggests that these
options in expressing (6.2} and (6.3) may be useful
in formulating approximations which emphasize
different physical aspects of the scattering.

It is important to point out that passage among
these forms is possible only by using the exact
integral equations (5.8) for Ak (p). These N-parti-
cle integral equations, however, will normally be
approximated. Once this is done the various ex-
pressions for Ba(k' ~k) and Ca(k' ~q) are no longe~
equivalent and some may be better approximations
than others.

'The unfolding of the complete complexity of the
full N-particle dynamics embodied in (6.1)-(6.3)
is beyond the scope of the present investigation.
%e confine ourselves to a class of relatively sim-
ple approximations which, nevertheless, generalize
extant methods for calculating the optical potential
and yet are still within the. range of practical cal-
culation.

Our major approximation is to ignore all inter-
mediate scatterings contributing to B (P) and to-

B A B

Ca (P) which represent more than two-particle
clusterings. Thus in (5.8) we take

VI. APPROXIMATIOQS

In terms of the matrix elements (4.14) of the
optical potential (5.17}becomes

'k((k (k) Ba k(k)+(f=(Chl)C'()(k'Jk)k()(k[k),

Ba (P)= g y-Va a(fk)+V;a+Sa;G;-'.
g

Now

IVa a (p)
fa

(6.6)

where

B;(k ~k) =g;(k ) ~B(tI)
~ y,-(k)),

C;(k ~k) =&pa-(k ) ~CQ) ~ya-(k)&.

(6.1)

(6.2)

(6.3) t-, = V, (6.7)

where t, , is the two-particle transition operator
(2.18).

It is important to note that the term in square
brackets in (6.5) reduces to the correct Born ap-
proximation. That is, if

Equation (6.1) is a relatively innocuous integral
equation. After partial wave analysis it reduces
to a one-dimensional equation or a finite set of
such equations when the fragments possess spins.
'The principal problem is evidently the determina-

then since

a,,V,, a, , +Va =V,

we have

(6.8}
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w&~ i' +v'-=v~ (6.9)

We remark that the other forms for Bg(P) that we
have considered do not lend themselves to such a
ready recovery of the Born limit.

In the approximation (6.5) the Born term of (6.1)
becomes

EP'I» =tP.' lk)+[E. -E(k)]5I;(k' k&, (6»)

complished only with some attendant. ambiguity in
the definition of the appropriate kinematics.

If in addition to (6.17) we suppose that (6.7) is
valid we obtain an optical potential which is nearly
the same as the one generated via the resonating
group method (RGM)".

~a(k' lk) = v'(k' Ik)+[E.—E(k)]5Ia (k' lk) (6.18)

where

where v'(k if) = Z (y,-(k ) is,v~
I y, (k)& .

BCB
(e.i9)

(6.11)

and

(e.i2)

Eo corresponds to
ing in the Green's
E(k) is the energy
eludes the binding
the kinetic energy

Now (A12)

SB=Rge(Pq q)U(Pq g) (e.is)

the parametric energy appear-
functions G~ of the theory while
of the state lp~(k)& and it in-
energies of the fragments and
of relative motion.

If we use V~=H-ff~ for pt p in (6.19) we can re-
write (6.18) in the form of the RGM optical poten-
tial." One finds that the coefficient of 5I-(k' lk)
then becomes [Eo —E(k) —E(k')] as compared to

Ep for the RGM optical potential of Ref. 29.
Since the two forms are identical on-shell the re-
covery of the BGM optical potential involves the
additional assumption of the neglect of the off-
shell dependence of the coefficient of Xg(k' Ik).

The simplest generalizations of the approxima-
tions (6.17) and (6.18) which retain the same level
of calculational difficulty involve using the full
integral equation (6.1) with a simplified kernel.
If we use (6.4) and neglect all terms except those
with two-particle clusterings we obtain from (5.22)

(6.14)

Also

and since we have assumed the nuclear wave func-
tions entering into

I Pg(k)& are properly symme-
trized we have (A19)

R;ly, (k)& = ly,-(k)&.
Corresponding to (6.20) we find

c;(k'
I q& = —[&a (k' Iq&+ xr(k' Iq)]

where

(6.20)

(6.2i)

&(P, , ;) le;& = le, &

Thus, e.g. ,

5I;(k lk) = g 5(P, ;)g,(k ) Iy;(k)&.

