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Yrast states of even tungsten isotopes '
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The yrast states up to J =22+ of seven even tungsten isotopes " -'"'%' are studied in a microscopic
formulation of variation after angular momentum projection with number conservation in each state. The
Hamiltonian with quadrupole plus pairing interactions is employed in the calculations of energy spectra,
quadrupole moments, and 8(E2) values. The results of the calculations are in good agreement with the
corresponding experimental data.
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I. INTRODUCTION

The backbending phenomenon observed' in some
deformed rare-earth nuclei gave a stimulus to
study the structure of high-spin states in heavy
nuclei. The anomalous backbending behavior at
some critical angular momentum J,~12 in the ro-
tationa, l band of many nuclei is interpreted as a
manifestation of the Coriolis interaction between
the collective and the intrinsic motion of the nu-
cleons. There are two alternative proposals to
explain the anomalous behavior in terms of the
Coriolis force. Mottelson and Valatin' predict the
anomalous behavior at some critical high angular
momentum as a consequence of the Coriolis anti-
pairing phase transition from the superfluid to the
normal nuclear state. The a1ternative proposal
by Stephens and Sim.on' state that certain individual
nucleons may respond to the Coriolis force prior
to the phase transition proposed by Mottelson and
Valatin. ' This rotation alignment proposal' at-
tributes backbending to the Coriolis decoupling of
a nuct. eon pair in orbital with high angular momen-
tum j from the rotating core and subsequent align-
ment with the core angular momentum. The Cor-
iolis interaction is strong for the substates of
high- j orbitals with sma. l.l projection 0 on the sym-
metry axis and consequentl. y the decoupled band
can drop below the completely paired normal
ground band at higher spins, thus causing anomal-
ous behavior.

It is of interest to gain an insight into the intrin-
sic structure of the high-spin states from the basic
microscopic theory. Some attempts' have been
made to explain the anomalous behavior by using
many-body variational. methods with constraints.
These approaches resort to simplifying approxi-
mations4 regarding angular momentum conserva-
tion, leading to errors which could be of the order

of magnitude as the observed energy differences
to be explained. The recent attempts to under-
stand the structure of high-spin states are based
on many-body variational formalism with good
angular momentum. This variational method with
angular projection has been successfully employed
to explain the high-spin yrast states in a few rare-
earth nuclei. " Apart from the complication of
angular momentum projection, there is yet another
complication due to the number projection" from
the pair- correlated variational state. It is found'
that the number conservation in each projected
angular momentum states improves the quality of
the agreement between the theoretical and experi-
mental results.

In this paper, we report the results of the mi-
croscopic calculations on the yrast states of seven
even-A tungsten isotopes " "'W. The nuclei of
tungsten, osmium, and platinum form an impor-
tant region of transition from the deformed rare-
earth nucl. ei to the spherical '"Pb nucelus, and for
this reason are of special interest in testing the
predictions of different nuclear models. The tung-
sten isotopes are of vital interest because they
bridge the region between the hafnium isotpes ex-
hibiting no backbending, and the osmium and plat-
inum isotpes exhibiting sharp backgending effects.
We have therefore studied the even-A tungsten iso-
topes " "'W in order to understand the character-
istics of the observed energy spectra of yrast
states as a function of the neutron number. The
calculations are performed in the framework of a
microscopic formalism with variation after angu-
lar momentum projection by conserving the nu-
cleon numbers in each projected state. The vari-
ational formulation is outlined in Sec. II. The re-
sults in the seven tungsten nuclei are discussed
in Sec. III and the conclusions are presented in
Sec. IV.
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II. DESCRIPTION OF CALCULATIONS

z'(p, ~„n„,~„~„)=a'/p',
where

(3)

h =(Ze-') J d (8)(det88)"'X(8)eieede,
0

(4)

X(8) =2Z~,. p,.„,—G(Za,.„. )'

-kX(Q~'+2Q„'+2Q, '),
and p~ is obtained from Eq. (4) by replacing X(8)
by unity. The overlap matrix W in Eq. (4) and the

(5)

