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Radial sensitivity of elastic scattering
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A new technique has been developed, employing a localized perturbation of the radial nuclear optical
potential, which permits direct investigation of the sensitivities of optical model analysis of elastic scattering
data to the details of the radial potential. It is found that both light- and heavy-ion scattering probe
primarily the nuclear surface region. Higher energy scattering data probe further into the interior than
lower energy data. The value of the potential at the center of the nucleus cannot be determined, but only
inferred if a fixed parametrization such as Woods-Saxon geometry is specified. In addition, it is found that
the region of radial sensitivity of the imaginary potential is systematically closer to the center of the nucleus
than is that of the real potential.

NUCLEAR REACTIONS Radial sensitivity of optical model calculations to
elastic o.(0) data analyzed for p+ C, a+5 Ni, 60+ Si at low and intermediate

incident energies.

I. INTRODUCTION

The elastic scattering of heavy ions has been
studied in a large number of experimental inves-
tigations, and a large body of data is available
on elastic cross sections. Rather surprisingly,
analysis of these data has produced little firm
information on the interaction potential between a
heavy ion and a nucleus. Little agreement is
found among such analyses on such questions as
the depth, the radius, the diffuseness, or the
appropriate geometry for the nuclear potential,
and potentials cannot be extrapolated with con-
fidence from one energy to another or from one
projectile or target to another.

A closer look at the dynamics of heavy-ion
elastic scattering reveals the root cause of this
situation: a veritable iron curtain" of strong
absorption hides most of the features of the nu-
clear potential from easy investigation through
elastic studies. Particles which venture into
the stronger parts of the nuclear potential are
absorbed and never emerge, while particles fur-
ther out are affected mainly by the strong Cou-
lomb repulsion between a heavy ion and a nucleus.
Only a very small fraction of the flux of elastic-
ally scattered particles carries information on
the details of the nuclear potential, and this in-
formation bears on the potential only in a local-
ized radial. region. ' Thus any derived potential
which approximates the interaction in this region
will give acceptable fits to elastic scattering data.
With lighter ions, however, it is commonly con-

sidered that the interior region is more acces-
sible.

It is therefore important to know what radial
regions of the nuclear potential can be considered
to be well mapped by the analysis of elastic scat-
tering data and which regions are still terra
incognita. In other words, one would like to be
able to perform an elastic scattering cross sec-
tion measurement, analyze the data with the
optical model, and plot the resulting potential
with confidence limits showing to what degree
var ious por tions of the potential have been deter-
mined with a given data set. Work by Satchler'
and by the Brookhaven Group' has shown that by
using radial cutoffs, the sensitive region of the
potential can be bracketed. In the present work
we proceed a step further, providing a semi-
quantitative measure of the sensitivity as a func-
tion of radius.

II. THE NOTCH PERTURBATION METHOD

The basic approach which has been used here is to
introduce a localized perturbation into the radial
optica. i potential (either the real or the imaginary
part) and to observe the effect of such a, perturba-
tion on the predicted cross section as the pertur-
bation is moved systematically through the poten-
tial. The perturbation employed has the effect of
cutting a notch out of. the potential, . i.e., reducing
it to zero in some localized region and then re-
turning it to its normal value. Two slightly dif-
ferent techniques have been used to accomplish
this. 'The first is a variant of the familiar Woods-
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FIG. 1. Comparison of unperturbed potential with
the two forms of perturbation described in text. The
dashed curve shows the derivative Woods-Saxon notch
(type 1), while the dotted curve shows the step function
notch {type 2). The potential shown is the global E18
potential {Ref. 10).

Saxon radial form factor

f(R, a, r) = [1+exp(r —R)/a] ' .

We multiply the potential to be perturbed by the
factor:

g(R, a, d, r) =(1 —4df(R, a, r)[1 f (R—, a, r)]j. (1)

Thus the potential itself, if it is of the Woods-
Saxon form, becomes

V(r)= Vi(R„,a„,r) g(R, a, d, r),
where R„and a„are the familiar Woods-Saxon
parameters, d is the fraction by which the poten-
tial is reduced, z determines the position of the
notch, and g determines the width of the notch.
'The second technique simply reduces the nuclear
potential by a factor of (1-d) over a region of
width a centered at R . These two techniquesgive
essentially identical results (including the oscilla-
tions discussed below). Figure 1 shows a typical
potential perturbed with the two different notch
func tions.

