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Theoretical calculations are presented for the magnetic octupole electromagnetic matrix elements in light
nuclei. Shell-model wave functions are used to calculate the M3 matrix elements for the cases ' Al
1+~4+, "Na 1+~4+, "Cl 3+~0+, "K 0+~3+, and "Cl 5 ~2, The radial matrix elements are calculated
with harmonic-oscillator and spherical Hartree-Fock potentials. The comparison of the calculated and

experimental matrix elements is expressed in terms of effective spin g factors. Theoretical calculations for
the core-polarization corrections are presented and relations between the E2 core-polarization charge and

the M3 effective spin g factors are derived.

NUCLEAR STRUCTURE Na, Al, Cl, K, 3 Cl; calculations of M3 decay
strengths; extraction of effective M3 operator; full d&y2-s&y2-d3~2 shell-model

calculations with Chung- Wildenthal Hamiltonians.

I. IMRODUCTION

Re cent e le ctron scatte ring expe riments have
obtained interesting new information about the high
(I ~3) multipole moments of nuclei. ' ' Previously,
nuclear models have been predominantly tested by
and designed to explain Eo, E1, E2, and Ml ma-
trix elements. The higher moments will provide
new and hopefully discriminating tests of the pre-
dictions of these models. 'The Ml matrix ele-
ments for A = 17-39 nuclei are quite well accounted
for by shell-model calculations within a, full (sd)"
basis using g factors very close to the free-nucleon
values. ' The large E2 matrix elements in this
region are also well accounted for by these same
shell-model calculations if a constant isoscalar
enhancement factor of 1+ ~e, + 6e„=1.7+0.1 is
used. ' 'This enhancement can be understood as a
core-polarization effect involving the rearrange-
ment of particles in the orbits below and above
the sd orbits.

In the context of these results for M1 and E2
phenomena, it was initially surprising that the
M3 matrix element observed in the electron scat-
tering from "0 (Ref. 1) was much smaller than
the value predicted for a d, &, neutron single parti-
cle. However, subsequent calculations'-' have
shown that a hindrance of the M3 matrix elements
can be understood by the same core-polarization
mechanism that gives rise to the enhancement of

the E2 matrix elements.
Unfortunately, it is difficult to extract a pre-

cise value for the M3 matrix element in "O be-
cause the magnetic electron scattering cross sec-
tion is dominated by the Ml and M5 contributions. '
The situation is similar for the elastic electron
scattering on other nuclei with —,

" ground states. "
In the next few years much more information on
the M3 matrix element will become available from
elastic electron scattering on the nuclei with —,

"
ground states, as well as inelastic excitation of
3' states in even-even nuclei, but at present the
only other source of information on this topic
comes from the few precisely measured half-lives
of M3 gamma decays in the sd shell. It is the
purpose of the present work to concentrate on the
shell-model predictions for these M3 gamma de-
cays.

In the sd shell nuclei only three M3 gamma de-
cay half-lives have been measured: in "Al, "Na,
and '~Cl. 'The experimental properties are given
in Table I. Presented in addition in Table I is
information on "Cl which will be discussed brief-
ly in Sec. V in terms of a, d, &,f, &, configuration.
The experimental situation for '4&l has been much
improved by recent experiments' ' which have
shown that the previous assignment" of a 439 keV
gamma ray in "A,l was in error.

The configuration mixing among the d, &,sy/2 and

d, &, orbits is large for the A = 24 and A = 34 nuclei,
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TABLE I. Experimental properties of the ~3 transitions. The experimental values are
taken from Ref. 11 unless noted.

Nucleus '4Na 34C1 38C1

J; Jg
Tf Tf
+i/2

S& ( eV)
Branching ratio (fp)
Conversion

coefficient (n)
( 3) (p fm)

]+ ~4+
1 1
129+4 ms
425.8
80+ 3

0
269+ 13

3 0+
1 1
20.18+0.10 ms
472.29
99.97

0
1038+ 5

3+ 0+

0 1
32.23+ 0.14 m
146.36
46.9 + 1.0

0.100 + 0.009
16.8+ 0.4

5
2 2
715+3 ms
671.27
100

0.0005
2.503 + 0.010

Reference 9, v&/2
= 128+ 6 ms; Ref. 10, v&/&

——127+ 6 ms; Ref. 11, ~&h = 130+4 ms;
Adopted, 7&/, = 129+4 ms.

Reference 10.
Reference 9, BR= 78+3%, Ref. 10, BR=82.5+ 3.0% adopted, BR=80+ 3%.
B (~3) = 0.1099x (branching ratio) 1

7&F2(sec) x [E&(MeV)] 1+n

and the lowest order spherical shell-model con-
figurations (d, i,)' and (d, i,)~, respectively, pro-
vide a very poor description of the energy levels.
A Nilsson model with the particles in the lowest
prolate deformed orbits is better since '4Mg is
well deformed, but is inadequate because con-
figuration mixing among various intrinsic con-
figurations should be taken into account. We have
calculated the MS matrix elements from wave
functions (discussed further in Sec. II) which span
the full d, /2sy/2d3/2 basis space. The experimental
B(M3) values are all found to be hindered by about
30/e relative to these calculated results. In Sec.
III this hindrance is interpreted in terms of re-
normalized g factors. In Sec. IV the core-polari-
zation corrections to the renormalized g factors
are discussed and theoretical results outlined by
Zamick' are developed. Simple relations between
the E2 effective charges and the M3 effective g
factors are obtained, and compared with the
empirical values. In Sec. V calculations for the
"K 0'-3' and "Cl 5--2- decays are presented,
and in Sec. VI we present a summary together

with some comments on further theoretical and
expe rimental work.