The approximation

~g(k' Ik& =Be(k' lk),

(6.15)

(6.16)

(e.i7)
&g (k' Iq& = ~ &etT(k'& lsP'Go

I er(q&& . (6.2s)

Equation (6.21) with (6.22) is the counterpart of
(6.17). Corresponding to (6.18) we have

where the Born term is given by (6.10), includes
the modifications to the impulse approximation,
(6.11), which arise from particle identity plus the
nonorthogonality terms (6.16). We remark that the
calculation of the matrix elements of t,.which
enter into (6.11) is unequivocal. t,, is uniquely
specified solely in terms of two-nucleon informa-
tion. Also the kinematics relating the total c.m. to
the two-nucleon c.m. is uniquely defined —there is
no angle transformation problem. In heuristic
formulations ' of the optical potential even without
complete treatment of particle identity the recov-
ery of a low-order approximation such as (6.17) in
terms of a two-particle transition operator is ac-

When (6.23) is used in (6.21) we obtain from (6.1)
a generalization of the resonating group optical
potential which does not entail a substantial in-
crease in the level of calculational difficulty for
its determination.

The approximations we have considered in this
section are expected to be valid at relatively high
energies. Our neglect of all but the simplest sub-
system clusterings corresponds to a low-density
situation. The systematic formulation of physically
reasonable low-energy approximations starting
from our exact equations remains an open question.
%e intend to take it up elsewhere.
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VII. SUMMARY
I

We have presented a consistent many-particle
theory of the optical potential for nucleus-nucleus
scattering which takes into account all the effects
of the Pauli principle in a convenient manner.
Central to our development are the PI MS equations
of Ref. 4 coupled with the use of the AGS" transi-
tion operator in the definition of the optical poten-
tial. The symmetrical structure of the AGS off-
shell extension facilitates the simultaneous remov-
al of the elastic singularities in all of the two-
cluster channels which are physically equivalent
by virtue of particle identity. We obtain dynamical
equations for the optical potential which can be
approximated to generate potentials which still
possess the correct reality properties below the
inelastic threshold.

We consider some simple approximations which
in lowest order yield the optical potential of the
resonating group method. " We then find general-
ization of the resonating group approximation
which involves no substantial increase in the level
of computational difficulty from that which is or-
dinarily entailed. " Similar approximations which
involve folding-type matrix elements of two-parti-
cle transition operators rather than the potentials
{as in the resonating group formalism) are also
proposed. These contain unambiguous statements
of the impulse approximation including all identity
effects.

The preceding approximations are appropriate
to low-density situations and hence relatively high
fragment kinetic energies. It is not entirely clear
at this time how to construct physically reasonable
low-energy approximations starting from our
equations. We have derived several alternative
forms of these dynamical equations which may be
useful in this regard.

On the whole perhaps the most important aspect
of the present development is that one can con-
sider the possibility of systematic corrections to
various low-order approximations. This is a fea-
ture notably absent from previous proposals for
the calculation of the optical potential for nucleus-
nucleus scattering.
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APPENDIX A: PERMUTATION SYMMETRY

We outline here the incorporation of permutation
symmetries resulting from particle identity into

the types of N -particle scattering equations of
interest to us. This is based on the work of
Bencze and Redish. '

We consider an N-particle system composed of
k species of particles with%; particles of the ith
species so that

N=QN; .

+g (Q)

a, b P(a),P (b) y

a, b P(a), P(b) y

(A2a)

(A2b)

(A2c)

for any a, b c80, P cS. Also:
L,emma Z. If P(a}=a', then the partitions a and

a' correspond to physically equivalent groupings
of particles of the system. 8, decomposes into
disjoint equivalence classes a which consist of
physically equivalent partitions:

a = fP (a)
(
all P cS'i.

(The equivalence classes a, b, . . . , are labeled in
terms of some characteristic elements a, b, . . . ,
c.S.)

The physical significance of the decomposition
of 8, into equivalence classes is that true physical
observables are class functions. Thus, for ex-
ample, those transition operators which corre-
spond to the scattering of groups of identical par-
ticles are labeled by classes a rather than parti-
tions.