With this method we adjust the width a and/or
the cutdown fraction d to a suitable size (as will
be described below), and move the notch radially
through the potential. At radial positions where
the calculation has no sensitivity to the details of
the potential, the presence of the notch will. have
no effect on the calculation. At positions where
the calculation strongly depends on the details of
the potential, the results of the calculation will
be strongly altered by the perturbation. Thus the
degree to which, in whatever way, the results of
the calculation are altered gives us a semiquan-
titative measure of the potential sensitivity as a
function of radial position. Since such calcula-
tions are ultimately to be compared with experi-
mental data, however, it would seem to be more

meaningful to compare perturbed calculations
with experimental data than with an unperturbed
calculation. In particular, we have used the y'
value of a fit to data to measure the effect of per-
turbing the fit potential.

In the performance of these calculations, it was
necessary to establish a, (somewhat arbitrary)
criterion for the width a, and the cutdown
fraction d of the perturbation used at each energy
and with each data set investigated. It is well
known that Rt„„(l ), the semiclassical distance
of closest approach for the grazing partial wave, '
is a point of particular sensitivity in heavy-ion
optical model calculations, so we have established
the criterion for a notch width at R =R,„„(l). At
the lower energies we set d equal to 1 and adjust
gI until the X' for the perturbed calculation be-
comes roughly 100 times worse than its unpertur-
bed value. At higher energies this procedure
cannot be used because of problems arising when
a' becomes comparable to the integration step
size dr. Therefore at higher energies we set a~

equal to 2' and vary d until a similar y' criter-
ion is achieved.

It was found that in some situations, particu-
larly those involving relatively high bombarding
energies, a beating" between the R steps and
the integration steps could be observed. It was
therefore decided that R would always be made
an exact multiple of the radial integration step.
This eliminated the beating effect and permitted
better investigation of the radial sensitivities of
the potential. An additional problem was encoun-
tered when the very high energy data sensi-
tivity was probed. Perturbations of the po-
tential in the sensitive radial region caused shifts
in the predicted oscillatory structure of the angu-
lar distributions. In fact, the phase between the
oscillatory structure of the data and the predicted
cross section was found to vary fairly smoothly
with the position of the notch. Therefore, the
mathematical quality of the fits to the data (y')
can show spurious oscillations in the sensitive
region. Such oscillations are apparent in the an-
alysis of oxygen scattering at 1 and 2 QeV, as
will be discussed below.

Standard heavy- ion optical model programs
HOP-TWO' and GENOA' were modified to permit
iterated calculations at-successive values of B .
These calculations proved to be fairly lengthy,
since each sensitivity plot requires on the order
of 30 optical model calculations. It is clear that
the calculation time could be greatly improved
by storing the unperturbed optical model wave
function and handling the perturbed calculations
with first order perturbation theory, but this
approach has not been used up to now.
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ant plots of X' vs radius are shown in Fig. 3. It
has been shown that such high energy data are
capable of resolving the optical model parameter
ambiguities normally associated with a six para-
meter Woods-Saxon form, i.e., a unique value
of V, has been obtained. Nevertheless, it is clear
from Fig. 3 that V(r= 0) has not been determined.
Thus we observe that (a) even light-ion scattering
does not probe into the nuclear interior, and (b)
with a fixed parametrization of the potential, for
example Woods-Saxon geometry, it is not neces-
sary to measure V(x=0) in order todetermine V, .

IV. HEAVY-ION ELASTIC SCATTERING RADIAL
SENSITIVITY

III. LIGHT-ION ELASTIC SCATTERING RADIAL
SENSITIVITY

One might expect the nuclear interior to be most
intimately probed by the scattering of very en-
ergetic protons from light nucleus, e.g. , the
scattering 1 GeV protons from "C as shown in

Fig. 2. The sensitivity test shown was obtained
using data of the Saclay group' and a potential
similar to one employed by Rost. ' As is shown in

Fig. 2, even this extreme case indicates little
sensitivity in the scattering to the details of the
potential in the interior.

We have applied the above method to the elastic
scattering of alphas on "Ni at 139 MeV, using the
data and potential of Goldberg et a/. ' The result-
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FIG. 3. Radial sensitivity of optical model calcula-
tions for 142 MeV e + 5"Ni elastic scattering. The opti-
cal model real and imaginary radius parameters are
shown.
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FIG. 2. Radial sensitivity of relativistic optical model
calculations for 1040 MeV P+' C elastic scattering. The
solid curve shows the result of perturbing the real po-
tential, while the dashed curve indicates the same for
the imaginary potential.