II. SHELI MODEL CALCULATIONS FOR THE N3
TRANSITIONS

The model wave functions which are utilized in
our calculations for the sd-shell M3 transitions
were obtained in the course of a more general
project" directed at producjng wave functions for
the positive-parity states of all spine (J) and
isospins (T) in this same region. . The model space
assumed for the calculation of these wave func-
tions was comprised by the single-nucleon orbits
with quantum numbers Od, /„1sz/z and Od3/
i.e., the conventional sd shell. The complete set
of basis vectors allowed in this space by the Pauli
principle was utilized in all cases, a fact which is
particularly relevant in the context of calculations
of matrix elements of the orbital and spin angular
momentum operators, operators which play a key
role in the physical processes which will be of
interest. in the present discussion. The calcula-
tions we re car ried out in a j-j coupling, J-T re-

TABLE II. One-body transition densities calculated for the 1+ -4+ decays in Al and
Na, the 3+ 0+ decay in 34C1 and the 0+ 3+ decay in K.

Model J J~ 4T 5 5
2 2

5 1
2 2

5 32-2 1 5
2 2

3 5
2 2

32'2.

(sd)8

4+1+

(sd) ' 3'0+
(d )-g 3+0+

(sd) 2 0+3+

(d,h)-2 0+3+

-0.5292
0.3986

-0.8369
0.7197
0.0318

-0.0004

0.0748
-0.0931

-0.0323

0.0006

-0.1688
0.1491

-0.1907
-0.0643

0.1193
-0.1021

0.0385 0.0007 -0.0092

-0.0630 -0.0156 -0.0133

0.0540
-0.0289

-0.6122
-0.7071

0.2477
0.7071
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presentation with the Oak Ridge-Rochester shell-
model codes" as modified by Chung" to incor-
porate the I anczos matrix diagonalization techni-
que of Whitehead and Watt. "

The model Hamiltonian for the present calcula-
tions was assumed to be comprised of one-body
plus two-body terms. For nuclei with A «28, the
values of the one-body terms (single-particle
energies) were taken from the experimental data
on "Q and the values of the two-body terms were
obtained by adjusting the values of Kuo" so as to
produce a least-squares fit to 200 experimental
level energies in the 18 «A «24 region. For
nuclei with A &28, the values of the one-body terms
were taken from the experimental data on "K.and
the values of the two-body terms were obtained by
adjusting values calculated by Kuo for the A = 40
region to produce a least-squares fit to 140 ex-
perimental level energies in the 32 «A «38 region.
The two Hamiltonians yield rather similar wave
functions for A = 28.

The wave functions for nuclear states in the
18 «A «38 mass region obtained in the shell-model
calculations just described have been used to
calcul. ate a variety of nuclear observables. Com-
parison of these predictions to experimental re-
sults indicates that the preponderance of qualita-
tive structural features experimentally observed
in this region are accounted for by using these
wave functions together with the conventional
forms of the operators presumed to correspond to
the experimental phenomena measured. " Quan-
titative agreement between theory and experiment
for matrix elements which have magnitudes of
the order of a significant fraction of a single-
particle unit is typically 25/p or better. Pheno-
mena which have been studied so far include
single-nucleon transfer, "electric quadrupole
moments and transitions, "magnetic dipole mo-
ments, ' and Gamow- Teller beta decay. " It seems
reasonable to conclude from these examinations
of the present shell-model wave functions that the
conventional sd-shell space suffices to incor-
porate the degrees of freedom which are most
important in a description of the static and dy-
namic features of the large majority of bound,
positive-parity states in the 20«A «36 region,
and that the Chung-Wildenthal Hamiltonians give
a reasonable guide to the proper configuration
mixing within this space.

The dimensions of the wave functions used in
the present calculations give some idea of the
maximum possible complexity which could be
contained; the dimensions are 2131 and 1413 for
the A =24 4'(T =1) and 1'(T =1) states, respective-
ly, and 366 and 143 for the A = 34 3+(T = 0) and
0'(T = 1) states, respectively. The calculated and

experimental levels for "Na and "Cl are shown
in Fig. 1. The comparison of energy levels is
very good for '4Na and not as good, but still ac-
ceptable, for "Cl.