A realistic nuclear structure calculation in a
microscopic many-body formalism requires a dy-
namical treatment of a large number of nucleons
in a large configuration space. The computational
difficulties involved in such a realistic calculation
can be reduced by employing a simpler many-body
Hamiltonian. In this paper, we use the quadrupole
plus pairing interaction Hamiltonian whose para-
meters are determined by Kumar and Baranger'
from their study of equilibrium deformations of
heavy nuclei:

H = ~& ~ a~ a~ —2 g~q ~~q6qa~aa a~ ay

--,'GZ(-)'~ ~ "~ ~a' a'-a-a .n 0. y y'

Here, q' is the quadrupole operator and & and Q
are the strengths of quadrupole and pairing inter-
actions respectively. The subscript a( in Eq. (1)
denotes all the quantum numbers (n„l„j„m,)
necessary for the specification of a spherical sing-
le particle state with energy & . The state a is
connected to the state n by time reversal operator.
The intrinsic variational wave function in the pres-
ent calculations is assumed to be axially symme-
tric in view of the fact that the nuclei under investi-
gation are found' to prefer axially symmetric
equilibrium deformations. The trial variational
wave function is taken to be the good angular mo-
mentum state 4'~(p, ~~, n„, X„X„)projected from
the intrinsic BCS state C,(P, 4~, 6„,X~, X„). Thus

(2)

where P„0 is the angular momentum projection op-
erator. The deformation p, the pairing gaps s~
and 4„, and the chemical potentials X~ and X„are
the variational parameters for each angular mo-
mentum state J. The suffixes p and n refer to pro-
ton and neutron, respectively. The chemical po-
tentials in each state are determined such that the
nucleon numbers in each projected state are equal
to the actual nucleon numbers in the nucleus. The
expectation value E~ of the Hamiltonian in Eq. (1)
with respect to the wave function in Eq. (2) can be
expressed' as

generalized density matrices p and 0 in Eq. (5)
depend' on the transformation coefficients of de-
formed single particle orbits in terms of the spher-
ical basis states, the rotation matrix d(8), and the
occupation probabilities of the single particle or-
bits in the intrinsic state C,. The quantities Q„,
in Eq. (5) are given by

(6)Q„=~((f;„,+q',.„)p, „,.
The subscript (+ and -) in Eqs. (5) and (6) indic-
ates the states from two subsets that are connected
by time reversal operator.

The number of protons Z~ in the projected state
with angular momentum J is obtained by evaluating
the integral

B(E2;J, -Z, ) = ' — (P'(P'~) '[Q(Z,. -Z,)]',

(8)

where

Q(J, -Z~) = g (2 —&„)(J',. p, 2 p ~Z&0)
g=0

e (d,. e-,') f d 8( )8( de())8"'

x(Q„+Q, ) sin8d8.

Here (2,. p, , 2- p, ~J&0) is the Clebsch-Gordan coef-
ficient and Q„, is given by Eq. (6).

III. RESULTS AND DISCUSSION

The calculations in the even-A tungsten nuclei
"W reported in this paper are performed by

employing the nuclear Hamiltonian in Eq. (1) with
strength parameters )(.'and G determined by Kumar
and Baranger. ' The same configuration space and
the same inert core as specified by them has been

, considered in the present calculations. The nu-
clear energies are calculated by minimizing E~ in
Eq. (3) by varying the deformation P, the pairing
gaps A~ and a„, and the chemical potentials X~ and
X„ for each angular momentum state J. For each
set of the values of P, 4„and 6„, the chemical
potentials X, and X„are varied so as to yield the

=(J+ —,')(p )
' d„(8)(detW)"'

0

x &p, „„sin8d8. (f)

The summation in Eq. (7) over proton (neutron)
states gives the proton (neutron) number Z~(N')
in the state Z. Finally, the B(E2) value for the
y-transition from the initial state J,. to the final
state Jz is given by
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TABLE I. The deformationp, the pairing gaps g and A„, the energy E„~ obtained from
the renormalization procedure, the experimental energy E,~t, the quadrupole moment Q(J),
and the B(E2; J J-2) value for each angular momentum state J in ' ~.