Figure 4 shows some sensitivity functions cal-
culated for "0+"Si elastic scattering at several
energies, using potential E18, a global potential
which has been found to fit "0+"Si data between
33 and 215.2 MeV." The near-Coulomb-barrier
(33 MeV) sensitivity function for the real potential
forms a rather broad peak centered at about 9 fm
with full width at half maximum (FWHM) ot about
2 fm, which provides excellent sensitivity to the
nuclear potential in the tail region at this
bombarding energy. The imaginary potential
sensitivity function is doubled peaked, with a
broad peak corresponding to that of the real
potential in the tail region and a narrower
peak with its maximum at 7.4 fm, which is act-
ually inside the real potential radius R, of 7.5 fm,
but outside the imaginary potential radius R,. of
6.8 fm.

Figure 4 also shows the sensitivity function for
the potential E18 at a bombarding energy of 55
MeV. Here the sensitivity function is sharply
peaked at R,„„(l). This condition of sharp local-
ization ot the real potential sensitivity at this
point is found to be present in all data examined
between 38 and 81 MeV, and thus all data sets in
-this region measure the real potential at essent-
ially the same point. We note, however, that the
sensitivity function for the imaginary potential
has three distinct peaks, none of which corres-
ponds to the peak of the real potential. . This pro-
vides evidence that data in this region is actually
sensitive to the imaginary potential over a larger
radial region than that of the real potential. Thus,
the imaginary potential is better determined in
the surface region than is the real potential from
these data.

Figure 4 shows the sensitivity function for a
bombarding energy of 215.2 MeV. Here we see
the real potential function has two prominent peaks,
a small peak just beyond R,„,„(l ), and a larger peak
at essentially the real potential radius of 7.5 fm.
Again the imaginary potential is triple peaked and
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~ ~sensitive over a broader region than th
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sensitivits t' ty function may be associated with

at these ener '
far-side interference effects h' hs w ic are expected
a ese energies, and which should lead to sen-
sitivities deeper in the potential.

Figure 5 showsows a summary of the results of the
analyses shown in Fig. 4, plotting the central pos-
i ion and half-maximum values of theo e real potential
sensi ivi y peaks as a function of bomb d'm ar ing en-

gy, for the 0+ "Si system. Also shown on the
figure are A thee value of the real radius para-
meter, and the position of the Coulomb barrier.

The strong dependence of the sensitive radius on
bombarding energy is apparent, as is the sensi

~ ~

occurs at higher energies.
We should emphasize that the sensitivity func-

tions presented here are s 'f' tspeci ic to a pa.rticular
potential, in this case E18, and that other
tials ma s

a o er poten-
may show different sensitivities. However,

investigations of the "0+"S t+ i systems with global
potentials" other than E18 have shown very sim-
ilar sensitivity functions.

V. HIGH ENERGY HEAVY-ION SENSITIVITIES

The calculations with the "0+"Si da+ i data, set dis-
cussed above indicate that even at E=215 Me7
the data are notot sensitive to radii inside 6.5—7.0
fm. It has been shown that an energy dependent

n is capable of reproduc-folding model calculation" '

ing the complete data set ess t llen ia y as well as
the Woods-Saxon potential E18 Ti . he folding model,

owever, ignores Pauli exclusion effects, while
potential E18 is exceptionall shalloy s a ow in the inter-
ior region. Both of these objections m
rele vant to the existing data s t h

s may not be

onl the
e, owever since

y the surface region is probed. Thus it is of
interest to consider going t h'

in order to (hopefully) probe even further into the
nucleus. We have made nonrelativistic calcula-
tions using dummy data generated 'the wi potential

or incident energies of 1 and 2 GeV as
inFi. 6. Ita

e as shown
'g. . appears that one can push into the

interior only an additional Fer tw,rmi or two, even at
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VI. CONCLUSION

We have demonstrated a technique for finding the
sensitive radial region of a potential fit to experi-
ment elastic scattering data. We find that neither
light- nor heavy-ion scattering at any energy pro-
bes the interior of the nucleus; however, higher
energy data do probe further into the surface re-
gion than do low energy data. The sensitivities to
the real and imaginary potential are quite differ-
ent, with the imaginary potential being studied
over a broader range of radius than the real po-
tential.

It would appear fruitful to extend these studies
to reaction data. If a quantum-mechanical des-

cription of fusion processes were to be developed,
it would be interesting to compare the radial sen-
sitivities of elastic scattering and fusion reactions.
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