The square root of the J'-J reduced transition
probability is expressed as a sum over one-body
transition densities and single-particle matrix
elements as

[a(~3)]"' = (2Z'+1)'" ~r
Z&

DJ T, O''T"
~~I

jj'

where &J=3 for the M3 transitions. The D co-
efficients are the one-body transition densities
calculated from the shell-model wave functions
by the formula

D/z, /, z„/, &g Ill(a,'. &a,,)» ~rill'g
' ')

[(2m+1)(2~T +1)]"' (2)

2.0—
(3)+

1~2
2'

~3

2.0—

(2, 3)
2+ T=1

2'

T=1 2

1'
3

1.5—

2'

O
1

O

LJ
&C

LU

0— 1. 0—

0.5—
2'
1'

2'

05—
1'

3+

0 T=1

Exp

T=1 0

Th.Exp.
2~Na '"c(

Fjo. 1. Theoretical and experimental energy levels
for the low lying A =24 7= 1 states and for states in
34Cl. The experimental energies are taken from Ref.
11.

These coefficients for the transitions under con-
sideration are given in Table II. For comparison,
the transition densities for the extreme single-
particle (j") configuration are also given in Table
II.

The magnetic multipole operator is given by



22 EFFECTIVE N3 OPERATOR AND RKI KVANT TRANSITIONS IN. . .

l

o(M/5~)5. r =
I

g'5. T + (~~ 1)
I IT'I/re(5')]5T~

where

g+ ( 1)Erg

(4)

stable nuclei. The relationship between the mea-
sured charge radius x,„and the point proton
radius ls

N 2 3 I
ch 0 + proton + g neutron + ~4 mc

where

g]+ (-1} gnR~r=

and g' and g' are the orbital and spin g factors.
The subscript &T on the operators means that
the operator has associated with it a unit operator
in isospin space when ~Y'=0 and the operator & in
isospin space when &T =1. The single-particle
isospin reduced matrix elements are &t IIO(nT) II t&

= [2(2bT + I)]'/'. The single-particle matrix ele-
ments of Op(M&8)~T are given by

&i Ill«M«.)r Ills'&

+
I ~~ 1 lg'T&~ llr" '[I'"

~
L,
~J+1)

(5)

The values of these matrix elements for the M3
operator in terms of g', g', and the r' radial
integrals are given in. Table III. In terms of these
isoscalar and isovector matrix elements, the
proton and neutron matrix elements are given by

r„„,„'= (0.86)',

r,.„„,.' = -(O.35)'.

In Eq. ('I) we have ignored the relativistic spin
orbit correction" which is not important for N = Z
nuclei.

For a harmonic oscillator potential —,'m&d'r' the
rms radius x~ for sd-shell nuclei is

18+ (Z —8) —', , 3b'
g

where 5'=)I/m~. The last term is the correction
for center of mass motion. The relevant data" "for
y,„andthe extracted values of b are given in Table
IV. 'The harmonic-oscillator radial matrix ele-
ments in the sd shell are given by

&dlr Is)=-(lo) / { .
The final results for B(M3) values [see Eq. (1}]

are obtained by combining the one-body transition
densities (Table II) with the single-particle matrix
elements of Table III using the radial matrix ele-
ments of Eg. (9) and the free-nucleon g factors

where the subscript p/n means that the operator
acts only on protons or neutrons, respectively.

For a first approximation for the radial matrix
elements we will use harmonic-oscillator wave
functions with the size constant adjusted to repro-
duce the rms point proton radii of the nearby

TABLE III. ~3 single-particle matrix elements.

g~ = 5.58,

g„' = -3.82.

(lo)

The results are given in Table V. The calcula-
tions have succeeded in qualitatively explaining

TABLE IV. Hms charge radii and extracted oscilla-
tor length parameters.

&ii I I 0(M3)g rl I li'&/[2{2&1"+ 1)]' ' Nucleus (fm)

b

(fm) (ileV)

-«1/5. )'"(g&r + g,'T) «5/, I
r'I d, /, &

(147/sr) ZLT &d5/51 r'I q/5 &

(s/»)'"(2g&r-sg&r)& 5/, I 'I,/, &

{147/«) ger &d5/2I r'I q/5&

-(6/sr)' '(2giT Sg&r) &d5/5I r'I d5/5 &

(S/2oT)' '(ger -4g/4) &d5/5I r'I d5/5&

g/, r= [gp+ (-1) 'g.l/2—

24Mg
32S

"Ar
A= 34

38Ar

3.035~
3.254
3 396

3.414

1.813
1.875
1.936
1.905
1.948

12.61
11.79
11.06
11.42
10.93

From a model independent analysis of the data in Ref.
20.

b Reference 21.
Reference 22.

d Sco = 41.465/b 2.
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Nucleus '4Al
1+ 4+

24Na

1+ 4
34C1

3+ ~0+

TABLE V. B(M3) values (in units of p&~ fm4) com-
pared with the sd-shell-model predictions using free-
nucleon g factors.

gl 0
In order to obtain the effective g factors in a

transparent manner, we first write out the re-
duced matrix elements in terms of g' and g' using
harmonic-oscillator wave functions with the b'

parameters from Table IV:
Exp
Thb

Exp/Th

269+ 13
344
0.78

1038+ 5
1538
0.68

16.8 + 0.4
26.0
0.65

[B(M3)]'~' Al= 2.03gq+ 7.90g'„+ 0.27gt+ 2.91g„',

[B(M3))"'."Na = 7.90g', + 2.03g„+2.91g,'+ 0.27g„',

Table I.
Harmonic-oscillator wave functions from Mg and

A = 34 (Table IV).

the relative B(M3) values, which vary by nearly
an order of magnitude, but the experimental values
are seen to be smaller (about 30'%%up)' than those
calculated. In the next section we will investigate
how this reduction might be understood in terms
of empirical effective g factors.