(Mev) (MeV)
En~
(MeU)

Eexyt
(Mev)

-e(J)
(e b)

B(E2. J-J-2)
(e21~)

0
2

6
8

10
12
14
16
18
20
22

0.24
0.24
0.27
0.27
0.27
0.27
0.27
0.24
0.24
0.24
0.24
0.24

1.00
1.00
0.99
0.99
0.99
0.99
0.99
1.00
1.00
1.00
0.69
0.69

0.92
0.92
0.83
0.83
0.58
0.33
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.13
0.41
0.83
1.32
1.86
2.38
2.87
3.39
3.97
4.59
5.24

0.00
0.16
0.46
0.87
1.36
1.90
2.46
2.90
3.34
3.87
4.49
5.18

1.59
2.02
2.22
2.34
2.43
2.46
2.33
2.36
2.37
2.38
2.38

0.62
0.89
0.99
1.04
1.08
1.08
0.96
0.97
0.98
0.99
1.00

correct number Z of protons and N of neutrons
for each state J. The numbers Z~ and N- computed
from Eq. (7) are very sensitively dependent on X~

and X„. Consequently, it is necessary to incorpor-
ate very find variations of X~ and ~„ in the vari-
ational procedure so as to obtain the correct num-
ber in each projected angular momentum state. In
the present calculations, we have achieved an ac-
curacy up to the fourth decimal place in the nu-
cleon numbers computed in each J state.

The values of the strength parameters g and G
are estimated by Kumar and Baranger' in a trun-
cated configuration space of two major shells each
for protons and neutrons by assuming an inert
core with Z =40 and N =70. The assumption of the
inert core necessitates the modification of the nu-
cleon charges and the excitation energies. As is
the standard practice, ' we replace bare nucleon
charges by effective charges to simulate the ef-

fects of core-polarization and configuration trun-
cation. The simplest way to incorporate the effect
of the neglected core on the projected energies is
by renormalizing the calculated energy spectrum.
We achieve it by introducing a parameter, namely
the moment of inertia I„„.The moment of inertia
of the nucleus is assumed to be the sum of the mo-
ment of inertia I„„ofthe core and l„„ofthe out-
er nucleons. The energy F.„„,computed by con-
sidering only the outer valence nucleons can be
expressed as

and similarly, the corrected or the renormalized
energy can be expressed as

5'EJ JR+1

TABLE II. The deformation P, the pairing gaps 4& and 6„, the energy E„oem obtained from
the renormalization procedure, the experimental energy E,~t, the quadrupole moment Q(J),
and the B(E2; J J-2) value for each angular momentum state J in

(MeV) (MeV) (MeU)
Ee~t
(MeU}

-Q(J)
(e b)

B(E2; J J-2)
(e2b~)

0
2
4
6
8

10
12
14
16
18
20
22

0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28

0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.68
0.68

0.77
0.77
0.77
0.77
0.54
0.31
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.11
0.37
0.75
1.21
1.68
2.16
2.67
3.26
3.90
4.60
5.36

0.00
0.12
0.38
0.73
1.15
1.62
2.13
2.68
3.26
3.85
4.50

1.67
2.12
2.33
2.47
2.56
2.62
2.65
2.68
2.70
2.69
2.70

0.68
0.98
1.08
1.15
1.19
1.22
1.24
1.25
1.27
1.25
1.25
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TABLE III. The deformation p, the pairing gapa A& and n„, the energy E„~~obtained from
the renormalization procedure, the experimental energy E,„~&, the quadrupole moment Q(J),
and the B(E2; J J-2) value for each angular momentum state J in ~ gl.