The group symmetry S is realized on the 1V-par-
ticle Hilbert space by a group of unitary operators
U(P), J'cS. The action of these symmetry trans-
formations upon the types of operators which ap-
pear in multiparticle scattering theory is of prime
concern to us. In particular we consider those
sets of operators which are defined by means of
partition labels. Such a set, e.g. , 8"b'"""is said
to be label transforming' if for any Pc S

Because all ¹ particles of the ith species are
identical, the system possesses a symmetry group
S which can be identified with the direct product
S„ ~ S„of the groups S„ofpermutations on

k . i
N; objects. The elements of S are denoted as P
and are called permutations, although it should be
kept in mind that there is no P c S which represents
the interchange of different species of particles.

A realization of S consists of the mappings of the
set So of all the partitions of N-particles onto it-
self:

P(a}=a', P cS, a, with a, a' c 8, .
It is clear that:

Lemma 2.
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U(P)sac&&, ce.~ ~ eU(P) ( 8&(+&iP(b&eP(c&, ~ ~ ~, (A4) differently. Let

Consider a generic partition-labeled scattering
integral equation

X"'—=Ã- - (R~"a, b
aCB

(A13)

Z a,b fa, h+ Qgeeeyc, b

Then it is easy to show the following':
Theorem l. If I" and K'" are label transform-

ing and if the solution of (A5) is unique, then these
solutions T"b are label transforming as well.

Next for any acS, we consider the following non-
empty subgroups of S:

~a, eU(P )t ZP, c ~

C ~ C

Xa,cB =Xa,c
C

and consequently:
Theorem 2.

(A14)

(A15)

where we note the parametric dependence upon
5 through N; b. It then follows from the preceding
development that'

S, =(P ~Pc—S,& P(a) = a], (A6) z~.»-P»+g ~ ~z~ s (A16)
that is, S, consists of all permutations which leave
the partition a unchanged. Then'.

Lemma 3. The 1V, left (or right) cosets of S, for
any ac80 are all distinct and they exhaust S so
that

S.
l

(AV)

where, e.g. , ~S j
is the order of S.

Next we define the symmetrizers with respect to
the subgroups S,:

R.=,' g U(P), (A8)
a gES

where U(P) = 6(P) U(P) and 5(P) is the parity of the
permutation with respect to fermion exchange, i.e. ,
5(P) =+ 1 (-1) if P contains an even (odd) number of
fermion transpositions. Since S,=S,=S the sym-
metrizer with respect to S is 8 =—A, =B,. It is ob-
vious that for any label-transforming operator 6',
[O', R,]=0. One can showg that for any ac a

A= ——. AaUPa. a = — UP;. .. A9

where P;, (= S and P;,(a) = a'.
Now let us collect the major results of Ref. 9 in

regard to the set of coupled integral equations
(A5) where it is presumed that the conditions of
theorem 1 obtain. To each equivalence class a
we assign a definite (canonical) partition a(= a.
Then we define the class-labeled transition opera-
tors

where

4"=N- -x"' =N--
b~c ayc

aER
(A17)

Also'
Theorem 3. If, in an obvious matrix notation,

is a connected operator for some m ~ 1, then so
ls K

Theorem 4. 'If the operators T"' are transition
operators corresponding to the reaction b- a in
the case of distinguishable particles and if S is a
symmetry group of the N particle system, then the
physical scattering amplitudes are the on-shell
matrix elements

~

W(~-. )& =ft-.
~
W(~;)&. (A19)

APPENDIX B: STRUCTURE OF Lab(c}

Let [t&], denote the a-connected part of an opera-
tor 6. Then by definition (c0 1)

(A18)

Here v;, e.g. , represents the internal quantum
numbers of the bound clusters of b and we have
suppressed the dependence on the momenta for the
c.m. motion of the clusters of a and b. The asymp-
totic states are presumed to be properly sym-
metrized with regard to their internal structure,
e.g. ,

2'' =X - QT"agb
aiba

where

(A10) w"'(c) = [v"'+ v'Gv'], = [v", + v', G,v', ], ,

(Bl)

and

Ãa 1 = (Ng/Ng)
( (A11) where the second equality follows using the meth-

ods of Ref. 11 (cf. also Ref. 5). tz' possesses a
cluster decomposition

(A12)@.-=&;U(P.,;),
with a similar definition for I"b in terms of I"b.

The class-labeled kernels are defined somewhat

tabb ta, b

where

(B2)
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[t" ],= [V" + V'G V ] = 4 [V"~+V'G V~]

(B3)

The combination of (Bl) and (B3) yields for f55 1

APPENDIX C: CONNECTED-KERNEL PROPERTY

(C1)

If (5.8a) is iterated once the kernel of the re
suiting equation is

[&'(&)L =g &, (p)&",(&) .

d
(B4)

We recover (3.5} from (B4) and the fact that & '
also exists when the partition 1 is not allowed as
one of the matrix indices.