III. EMPIRICAL EFFECTIVE g FACTORS FOR THE M3

TRANSITIONS

Although the sd-shell-model calculations dis-
cussed in the last section encompass many de-
grees of freedom, several important types of
excitation are not included. The most significant
of these involves the lifting of nucleons from one
major oscillator shell to another, for example,
the 2k+ excitations, Os- is0d, Op- lpOf, and
1spd -2sldpg. The meson degrees of freedom
and the degrees of freedom internal to the nucleon
also have been ignored. All of these omitted com-
ponents have unperturbed excitation energies which
are large (~2hw = 24 MeV) compared with the ex-
citation energies of the states participating in the
M3 transitions, and thus it is reasonable to expect
that they may modify the sd-shell results in some
smooth and average manner. In general, such
modifications can possibly be represented in terms
of a state dependent (i.e. , a dependence on j and j')
renormalization of the single-particle matrix ele-
ments. In a more restricted view, consistent
with the very limited amount of available experi-
mental data, we will explore in this and the
following section the possibility that the effects of
these extra degrees of freedom upon the M3 ma-
trix elements can be incorporated into the present
calculations by the use of renormalized g factors,
i.e. , a state-independent renormalization.

In this section we will determine the empirical
effective g factors, denoted byg' and g', which
are needed to explain the B(M3) values. Unfortu-
nately there are four unknowns g~~, g„', g~, and
g'„and only three experimental data. Thus we will
make the additional assumption based on the re-
sults to be discussed in Sec. IV thatg~=1 and

24Na ~4gl
[B(M3)]'~' = 9.93g,'+ 1.59= 7.9+ 0.2,

' Al 'Na
[B(M3)]' ' = 6.87@,'+ 1.32= 24.3+ 0.2. , (12)

[B(M3)]' '"Cl= 1.76g, —3.22=4.10+ 0.05,
where g', and g', are defined by Eq. (4). The de-
viations from the free-nucleon g factors which
are needed to explain the experimental data are

A: 24 &o: 0 28 &j: 0 17

'4C1: &; = -0.12,
where

(13)

(i4)

gS +S

4s

Since the single-particle binding energies of the
valence orbits in A = 24 are relatively small, it is
important to investigate the effects of using more
realistic radial wave functions. Recently, spheri-
cal Hartree-Fock calculations" . have been carried
out for the sd shell using the Skyrme interactions'4
together with shell-model occupation numbers.
For "Mg these calculations with a Skyrme III in-
teraction gave an rms charge radius of 3.086 fm
and a charge radius of 3.038 fm if a small effec-
tive mass adjustment is made in order to repro-
duce the "Mg binding energy. Since the latter
value is in agreement with the experimental value
of 3.04 fm, we have used the radial wave functions
from similar calculations in "Al and "Na to com-
pare with the previous harmonic-oscillator re-

[B(M3)]'~'~4Cl = 0.88g~ —0.88g„' —3.22g'+ 3.22g'.

(ii)
Of course the relative sign of [B(M3)]'~' between
"Al and "Na is not measured, but if we use free-
nucleon g factors we obtain

[B(M3)"Na]'"/[B(M3) Al]'~ = -2.11.
Thus, to obtain effective g factors which are not
drastically different from the free-nucleon values,
the isoscalar g factors are related to the differ-
ence in the two [B(M3)]'~' values, whereas the
isovector g factors are related to the sum of the
two. Setting g'=1 and g„'=0 we thus obtain
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suits. The x' radial matrix elements are given in
Table VI.

The radial matrix elements are different for the
protons and neutrons because of the Coulomb po-
tential. In addition, the radial matrix elements in
"Na and ' Al differ because of the symmetry po-
tential (the radial matrix elements in "Mg are
given to a good approximation by the average of
those in "Al and "Na and thus these are not listed
separately in Table VI). Hence the M3 matrix
elements no longer display the mirror symmetry
apparent in Eqs. (11) and we can no longer take
the sum and difference to obtain the isoscalar and
isovector matrix elements. Combining the radial
matrix elements of Table VI with the single-parti-
cle matrix elements and one-body transition den-
sities we obtain [compare with Eqs. (11))

[B(M3)]'~'."Al = 1.98g~+ 7.56g"„+0.26g~

+ 2.55g„',

[B(M3)]'~':"Na=7.79g~+ 1.92g„+ 2. 58gt

+ 0.25g „'.