(MeV) (MeV) (MeV)
Ee~~
(MeV)

-Q(J)
(e b)

B(E2; J-J-2)
(e2b2)

0
2

6
8

10
12
14
16
18
20
22

0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29

0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

0.72
0.72
0.72
0.72
0.50
0.29
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.11
0.35
0.72
1.18
1.67
2.18
2.68
3.28
3.92
4.64
5.41

0.00
0.11
0.36
0.71
1.14
1.64
2.19
2.79
3.40
3.98
4.61
5.32

1.74
2.21
2.44
2.58
2.68
2.74
2.79
2.82
2.84
2.86
2.88

0.75
1.07
1.19
1.25
1.30
1.32
1.34
1.36
1.37
1.39
1.41

Since the calculated energy E~„,deviates from the
pure rotational pattern, the moment of inertia

varies w ith the angular momentum J. The mo-
ment of inertia I „, however, may not vary with
J and can be assumed to be constant, at least for a
set of states. The present calculations in the seven
tungsten nuclei indicate that I„„is nearly constant
for all values of J. The calculated energy spec-
trum in each nucleus is renormalized by choos-
ing the parameter I „so as to obtain an over-
all agreement with the experimental energy
spectrum, rather than reproducing the excitation
energy of a particular state. It is gratifying to
note that the experimental energy spectra of the
yrast states up to J ~ 22' in all the tungsten nuclei
under investigation are reproduced by employing
nearly a constant value I „=(10+1)h'/MeV in the
renormalization calculation.

The renormalized energy and the variational

parameters P, h~, and A„corresponding to the
minimum of energy for each angular momentum
state J are shown in Tables I to VII for all the
even-A tungsten nuclei from '"W to '"W, respec-
tively. It can be seen from these tabulations that
the renormalized energies are in good agreement
with the corresponding experimental energies, "
the maximum deviation being about 100 keV in any
one of the seven tungsten isotopes under consider-
ation here. In order to visualize the agreement
between the calculated and experimental energy
spectra at a glance, we have plotted the energy
E(j) as a function of J(2+1) in Fig. 1 for "ijil',

Fig. 2 for '"'"'W Fig. 3 for '"""W and Fig. 4
for '" '"W. These figures bring out the salient
feature of a departure of the energy spectra from
the simple rotational structure based on a single
band. The anomalous backbending is observed ex-
perimentally in '"W at the critical angular momen-

TABLE IV. The deformation p, the pairing gape A& and n„, the energy E~~m obtained from
the renormalization procedure, the experimental energy E,~&, the quadrupole moment Q(J),
and the B(E2; J J-2) value for each angular momentum state J in ~78+7.

(MeV) (MeV)
En~
(MeV)

E~~
(MeV)

-Q(J)
(e b)

B(E2 J J- 2)
(e2b2)

0
2
4
6
8

10
12
14
16
18
20
22

0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29

O.S3
0.93
0.93
0.93
0.93
O.S3
0.93
0.93
0.93
0.93
0.93
0.64

0.70
0.70
0.70
0.70
0.49
0.28
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.11
0.35
0.72
1.18
1.67
2.17
2.73
3.37
4.08
4.85
5.74

0.00
0.11
0.35
0.70
1.14
1.65
2.21
2.80
3.43
4.00

1.76
2.24
2.47
2.61
2.72
2.79
2.83
2.86
2.89
2.91
2.92

0.76
1.09
1.21
1.28
1.34
1.37
1.40
1.41
1.42
1.44
1.45
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TABLE V. The deformation p, the pairing gaps 6& and 6„, the energy E„„obtained from
the renormalization procedure, the experimental energy E ~t, the quadrupole moment Q{J),
and the B(E2; J J -2) value for each argular momentum state J in ' g7.

(MeV) (MeV)
Elm
(MGV)

Ee~~
(MeV)

-Q(J)
(e b)

B(E2. J—J-2)
(e2b2)

0
2

6
8

10
12
14
16
18
20
22

0.27
0.27
0.27
0.30
0.30
0.30
0.27
0.27
0.27
0.27
0.27
0.27

0.89
0.89
0.89
0.91
0.91
0.91
0.89
0.89
0.89
0.63
0.63
0.63

0.78
0.78
0.78
0.71
0.50
0.29
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.11
0.35
0.73
1.18
1.70
2.25
2.81
3.44
4.13
4.88
5.70

0.00
0.11
0.34
0.70
1.14
1.67
2.25
2.86
3.49

1.69
2.14
2.54
2.68
2.77
2.63
2.67
2.70
2.71
2.72
2.73

0.70
1.00
1.28
1.35
1.39
1.24
1.25
1.27
1.26
1.27
1.28

turn J~
= 12 and in """W at J~

= 16. The backbend-
ing behavior is conventionally illustrated by the
familiar S-shaped plot of the moment of inertia I
as a function of the square of the rotational fre-
quency ~. It should be stressed here that the cal-
culated energies should be in very good agreement
with the experimental energies so as to reproduce
the characteristic experimental backbending curve.
Since the microscopic calculations with the simple
quadrupole plus pairing force model cannot yield
such precise agreement, one can expect to see
only the trend of the I vs w' curve. The theoreti-
cal and experimental backbending curves in "W
and "4W are displayed in Figs. 5 and 6 respective-
ly, for comparison.

