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Coordinate space Faddeev techniques and a variety of potentials are used to calculate energies and wave functions

for the trinucleon system, both with and without a static Coulomb interaction between the two protons. The wave

functions are used to calculate first- and second-order perturbation theory contributions to the Coulomb energy of
'He. Because too few partial-wave components of the potential are kept, the energy eigenvalues themselves are
an inaccurate gauge of the Coulomb effect. The approximate hyperspherical formula was tested after calculating
charge densities and found to be accurate to better than 2 percent. It is demonstrated that when using a
phenomenological approach to the 'He Coulomb energy, the second-order contribution increases the Coulomb

energy by roughly 4 ~ 1 keV. Finally, sum rules relating to the T = 3/2 state probability and the size of the second-

order contribution are discussed.

[NUCLEAH STHUCTUHE He, Coulomb energy, Faddeev calculation. ]

I. INTRODUCTION

An old problem' which has not yet been fully
resolved is understanding the mass difference of
'He and 'H, the trinucleon system. Naively, one
assumes that the charge-symmetry breaking in
this isodoublet is due to the Coulomb repulsion
between the two protons in 'He, once the trivial
n-P mass difference has been accounted for. Until

recently, a serious problem in demonstrating this
has been the lack of wave functions whose genesis
was other than crude phenomenology. The advent
of Faddeev techniques' and their implementation,
as well as advanced variafional calculations, ' have

largely alleviated this problem.
A more serious practical problem, however, is

the fact that even the best "realistic" potentials do
little more than incorporate commonly held pre-
judices into semiphenomenological two-nucleon
forces; they contain a substantial number of free
parameters which must be fit to data. In addition,
there exist three-nucleon forces, necessitated by
the constraints of relativity and quantum me-
chanics, 4 of which our understanding is even less
than that of the more usual two-nucleon forces.

In view of these and other theoretical uncertain-
ties, it is scarcely surprising that the gross pro-
perties of the trinucleon system are only moder-
ately well reproduced by the best theory. The ex-
perimental binding energy of 'H, 8.48 MeV, is
larger than that calculated using realistic po-
tentials by approximately 1 MeV, while the calcu-
lated charge radii of 'He and 'H are about 10 per-
cent too large. Naively, the Coulomb energy

should scale as o./R, where o is the fine structure
constant and R is the "radius. " Knowing that the
calculated radius is incorrect, we should expect
that the Coulomb energy is also incorrectly given.

In this work we will concern ourselves with just
the Coulomb energy ~E, of 'He. The complete
764 keV binding energy difference of 'He and 'H

is certainly not entirely due to &E, although this is
by far the largest single contribution. ' Other con-
tributions are known to arise from the dynamical
effect of the n-p mass difference, ' magnetic and
other relativistic interactions between nucleons, '
isospin mixing in the mesons exchanged between
nucleons, ' and numerous other small effects. '
Our approach will be to calculate wave functions
by solving the Faddeev equations in coordinate
space» "and to use these wave functions in first-
order perturbation theory to calculate first-order
(AE,"') and second-order (bE,"') contributions to

~E,. The reason for our using this procedure is
that only a few partial waves of the two-nucleon
potential can be retained in order to keep the cal-
culations tractable, and this is a serious limita-
tion in the direct eigenvalue determination when

dealing with the long-ranged Coulomb potential.
The incorporation of the Coulomb potential into
momentum space calculations is much more com-
plicated and will not be discussed.

Our primary objective will be to test the "hyper-
spherical" formula, an approximation which
allows one to estimate ~F-,"' knowing only the
trinucleon charge densities or, equivalently, the
charge form factors. It will be shown in Sec. IV
that this formula is accurate to considerably better
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than 2 percent for five different potential models
with very different properties. This lends con-
fidence that the hyperspherical formula may be
used with experimental data to estimate &F-, more
reliably than using "good" wave functions with in-
correct radii. Moreover, it will be seen in Sec. II
that this formula has a simple semiclassical geo-
metric origin, which allows us to use experi-
mental data to scale model results to the correct
o./R. In addition, the small second-order contri-
bution will be calculated for these models and
scaling arguments used to estimate its size for
the physical 'He nucleus. Qur motivation for this
is the very large (10-20 keV) ~,"' found in some
earlier calculations. "'" An interesting secondary
result, demonstrated in Sec. III, is that when using
phenomenological approaches to estimate 4E,"',
such as the hyperspherical formula, the second-
order contribution increases ~,. A discussion
of the exotic T = —,

' component of the 'He wave func-
tion"" and sum rules relating to the Coulomb
energy are presented in Sec. IV. Results are dis-
cussed in Sec. V and a summary of the paper pre-
sented in Sec. VI. Details of the Faddeev calcula-
tion not found in Ref. 11 are relegated to an ap-
pendix.