Again assuming g,'=1 and g„'= 0 and equating these
to the experimental values of -16.40 and 32.22,
respectively, we obtain

5', = -0.13+0.05, (18)

where 6' is defined by Eq. (15) and the errors are
an estimate of the theoretical uncertainty in the-
sd- shell-model wave functions.

IV. CORE-POLARIZATION CORRECTIONS TO THE 3f3
SINGLE-PARTICLE MATRIX ELEMENTS

This represents deviations from unity on the order
of 5% and could be an estimate of the theoretical
error in the M3 matrix elements also. Thus for

we have 6; = -0.12 + 0.05 f rom "Cl, and 5; = -0.14
+0.05 from A=24; these are consistent with an
average value of &y 0 13+0 05 ~p is obtained
only f rom A = 24; 6~O 0 30 + 0 05.

To summarize the results obtained in this sec-
tion, the comparison of the calculated and experi-
mental B(M3) values has been made in order to
extract effective g factors. Both harmonic-os-
cillator and Hartree-Fock radial wave functions
have been used for the A = 24 calculations. If we
assume that the orbital g factors have the free-
nucleon values we obtain the renormalization to the
spin g factors given by

~; = -0.30~ 0.05

and

A: 24 &0 0 30 &) 0 14 (17)

TABLE VI. Hadial matrix elements (j(&t( j') obtained
from spherical Hartree-Pock calculations

'4Na

fp2

(fm ) (fm )

24Al
2

(fm2)
+n2

(fm )

d5/2

ds/,
d3/2

dg/g

1/2

3/2

11.02
-10.15

11.54
12.09

10.87
-10.05

11.42
12.45

11.17
-10.49

11.84
13.12

10.82
-9.88
11.31
11.94

Reference 23. A Skyrme ur interaction was used.

The differences between the harmonic-oscillator
results [Eq. (13)] and the Hartree-Fock results
[Eq. (1'I)] are not large. We expect an even
smaller difference for '4Cl since the orbits are
more deeply bound.

'The experimental errors in the 6' values are
very small. Much more important is the theoreti-
cal error arising from uncertainties in the sd-
shell-model wave functions. As a rough estimate
of this theoreticaI. error we consider the compari-
son of the large number of E2 transitions through-
out the sd shell. The E2 matrix elements require
an isoscalar effective charge of 1+ &ep+ 6e„=1.V
+ 0.1, where the +0.1 represents changes in the ratio
of experiment to theory as a function of mass as well
as for different transitions within a given nucleus.

In this section we calculate the core-polarization
corrections to the M3 operator using a delta-
function nuclear interaction. The results obtained
here for the relationships between the corrections
to E2 and M3 matrix elements are the same as
those obtained by Zamick. ' However, instead of
expressing the results in terms of proton-neutron
properties, we concentrate on the isoscalar-
isovector properties which can be directly related
to the well-determined experimental isoscalar
properties of nuclei. The present results with a
delta-function interaction are compared with the
results of Horikawa et al. ' obtained from a realis-
tic G matrix interaction.

Core-polarization calculations can be easily
carried out for the restricted cases of one parti-
cle putside ' 0 pr pne hole putside Ca. We will
assume that these results apply even to the pre-
sent situations when there are many valence, parti-
cles or holes; this is an additivity assumption.
The additivity assumption is verified empirically
by the observed constancy of the isoscalar E2
effective charge in the region A = 20-36.' In
addition, we note that the results we obtain do not
take into account the binding energy of the valence
orbits, and if they are used to compare with ex-
peri. mental results for a few nucleons outside "0,
binding energy corrections" should be made.

The core-polarization corrections to the sep-
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O(»)1—= r~ 1(I' x I)~~ (20)

arate terms of Eq. (5) are calculated by first re-
writing it in the form

& j III o(M») „III 7')
=[»(2»+1)]' '[g'', &jlllo(»)~ III j'&

+(27'»+1)g1»&j Ill o(»)'»III j &], (19)
where

O(»)s —rkJ' 1(V x s)M

o(»-1)=r ~ 'v~, . (21)

For a particle outside a closed shell the core-
polarization corrections due to one-particle one-
hole excitations of the core contribute to the total
matrix element by the addition of a term
M(jj'»ET) which is given by"

and in addition we will define the operator associa-
ted with the electric multipole operator of rank
hJ —I by

1 1

-1 "o+ ' "21+1 2T+1

&&&77.dTlvl7'7'. dT&&7. III o(»)~rIII7.'& (22)

The index j, runs over all empty orbits and j,'
over all filled orbits. For the single-hole matrix
element the correction can be evaluated by the
same expression if the index j, is taken to run
over all filled orbits and the index j,' to run over
all empty orbits.