It is seen from the results shown in Tables II,
III, IV, and VII that the deformation parameter re-
mains. constant for all the yrast states in '"W,

'"W, '"W, and '"W with the value 0.28 0.29
0.29, and 0.26, respectively. In the case of '"W
shown in Table VI, the deformation is constant
(p=0.27) for all the states with J'» l4 and then
suddenly decreases to P =0.24, remaining constant
for all the higher spin states. In "'W and "'W,
the deformation is constant for all the angular mo-
mentum states except those with 4 & J ~ 12 for
which it assumes a larger value, as seen from Ta-
bles I and V, respectively.

The pairing gap a~ for protons remains nearly
constant for almost all the yrast states in the
tungsten nuclei under investigation. A slight re-
duction in the value of 6 is observed in'"""""""Wonly for high-spin states with J~18.
The situation is, however, different for the pairing
gap 6„ for neutrons. The pattern of the variation

=of h„with J is same for all the seven tungsten iso-

TABLE VI. The deformation P, the pairing gapa A& and Q, the energy E„~ obtained from
the renormalization procedure, the experimental energy E~~t, the quadrupole moment Q{J),
and the B(E2; J J -2) value for each angular momentum state J in

(MeV)
&n

(MeV)
En~m
(MeV)

Ee~~
(Mev)

-Q(J)
(e b)

B(E2. J J-2)
(e2b2)

0
2
4
6
8

10
12
14
16
18
20
22

0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.24
0.24
0.24
0.24

0.87
0.87
0.87
0.87
0.87
0,87
0.87
0.87
0.62
0.62
0.62
0.62

0.78
0.78
0.78
0.78
0.54
0.31
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.11
0.35
0.73
1.18
1.70
2.24
2.81

4.13
4.88
5.69

0.00
0.10
0.34
0.69
1.14
1.66
2.24
2.83
3.42
4.02

1.68
2.14
2.35
2.48
2.55
2.60
2.64
2.52
2.53
2.54
2.54

0.69
1.00
1.10
1.16
1.20
1.21
1.23
1.25
1.13
1.14
1.14
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TABLE VII. The deformation P, the pairing gapa Q and Q, the energy E,~ obtained from
the renormalization procedure, the experimental energy E,„~&, the quadrupole moment Q(J),
and the $(E2; J J-2) value for each angular momentum state J in ~ W. The numbers in
bracket indicate the experimental B(E2) values.

(MeV) (MeV)
En~m
(MeV) (MeV)

-e(J)
(e b)

a(E2; J-J 2)
(e2b2)

10

0.26
0.26

0.26

0.26

0.26

0.26

0.26
0.26
0.26
0.26

0.85
0.85

0.85

0.85

0.85

0.85

0.85

0.85
0.85
0.85
0.85

0.81
0.81

0.81

0.81

0.00

0.00
0.00
0.00
0.00

0.00
0.11

0.37

0.77

1.25

1.79

2.34

2.98
3.69
4.49
5.37

0.00
0.10

0.33

0.68

1.14

1.71

2.37

2.09

2.29

2.49

2.45

2.58
2.60
2.61
2.50

0.66
(0.84 + 0.02)

0.95
(1.15 + 0.08)

1.05
(1.16+ 0.12) '

1.11
{1.47+ 0.10)b

1.15
(1.49+ 0.12) '

1.17
(1.11 ~ 0.28)

1.19
1.21
1.22
1.10

Beference 11.
Reference 12.