We note that the only discontinuous part of
W"'(c) is [V',G,V', ], and G, has no discontinuities
across the y-elastic unitarity cut unless c = @.
The part of G„which is discontinuous across that
unitarity cut is the y-connected pole term gr. We
therefore infer (5.2).

Let us examine the various combinations of oper-
ators appearing in the sum on the right side of
(Cl). We keep in mind that W"'(A. ) is either A. con-
nected or zero (if ](.=y) while g~ is X connected.
Also W"' (X) and V" contain interactions external
to y and therefore their products with y-connected
operators are connected (or zero). We see then
that the products W '(y)G, W" '(]()G„V„g,V,"g„
IV"'(y)G, V~gz, and V &g&W~'(A. )G, are either
connected or they vanish depending on the indices.
The sum (C1}is then a nontrivial connected opera-
tor.

APPENDIX D: ALTERNATIVE BORN TERMS
««5

We establish the validity of (5.11b). We also develop some alternative forms for the operators (P cP)

B;(P)=g A;(i) I ',(i)

which appear as Born terms of the integral equations (5.10). We require the identity

IV)( ~ 8 Q IV)5«0(g) G G 1 +Q V55)(«0(y) G V) VI(

6 r

which is established in Ref. 4. Also from (5.8b) it follows that
«W

'W«

V;=-gA™(P)g IV'"(y)G, V", V", g-V'„g-„6(yei)V", .
}}. r r

When (D2) and (D3) are combined with the expression (5.11a) for Bf(P) we find

&()(P}=~ .BGB'+Z Ax(P) Z IV '(&}GG —ZVFA6F, B&(y&~) GB '.
a

Equation (D4) can be rewritten as

(D2)

(D3)

(D4)

8 )=«((5„+5«A«)( ) «5((Wr)G —r g ]5„,«5(rCll) G« '+g A'(ll) p W "(a)G, + W "(ll)G„G«'. (G5)
ry}t }t

Again using (5.8b) we can reduce the first term on the right side of (D5) to

g A„(]3)6„,,+5,5(n(EP) G,-~.
-re8

Then
5

B,(j)=+A„(p) g W"(a)+ W""(p) ~G, +6(~c p)6, ,, G +6,6(n(E j)G, ', (D6)

where

6(n (EP) =1 —6(n c P) .

The form (5.11b) of I 8(p) is obvious from (D6) when n, pc p.
Another expression for I()((8) which is valid for all X can be obtained by using (5.8b) again to rewrite

(D5} as

B() (p) =Q A)((p) WM'8 + 6)(,()GB '+ VB-Q W"' (y)GG6„, (][G8 + V
)

(DV)
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If we insert the expression (D2) into (Dv) we find the particularly interesting expression

~:(p)=Z A;(A l Z ~"'(.8, + ~""(p) IG. + ~, , ~, ', (Da)

which also defines I~(P) for all X. The apparent disparity between (D6) and (DB) is easily resolved with the
help of the identity

gA;(P) ~„,,~(~~P) -g W""(y)G, =~.~,~(o e j),
y4$

which follows from (5.8b).

~Reference 2 reviews the development of the optical
potential until circa 1965. Progress since that time
on the theory of the optical potential is typified in the
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tained in Bef. 3 include extensive references to the
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W. N. Polyzou, University of Maryland thesis, 1979

(unpublished) .
There are numerous investigations of the optical poten-
tial in nuclear physics u;ing the technique of second
quantization both for nuclear matter and finite nuclei.
(See Befs. 2, 3, and the literature cited therein. ) This
approach is especially well suited to the description
of nucleon scattering in infinite nuclear matter and we
have nothing to add in this instance. The same degree
of effectiveness of these methods does not survive the
transition to finite nuclei unless they are coupled with
the ideas of modern multiparticle scattering theory.
(See Bef. 7.)

~V. V. Komarov and A. M. Popova, Phys. Lett. 28B, 476
{1969);Fiz. Elem. Chastits At. Yadra 5, 1075 (1974)
[Sov. J. Part. Nuel. 5, 1075 (1974)j; Yad. Fiz. 10, 1089
(1969) [Sov. J. Nucl. Phys. 10, 621 (1970)]; J. L. Ballot
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