In the case where (j III O(»)III j') is nonvanish-
ing (as is the case here) it is convenient to define
a reduction factor 5(jj'b.JrT) by the relation

and

5e, =—5(E2, cT = 1)= ', ' C(jj'),
1

6 =6(M3 ~T=O) =(-""'C( ')0 ! gE (3+)

6'=-5(M3 aT=1)'= ' ' C( ')
1 1 gE (3+) 77

(26)

(j III o(»)l I I j ')+M(77'»~T)

=&j III o(~d )III j') I 1+ 6(7'7'~»T)]. (23)

V(r„)= - ( V, + V, v, o,] 5(r„) . (24)

Now we evaluate the E2 and M3 core-polariza-
tion corrections by making some simplifying
assumptions. Since all of the operators contain
r', the only particle-hole configurations which con-
tribute to the sum in Eg. (22) are those with AE
= Ie(j, ) —e(j,')I = 2k&v in the harmonic oscillator.
We will assume that all of these particle-hole
states are degenerate in the unperturbed case and
that the residual interactions push the 2' and 3'
T = 0 states down to a value b,E, and push the 2'
and 3' T=1 states up to a value of AE, . We will
also ignore the difference between ~(j') and e(j )
in Eq. (22) since they are small relative to 27f&u.

The corrections are then calculated with a delta-
function residual interaction.

5(M3 AT =0)'= 5(M3 hT = I)'=0 (26)

All of the orbit dependence is contained in the
coefficients C(jg) which depend on l and I'; for
one particle outside "0

C (d - d) = 0.0109 fm-',

C(d-s) =0.0072 fm ',
and for one hole outside "Ca

(27)

C(d- d) = 0.0123 fm-',

C(d- s) =0.0109 fm '. (26)

&E„(2 ) 6e0
~E (3) 3

Another relation could take the form

(29)

Thus, in the limit of a delta-function residual
interaction there are relationships between the
first-order core-polarization corrections to the
M3 and E2 operators. The simplest of these re-
lates the effective isovector spin g factor to the
E2 isoscalar effective charge

The physical explanation of the results in this case
has been given by Zamick. The results can be
expressed in the form

EE,(2') 2 EE0(2')
0 gE (3+) . 1 3 QE (3+) (30)

5e0:—5(E2, ST =0) = 0 0 C( ")
C E,(2')

It is important to compare these results obtained
with a delta-function interaction with those ob-
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nE, (2') = nE, (3 ) = ~28~,

nE, (2') = nE, (3') = 2~A&v.
(31)

Putting these values into Eqs. (29) and (30) give

&' =-—'6e1 6 OP

5, =-26e, —-', &eo ~

(32)

The E2 isoscalar effective charge has been ac-
curately determined by a comparison of experi-
mental and theoretical B(E2) values and quadru-
pole moments in the region A = 20-36." The em-
pirical isoscalar effective charge is remarkably
constant over this mass range with a value 8~+ e„
=1.7+O. le or &e, =O.7+0.1. Thus the relation
6, = -6e,/6 is satisfied with the empirical value

TABLE VII. Core-polarization corrections calcu-
lated with the two-body 6 matrix elements of Kuo. The
values were obtained from Table I of Ref. 8. The em-
pirical single-particle energies of Ref. 27 were used
for these calculations; the average p E is about 40
MeV.

5 5
2 2

'0
6e(

-(g)5eo
gS

2-5e& —( ~)Geo
gS

0

0.295
-0.145
-0.10
-0.08
-0.05
-0.015

0.42
-0.12
-0.14
-0.14
-0.14
-0.14~

0.28
-0.10
-0.09
-0.06
-0.09
-0.09

These values were extracted from Table I of Ref.
8 by assuming that $0 = Qg = 0.

tained from more realistic interactions. Horikawa
et al. ' have calculated the corrections to the E2
and MS matrix elements using the two-body G

matrix elements of Kuo. ' They used the empirical
single-particle energies of Ref. 27 which amount
to putting ~EO(2') = ~E, (2') = ~E,(3') = ~E,(3') =40
MeV. Thus we might expect 6; =-(-,')6e, and

6; =-'e, —(-', )6e, for these calculations. These
quantities are compared in Table VII and it is
seen in most cases that these equalities hold
fairly well, even with a realistic interaction.

Secondly, it is important to use realistic values
for &E. The isoscalar modes represent the os-
cillation of neutrons and protons in phase and thus
&E, (2h~. Theoretical calculations" for the ener-
gy of the giant quadrupole state have found ~E, (2')
= v'2@" and this seems to be in agreement with
experimental observations for at least A ~ 24."
The other three modes have not yet been observed
experimentally. The isovector quadrupole re-
sonance has been estimated in macroscopic models
to have ~E =3.3hv." Thus it seems reasonable
to use in terms of round numbers,

of &; = -0.13+0.05.
The second relationship, involving &0, would be

satisfied with 6;= -0.30+ 0.05 if the correction to
the isovector E2 charge is small, i.e. , Oe, = -0.08
+0.04(e& —e„=0.92+0.04e). TheB(E2) valuesand
quadrupole moments in the regionA = 20-36 are not
very sensitive to the isovector effective charge
since the transition densities (the matrix elements)
are typically 90% dominated by the isoscalar com-
ponent. However, a recent analysis" of transitions
in mirror nuclei in this region indicates that the
isovector effective charge is indeed near its free-
nucleon value. In contrast, an analysis" of the
nuclei with one or two holes or particles outside
' 0 and Ca indicated the need for a large cor-
rection to the isovector effective charge, e~ —e„
=0.6e or ~e, =-0.4. However, in this analysis
the isovector effective charge could be made
closer to the free-nucleon value if it could be
shown (1) that the Woods-Saxon method as used in
Ref. 25 consistently overestimates the rms radii
of valence

particles

(this is the same direction
that is needed to resolve the Nolen-Schiffer
anomaly), and (2) that the reported value for the
experimental quadrupole moment of "K (see Table
IX in Ref. 25) is in error, perhaps due to uncer-
tainty in the Sternheimer corrections.