5 G»

4.0

3.0 - 4.0

2.G

OI

X
2.0

Lal

1.0

- 3.0

- 2.0

1.G

0.6
I

"1.0

1GG 2GG

~(&+i)

3GG 4GG 100 206
J (J+ I)

300
JOG

400

FIG. 1. The calculated (dotted curve) and the experi-
mental (solid curve) values of the energy E(J) for each
angular momentum state J in W are plotted as a func-
tion of J(J +1).

FIG. 2. The calculated (dotted curve) and the experi-
mental (solid curve) values of the energy E(J) for each
angular momentum state J in ~72W (right) and ~ 4W (left}
are plotted as a function of J(J+1).
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- 4.0

tV

X
~ 2.0

4k

- 3.0 50-

1.0 -20

0.0 - 1.0

0.0
I

0.08

(g~) (Mav )

I

0.12

100 200
J (J+I)

300
0.0

400

FIG. 5. The calculated (dotted) and the experimental
(solid) curves of the moment of inertia as a function of
the square of rotational frequency are plotted in the
case of ~~OW

5.0—

4.0

/

//r// I
//

/ /
/ - 5.0

/
/

FIG. 3. The calculated (dotted curve) and the experi-
mental (solid curve) values of the energy E(J) for each
angular momentum state J in % (right) and W (left)
are plotted as a function of J(J+1).

topes. In each case, the pairing gap a„remains
constant for the first few yrast states and then de-
creases with the increase in J value until it van-
ishes suddenly at the critical value JR=12 so as
to remain zero for all higher spin states. Al-
though the pairigg gap ~„vanishes at JR=12 for
all the tungsten isotopes under consideration here,
the backbendjng js established only in

150

3.0 - 4.0

2.0

Lij

).0

—3.0

—2.0

100

X

50

0.0 - ).0

100 200
( )

300
,OQ

400

0
0.00

I

0.05
(4 cu7 (Mev )

0.10 0.15

FIG. 4. The calculated (dotted curve) and the experi-
mental (solid curve) values of the energy E(J) for each
angular momentum state J in isoW (left) and W (right)
are plotted as a function of J(J+1).

FIG. 6. The calculated (dotted) and the experimental
(solid) curves of the moment of inertia as a function of
the square of rotational frequency are plotted in the
case of W.
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It is thus clear that the vanishing of the neutron
pairing gap at some critical value of the angular
momentum does not necessarily indicate the back-
bending behavior.

The backbending in a particular nucleus would
depend in detail on the structure of single particle
orbitals near the Fermi surface of nucleons. It
is thus worthwhile to discuss the single particle
states in the vicinity of the Fermi surface of nu-
cleons. This may give some insight into the pheno-
menological approach' based on decoupling of
bands where the Coriolis effects in high-j single
particle orbitals are assumed to play an important
role. It may be mentioned, however, that the fol-
lowing discussion is only qualitative. The present
microscopic approach uses the same variational
parameter A~ for all proton levels and the same
parameter 6„for all neutron levels. It is there-
fore not possible to conclude decisively about the
role of the decoupling of the pair of nucleons from
individual single particle orbitals in backbending
phenomenon. The proton and neutron orbitals near
the Fermi surface of tungsten nuclei under investi-
gation are displayed in Figs. 7 and 8, respectively.
It is seen from Fig. 7 that, in the range of deform-
ation P relevant for these nuclei, the only high-j
orbital near the Fermi surface of protons is the

h s
0 =

a2 substate predominantly (99.6/) from th

hi h-Qs
»„s ate. Since the Coriolis force is ak fi we or
~g -0 substates, the backbending cannot prob-

ably result from a decoupling of a proton pair
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FIG. 8. Th e energies (in MeV) of the deformed orbi-
ons m gsten nuc-tals near the Fermi level for neutron ' tun

ei are shown as a function of deformation P. The Q~

value and the predominant basis state with the largest
amplitude in the wave function of the orbital are shown
on the right. The dotted curves a b da, , c, , e, f, andg
indicate the Fermi levels in the even tun t
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from W to W, respectively.
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FIG. 7. The energies (in MeV) of the deformed or-
itals near the Fermi level X& for protons (dotted

curve) in tungsten nuclei are shown as a function of de-
form. ation PP. The 0 values and the predominant basisI'

state with thee largest amplitude in the wave function of
the orbital are shown on the right.

