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Compressibility and the monopole collective field
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We show the relation between conventional random phase approximation and the collective field

description of monopole vibrations by Hamamoto and Mottelson. When surface compression is properly
included, the collective treatment yields the same vibrational frequency as conventional random phase

approximation, for a given compressibility.

NUCLEAR STRUCTURE Giant monopole vibrations, surface effects, relation
to compressibility.

The compressibility of nuclear matter is an
important parameter which, unlike the binding
energy and saturation density, cannot be obtained
directly from static properties of finite nuclei.
The giant monopole resonance is currently the
main source of empirical information on the com-
pressibility. There has been, however, some
controversy over the value of the bulk compres-
sibility K, implied by the monopole frequency.
I3laizot et al. ' have performed self-consistent cal-
culations of the giant monopole resonance in
spherical nuclei in the random phase approxima-
tion (RPA). This analysis indicates that a com-
pressibility E = 210+ 30 Me V successfully repro-
duces the data. However, Hamamoto and Mot-
telson' found that a macroscopic model of collec-
tive fields for the monopole vibration in ' 'Pb re-
quired that %=400 Me7.

One suggested explanation for this discrepancy
was a difference in effective mass m*, used in
the two calculations. This is not the case. We
present below RPA calculations with Skyrme-type
interactions having m*/m = 1 which are consistent
with the analysis of Ref. 2. The origin of the dis-
crepancy is instead in the functional form assumed
for the surface field in the macroscopic model.
It is necessary to include the effect of compression
in the surface field. We show this by tracing the
connection between the models, and examining the
effect on the energy of different assumptions for
the surface field.

Our microscopic calculations employ the re-
sponse function formalism with coordinate-space
Green's functions. We sketch here the import-
ant points. The particle-hole Green's function,
G(r, r', v), is given in the RPA by
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where the bare Green's function, G', may be writ-
ten as
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The poles of G identify the natural resonances of
the system. The density perturbation induced by
an external field of the form V,„,(r)exp(-ivt) is
given by

5p(r) =
JI

G" "(r, r', ur)V, „,(r')d'r'. (3)

If V,„, excites a, single eigenstate P„, as it would
near a resonance, this is proportional to the tran-
sition density 5p = (n ~p ~0). Equations (1)—(3) are
solved as matrix equations on a coordinate space
mesh.

The calculations start with the Hartree-Fock
ground state of '"Pb. We use a velocity-inde-
pendent Skyrme interaction, 5 with parameters
t, = —1100 Me V fm', t, = 16 000 Me V fm', t, = t, = g
= 0. The absence of momentum dependence im-
plies that m*/m = 1. At saturation density p,
=0.16 fm ', the compressibility %=418 MeV, with
contributions of 221 MeV from the kinetic energy
and 197 MeV from the potential. This particular
interaction gives (r')'~' = 5.3 fm for "8Pb and a
single-particle spectr'um which is somewhat over-
bound, but is adequate for the purposes of our
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demonstration.
The resonance in the isoscalar monopole re-

sponse is at &=22 MeV, pushed down from the
free response peak at Eo= 23 MeV by the residual
interaction. These values are both somewhat
high due to the overbinding of the ground state,
but the energy shift is still significant. In par-
ticular, it is much smaller than that found by
Hamamoto and Mottelson, using m*/m = 1 and a
similar compressibility. Our calculation is con-
sistent with those of Refs. 1 and 2 for comparable
values of K, thus ruling out the effective mass as
the source of disagreement on the compressibility.

This discrepancy is all the more puzzling if one
considers that the collective coordinate theory
of Bohr and Mottelson' is mathematically equiv-
alent to the RPA with separable interactions that
are constrained by consistency. We will now dem-
onstrate this connection. They solve the equation

5p(r) = G'(r, r')a 5v(or')d'r' (4)

E
~a

O

0.075-

I 0.050
E~ 0.025-

0

-0.025-

-0.050-

(c) .

with the dependence of the transition potential 5Vp
on the ground state potential Vo assumed to be the
same as the dependence of 5po on p,. Consistency
also demands that the resulting magnitude

f 5Vo5p d'r
out f5V 5p d3r

be the same as the input n. Substituting (4) into

(5), the final equation to be solved is

f f 5V,(r)Go(r, r') 5Vo(r')d'r d'r'
f5V,(r) 5p, (r}d'r

In conventional RPA, we obtain this result by ap-
proximating 5V/5p with a separable potential. If
a transition density 5po induces a transition po-
tential 5V„ the separable potential must be

5V(, 5V,(r)5V,(r')
5p ' f 5vo5pod'r

We can insert this potential in Eq. (1}and find
the pole using the operator identity

[I-f( )g( ')]'=1+f( ) f ( ) ( )
g( ')

with f(r) = bv, (r) and

f 5V ( e)GQ( t re)d3
s} 0

f 5vo5pod'r

The condition for a pole is 1- ffg=0, which is
identical to Eq. (5).