Finally we remark on the parameters of the delta
interaction as related to the E2 and M3 correc-
tions in Eqs. (25). The delta function is an ex-

tremee

simplification of the two-body interaction
which has been used historically as well as here
to derive analytic results which may provide some
physical insights. In finite nuclei a renormalized
interaction must be used and this interaction is not-
a priori accurately known. The delta V(r»)
=-Ar&(r»), surface delta (SDI) V '(r»)
=-Ar&(r»)~(r, —R), and modified surface delta
(MSDI) V'"SD'(r») = V '(r»)+Br, interactions"
provide minimal parametrizations for effective
interactions which are remarkably successful in
reproducing observed spectra.

'The parameters V, and U, are related to the delta
interaction in specified isospin channels, -Ar6(r»),
by Ao = Vo+ V, and A, = Vo —3V,. For the two-
nucleon system, we know that the nn and np po-
tentials have about the same volume integrals,
but that the np potential is a little larger since it
has one bound state whereas the nn potentia, l does
not thus Ao&Ay&0 or Vp ~ V, &0. If the valence
particle spectra in nuclei are fitted with a delta
or SDI interaction, then the same conclusion as
above is reached, namely Vo» V, &0. However,
if an effective long (infinite) range component is
allowed for by using the MSDI, one finds in con-
trast A, &A, (Ref. 26 p. 116) or V, &0. [Note that
the MSDI B~ parameter does not enter into the
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off-diagonal matrix elements in Eq. (22)J.
Typical values of the delta interaction para-

meters which have been used previously'" to
estimate the E2 and M2 core-polarization cor-
rections are V, = 500 MeV fm' and V, = 60 MeV fm'
(in Zamick's notation' V(r») = -A[1+ (—1)rx]6(r»),
and these parameters correspond to A = 472 MeV
fm' and x= 0.273; in Ref. 6 Zamick used x=-, ).
Using &E=28~=28 MeV for "0we find ~e, =0.51
and De, = -0.27 for the d-d matrix element. 'These
are fairly consistent with the empirical results"
for A = 17 and 18 as well as with the values obtain
using the Kuo G matrix; from Table VII, using
&E = 28 MeV rather than ~E=40 MeV, we obtain
De, =0.42 and &e, =-0.21 for the d, &,-d, &, matrix
element. For 2=24, if we take a linear inter-
polation of the C coefficients between "0 [Eq. (27)]
and "Ca [Eq. (28)] and use rE =28~=24 MeV,
then from Eqs. (25) we obtain 6;= -0.09 and P,
= -0.20 for the d-d matrix elements. (These are
the results of the calculations discussed in Ref.
9, however, the value of 5;=-0.314 given in Table
III of Bef. 9 is incorrect, it should be -0.09 as
above. )

However, if we are to understand the empirical
result 6; =-0.30 (5e, =-0.08) we require V,
=-30 MeV fm' rather than the previously' assumed
value of +60 MeV fm'. Thus we require V, &0,
which is consistent with the empirical MSDI ef-
fective interactions for valence particles.

V. N3 GAMMA DECAYS IN 3 K AND Cl

In this section we present the results of calcu-
lations for the as yet unobserved 0 -3 gamma
decay in "K and the observed" but very weak de-
cay strength of the 5--2- transition in "CI..

The sd-shell-model transition density for the
"K 0' —3' matrix element is given in Table II.
With free-nucleon g factors the result B(M3)
= 0.048 p, ~' fm' is obtained, whereas with effec-
tive spin g factors of P, = -0.13 and 50 0 30 the
calculated B(M3) value is quenched to 0.025 l/, „'
fm . We have used a harmonic-oscillator para-
meter b = 1.948 fm obtained from the experimental
"Ar rms charge radius of 3.414 fm (see Table IV).

The "K0" (T =1) level is observed" to beta de-
cay to the 0' level in "Ar with a 100% branch and

with +j /2 924.6+ 1.5 ms. The above calculated
B(M3) values give branching ratios for the 0' —3'
gamma decay of 2.6 x 10 '% and 1.4 x 10 '%,
respectively, with the free and effective g factors.
Thus; because the M3 matrix element is small it
will be difficult to observe this gamma-decay
branch.