from this h»„orbital near the proton Fermi sur-
face. Regarding the neutron states (F' 8

e Fermi surface, the situation is rather differ-
ent. In the case of '"W, the high-j orbitals near
the neutron Fermi surface are th 0 =-"e = 2 substate
predominantly (93.5/~) from i»„state and 0 = —,

'
substate predominantly (77.4/q) from h„, state.
The substates 0= ~2' and Q=~' rpre ominantly
(96.4% and 98.1%) from i»„st t aaere in the vic-
inity of the neutron Fermi surface of ' '" % d
180~182~ r S

0 ' and

, respectively. Since the Coriolis force
is strong if the Fermi surface is close to the
low-Q substates (0 ~ 2) of the high-j state one can
expect the occurrence of backbending in "'Vf. It
should, however, be noted that the 0=-,' substate

f 172
is not far away from the neutron Fermi su fi sur ace
o % which does not exhibit backbending. The

a comparativelyobserved backbending in '"""W t
high angular momentum J =16 can b dcan e ue to the
presence of 0=, substate of i]3/2 orbit near the
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I"ermi surface. The presence of the 0= ~ sub-
state near the Fermi surface of '"""Wdoes not
result in backbending since the Coriolis force is
weak for high -0 substates of high-j orbits.

The quadrupole moment Q(J) and the B(E2;4-J
—2) values are calculated by employing the num-
ber-conserved projected wavefunctions for each
angular momentum state. The effects of core po-
larization are simulated by ascribing effective
charges' e~= (1+1.5Z/A)e for protons and e„
=(1.5Z/A)e for neutrons. The computed values of
Q(Z) and B(E2) in the tungsten nuclei are shown in
Tables I to VII. The experimental data in these nu-
clei with the exception of '"W are, however, not
available. The calculated B(E2) values agree well
with the corresponding experimental values avail-
able jn

In order to understand the connection between
the Bohr-Mottelson collective model and the mi-
croscopic approach followed in this paper, we have
calculated the intrinsic quadrupole moment Q,
from Q(Z) values as well as from B(E2) values,
using the following relations from the collective
model:

15 J(4- 1)
22v (2J - 1)(2a+ 1)

It is found that in all the seven tungsten nuclei
under consideration, the Q, (Q) value extracted
from the quadrupole moment Q(Z) agrees very well
with the corresponding value Qo(E2) obtained
from B(E2) value. In general, Q, (Q) is very slight-
ly less than the corresponding Qo(E2) value, the
maximum difference being about 0.1 e b. The

present calculations indicate a systematic trend
in the behavior of both Q, values as deformation
changes for different angular momentum states.
We find that the value of the intrinsic quadrupole
moment Q, increases from "'W to "'W and then
decreases from '"W to '"W. The average values
of Qp obtained from the pre sent calcul. ations are
5.6 e b in "W, 6.2 e b in '"W and 5.7 e b in '"W

IV. CONCLUSION

The microscopic formalism of variation with
number-conserved projected states is applied to
study the yrast states of seven even-A tungsten
nuclei "' '"W. The energy spectra, quadrupole
moments, and B(E2) values are calculated by em-
ploying the Hamiltonian with quadrupole plus pair-
ing interactions. The deformation P, pairing gaps
6~ and 6„, and the chemical potentials X~ and X„
are varied to obtain the energy minimum and to
conserve the number of nucleons in each angular
momentum state. The effect of core polarization
is simulated by ascribing effective charges to the
nucleons and by introducing the moment of inertia
of the core to renormalize the energy spectra.
The experimental energy spectra of the yrasi states
in all the tungsten nuclei under investigation are
reproduced well by using nearly a constant value
for the moment of inertia of the core. The present
calculations indicate that the vanishing of the neu-
tron pairing gap h„at some critical angular mo-
mentum Jc is not a sufficient condition for back-
bending behavior in nuclei. The s'ingle particle or-
bitals in the vicinity of the neutron Fermi surface
play an important role in the backbending behavior
observed in '"""""W
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