We now must examine the collective field in de-
tail and compare with RPA. The numerical 5p
from our RPA calculation is plotted in Fig. 1,
along with the ground state density p,. If we think

in terms of a velocity field for the vibration, the
transition density may be expressed

5p=(V u)p, +u ~ Vp,. (10)

Here the velocity field is a set of displacement
vectors u(r) with a harmonic time dependence.
The V u term represents the change in density
due to the stretching or squeezing of the wave
function under a nonuniform displacement. The
Tassie model for the transition density" is ob-
tained by assuming that a single coherent mode,
with the smoothest possible velocity field, ex-
hausts a sum rule. The result is

I'-(n) dp,
(2L+ I)'~' dr '

5p=

))(3p,+r '
)

)'(0), L ~ 0. .
dpo't

dr)

For the monopole, this is simply radial scaling
of the ground state density: u(r}Ocr. We plot (11b}
in Fig. 1, with P=0.043 fixed to exhaust the energy
weighted sum rule (EWSR) with a single resonance
at 22 MeV. We find that this simple model gives
the RPA transition density to within 20% except
for the central bump due to shell structure.

For a potential which depends only on the local
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FIG. 1. (a) Hartree-Fock ground state density for
Pb. (b) Transition densities, as given by the full nu-

merical RPA calculation (solid curve), and by the Tassie
madel (dashed curve). (c) Transition potential, as given
by full RPA calculation (solid line). Also shown is the
quantity pF RdVo /dr (dashed line).
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density the transition potential is simply 6V= (6V/
6p)6p. For our Skyrme interaction V= ( ', top-
+ —' f,p'), so that

6V=(-.'f, +-'.f,p)6p. (»)
The quantity in parentheses changes sign at the
surface. Knowing 5p, we can compute 5V. The
RPA result is shown in Fig. 1. The appropriate
collective field potential, assuming a Tassie tran-
sition density, is now

Hamamoto and Mottelson use an essentially equiv-
alent form, but set the first term equal to zero
outside the core. Thus the contribution to the
collective field potential from compression of the
surface is neglected. The point we wish to make
is that this term is not negligible. We plot in Fig.
1 the quantity P 1"RdV,/dr in the surface. We see
that for a "small" nucleus such as ' 'Pb the change
in surface thickness decreases 5V by about one-
third. This contrasts with the situation for I c0
collective states, Eq. (11a), where V u=0 and
consequently there is no surface compression at
all.

We can show the effects of each term in 5V by

examining the energy shift from the free response
peak for various descriptions of the surface cou-
pling and core compression. A simple expression
for this shift is obtained by using Eq. (8) to es-
timate the pole in G" "under the assumption that
a single particle-hole configuration dominates
near resonance. We find

5V(o'=Z, '+2E,
~

(6p)' 'r (14)
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We divide the integral in Eq. (14) into core (R & 6
fm) a,nd surface (R & 6 fm) contributions. Using
only the second term in Eq. (13) for 6V in the
surface, Eq. (14) gives a surface shift AE, = —9
MeV, in agreement with Hamamoto and Mottel-
son's calculation for the effect of the surface po-
tential. " We find that the inclusion of the sur-
face compression raises this energy by 3 MeV."
Then only a small contribution from the core po-
tential is needed to reproduce the empirical po-
sition of the state. Thus the RPA conclusion, that
the compressibility is about 210 MeV, is sup-
ported by the macroscopic treatment when surface
compression is properly included.
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Another calculation that neglects the effect of surface
compression is given in Ref. 10. With no contribution
to the potential from the compression field, the fre-
quency is found to be &u = sk2&/5m2(r2). This yields 11
MeV for Pb, in agreement with the frequency found
by Hamamoto and Mottelson in this approximation.
G. Bertsch, Nucl. Phys. A249, 253 (1975).
It is expected from general arguments (Ref. 2) that the
surface compression is a repulsive effect which de-
creases the strength of the usual surface potential.