Calculations for "Cl which include all sd-shell
orbits for the protons and all fP-shell orbits for

the neutrons have not been carried out. However,
it is clear that the wave functions for the 2- and
5 states have predominantly a «, /, vf, /, configu-
ration and it is instructive to calculate the B(M3)
value with this simple configuration. The reduced
matrix element is

[B(M3), 5- 2-]&/2

1
(1 1 )1/2 (v 3/2 f7/22 IIM3 Ilvd3/2 f7/25 &

= [ 0.0165(vf„, ff(M3)„ ffvf„,&

+2 37««. /. II(M», fled. /.&]

= (-0.652+ 0.625)b', (33)

VI. SUMMARY AND CONCLUSIONS

Shell-model calculations have been carried out
for the measured M3 transitions in light nuclei.
Wave functions for the valence, particles are ade-
quate to explain the order-of-magnitude variation
in B(M3) values which range from 9.1 W.u. in
"Na to 0.011 W. u. in "Cl. The relatively large
transitions strengths in ' Al, ' Na, and ' Cl are
found to be hindered by about 30% relative to the
shell-model calculations. In Sec. IV the core-
polarization contributions to the M3 matrix ele-
ments were calculated and related to the well
known E2 core- polarization effects. Relationships
between the effective M3 spin g factors and the
effective E2 core-polarization charges were de-
rived. The empirical values are found to satisfy
these relationships if the isovector E2 effective
charge is near the free-nucleon value, e~ —e„
=0.92e. Further experiments are needed to
directly determine the isovector effective charge,
such as comparative m' inelastic scattering. "

For a better understanding of the M3 matrix
element, what is greatly needed are experimental
values of the M3 moments of stable nuclei with

where free-nucleon g factors and harmonic-os-
cillator wave functions have been used to obtain
the last line. Using b =1.948 fm (appropriate for
"Ar) we obtain the nearly vanishing result of
B(M3) = 0.010 l/~' fm' which results from can-
cellation between neutron and proton components.
This cancellation would be extremely sensitive to
other sd and ff/ components in the wave function.
Thus, we can understand why the experimental
value of B(M3)5 -2-= 2.38 p, ~'fm' is small, but
until more complete shell-model. calculations are
carried out we cannot discuss this transition on
the same level of sophistication concerning the
effective g factors as is possible for the M3 transi-
tions in "Al, "Na, "Cl, and "K.
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2' ground states in the sd shell; these can be
determined from electron scattering experiments.
The discussion in this paper has been focused on
the gamma-decay matrix elements which corre-
spond to the electron scattering matrix elements
at a momentum transfer of q=0. For finite mo-
mentum transfer the core-polarization contribu-
tions depend on q, and calculations of this q de-
pendence will be discussed in a separate paper. "
Nevertheless i.t is interesting to quote the values
for the "0 and "K moments based on the theory
at q=0 presented in Sec. IV. If we use 6', =-0.13
and ~, =-0.30, then the ratio of the effective vd, &,
matrix element to the single-particle value is

(34)

or the electron scattering cross section should be
reduced by 20% rel. ative to the single-particle
value. This is not in agreement with the experi-
mental cross section for "0 (Ref. 1) which is
reduced by about a factor of 3 from the single-
particle value. This discrepancy may be due to
a strong q dependence of the effective g factors,
or an anomaly in the neutron d, &, radial wave
function.

For the md3/2 ground state of. "K, the ratio of
the effective matrix element to the single-particle
value is

g', —4 [g', (1 + &;) + g', (1 + &;)I —4

g'-4

That is, the cross section is only 20/q of the single-
particle value. Clearly the '"K M3 moment is a
very sensitive measure of g', . Further predictions
for the moments of all sd- shell nuclei will be pre-
sented in a subsequent paper. "

Finally some comments about the more general
aspects of the calculations are presented here.
Our view of nuclear structure is that the variety
of patterns of motion exhibited in nuclear spectra

are governed by the interaction of valence nu-
cleons. The core nucleons participate only to the
extent that they tend to follow in a self-consistent
fashion the motions set up by the valence nucleons.
It is essential to treat the valence nucleons as
completely and as consistently as possible. For
the sd shell we have done this by always using a
complete (d, &,, s, &„d,&,) basis; for heavy nuclei
the interacting boson model, "may provide a useful
semicomplete basis. The core-polarization effects
of the core nucleons give rise to renormalized
single-particle and two-particle matrix elements
which vary slowly with mass and excitation ener-
gy, in contrast to the features of the spectra which
vary rapidly with mass and excitation energy.

The core-polarization effects can be para-
metrized by using effective charges and effective
g factors. However, these g factors depend on
multipolarity (and perhaps momentum transfer).
For instance, the M1 matrix elements in the sd
shell require essentially the free-nucleon g factors,
whereas as we have seen in the present work the.
M3 spin factors are substantially quenched. How-

ever, there is a relationship between the effective
M3 operator and the effective E2 operator as
shown in Sec. IV. It would be very interesting to
extend this relationship to more general ones
concerning the M(L) and E(L —1) operators.
Mesonic exchange effects and effects due to the
internal excitation of the nucleons have been ne-
glected and presumed small in this work. Micro-
scopic calculations of these effects along the lines
of Refs. 7 and 33 are needed.
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