II. THE HYPERSPHERICAL FORMULA

The hyperspherical formula' is most easily
"derived" as a semiclassical approximation. We
imagine the trinucleon as an equilateral triangle
with the nucleons a,t the vertices. The distance
between the two protons, x, is related to the dis-
tance between the center of gravity of the triangle
and either of the two protons r [which is the
coordinate that specifies the behavior of the
charge density p(r)) by the relationship x= Mpr

. Thus the expectation value of o, /x, which is AE,"',
becomes

(1/r) =
J

d'r
3 vg r

This argument does not specify the particular
combination of wave function components which
determines the various densities, or how the pro-
ton finite size enters. Neglecting the tiny neutron-
neutron contribution to &E,"', Eq. (2) of Ref. 5

may be Fourier transformed into the form given
by Parseval's theorem

Io 3

,'6, '(q'/3)P'. (q')+P„(q')] (2)
M3 2v '., q'

J g(r) [p, (r)+ p„(r)] =— (1/r), , (3)

where p, and p„are the point nucleon isoscalar and
isovector densities, respectively, whose Fourier

transforms are E, and F,. Our 'densities satisfy
f d'r p, (r) =1 and J d'rp„(r) =0. The c subscript
indicates the Coulomb combination of densities
and the inclusion of the proton form factors G~
through g. In addition, we have defined g by

g(r) 4v td qG, ( 2/3)
(2v)' ~ q'

This generates

(4)

III. PERTURBATION THEORY

Perturbation theory plays an important role in
our calculation; because there appears to be no
derivation of this in the literature for the coordi-
nate space Faddeev problem and because we wish
to make several points clear, we present a brief
derivation. We define" "permutation operatorsP" and P' ' for the three-body Pxoblem which are
cyclic [P"(123)= (312)] and anticyclic [P' '(123)
= (231)]; clearly these operators are inverses of
each other and also [P"']'=P"'. In addition, it is

gD(r) = 1 —e "(1+1lx/16+ 3x'/16+ x'/48) (Sa)

with x= v 3Ar if we assume a dipole form for G,:
G~(q') = (1+q'/A') '. (5b)

Na«rally, g~(r) vanishes for r-0 and approaches
1 as r -~ or as A -~ (point protons). The scale
of the Coulomb energies is given by hca/v 3
='831.37 keV fm and that of the nucleons by&
=4.270 fm '

Equation (3), providing that it is accurate,
allows us to extrapolate from charge distribu-
tions whose size is too large or small to the
physical one. Although it has been known for a
long time that the wrong radius would produce the
wrong Coulomb energy, it had not been appre-
ciated that one should scale this energy like (1/r),
rather than I/(r')'~' Ass.uming that Eq. (3) is
accurate, scaling ~E, for various distributions
with (r') '~' would clearly not be as effective. It
is fairly straightforward to use the Holder in-
equality" to prove that for. any non-negative p(r),
(1/r) )(r') '~', and for a selection of simple one-
parameter densities (uniform, exponential,
Gaussian) one finds that the product of (r')'~'(I/r)
is [(~~)'~ (6/v)'~ . v3] or (1 16 I 38 1 p3) Th}s
shows a considerable variation of (1/r) even when
(r')'~' is fixed. A similar relationship holds with
the inclusion of the nucleon form factor. [A rough
formula which works for either point nucleons,
point nuclei, or Gaussian form factors for both
nucleon and nucleus is (1/r), = ((1/r)„-2
+ (1/r)~ ') '~', where N refers to the point nuclear
distribution p, + p„, while p refers to a moment
with respect to the convolution of two identical
proton distributions, "each scaled by ~3:p~"'(M3r). ]
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(E —T —V, )$, = V, Pg, , (6)

where T is the kinetic energy and U,. —= U» for a
pair of nucleons (j, k)c i. The three Faddeev
amplitudes g,. are permutations of each other and
generate the total wave function according to

easy to prove that the P's are real operators and
that [P"']'=P"'=[P"'P = [P"'] ' Thus, P"' are
orthogonal operators. Defining P =P' '+P' ' with
P' =P, the three Faddeev equations can be written
in coordinate space in the form

contribution, is negligible, we find

«&» =-&e
I
~v Ie&

—= &~
I
~VI~&+&~ l~vl ~q&+&~~

I
~vl c&

~E &&) + 2~E(2) (»)
This interesting result demonstrates that using
wave functions which include the effect of &V (in
our case, wave functions which include the effect
of Coulomb distortion) requires us to subtract
4E"' from &E"' in order to obtain ~E:

+= Z4;=(I+P)0;

We choose to work with li„which we denote by g,
and note that II=—T+ Vy+ VyP is not Hermitian in the
usual sense because P and U, do not commute.
However,

(1+P)H =H'(1 +P), (6)

~~ 1+P ]=5~,. 3. (9)

If the potential U, is written as V+ &V, (&V= &V,
+ &V, + AU, ), perturbation theory may be derived
by writing

(E —T —V —VP)g = &V(1+P)t/) (10)

and postmultiplying by pt(1+P) We have .defined
P to be the solution g with &V= 0, corresponding
to E =E„and find using Eq. (7), 4 = (1+P)P, and
the antisymmetry of 4 and 4 that

&C i~Vie&
&4 I @)

3&/ I (1+P)n V(1+P) i g&

&e ie&

This is the usual starting point for Schrodinger
perturbation theory, "which exhibits the crucial
importance of the permutation operator P.

The first two orders of perturbation theory may
be derived by writing 0 =—4+ &C, with ~4 of order
~V. We use normalized wave functions 4 and 4,
which means that &4 I &4& = 0; normalization cor-
rections arise in second order in &U. This leads
immediately to

«-=&+I«l»+&c I&vl&q&=-«&»+&«»

(12)

If we choose a, method for estimating ~E which
uses 4 instead of 4, and if ~E"', the third-order

which is the Hermiticity relation allowing one to
prove that energy eigenvalues are real, Faddeev
wave functions corresponding to different energies
(g& and P,.) are orthogonal, etc. The latter condi-
tion becomes

gE(&)+ gE(&)
(15a.)

gE (1) gE (1)
gE(2)

2
(15b)

Finally, we note that these results hold even if
a nonlocal potential is used, which is the usual
case with Faddeev calculations. That is, two-body
forces are partial-wave projected and only a
limited number of such waves are kept:

v, , = lzz&v(x)(jj I+ (16)

where lij& is a channel projector for the inter-
acting pair (ij) in some partial wave. As first
noted by Gignoux and Laverne, " the long-range
nature of the Coulomb force can lead to serious
inaccuracies if we truncate it to a, single partial
wave ('S,). The missing 'P and higher partial
waves can make an important Coulomb energy
contribution in the Faddeev eigenvalues. But even
in the absence of. 'P forces our perturbation theory
wave functions include induced (relative coordi-
nate, two-body) 'P components because the per-
mutation operators P" and P' ' generate such
wave function elements in rearranging the various
nuclear coordinates [see Eq. (11)]. If one trun-
cates the Coulomb potential in the manner of Eq.
(16), these components do not contribute to «,
in perturbation theory because they are eliminated
by the projection operators. However, used with
the complete (all partial waves) Coulomb inter-
action, the permutation induced components can
generate significant contributions. We note that
the induced components are always used when the
density p is calculated [see Eq. (9)]. Thus, be-
cause we wish to correlate &E, and p, it is irn-
p.ortant for us to calculate the Coulomb energy
using the perturbation theory approach, a method
which includes the effect of all wave function com-
ponents.

gE (1) gE (2)

Since &E"' is always negative, ~E is greater than
4E"'. Furthermore, forming sums and diffe-
rences we obtain two useful expressions:
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IV. SUM RULES AND SCALING

g lÃ&&N I v, I c)
Eo-E»

Introducing a projection operator P,&„ which is
nonvanishing only when acting on T = —, states, we
can write

(17)

th

3/2 (18a)

which defines &E, and the T= 2 probability be-
comes

(C I V, P3/2V, 14)
3/ 2 (gE )2

(18b)

expressed in terms of 6E, the effective excitation
energy. As noted by Werntz and Valk, "~E )E~,
the total binding energy, and this allows an in-
equality to be written for P3/

I „,-&c Iv, t „,v, Ie»/E, '. (19}

Their estimate was P, &, -1.7 10 ' for the Coulomb
potential. We will see later that (19) overesti-
mates P,&, by a factor of 50-200 for the cases we
have examined, because &E &50 MeV, while E~
= 8.5 MeV.

Exact wave functions for the Coulomb problem
contain several ingredients which are not present
in the absence of this force. In particular, the
Coulomb force averaged over all nucleons (i.e.,
P~«/n/r, /) simply expands the wave function,
without changing its symmetry character. " The
remainder of the force is of mixed-symmetry
character and distorts the wave function by chang-
ing the amounts of S' (mixed-symmetry) states, for
example, as well as creating a T = —,

' isospin corn-
ponent of the wave function. " This classification
of the Coulomb effect into distortion and expan-
sion categories is due to Ohmura. ." The T = —',

component is quite small, as we will see, and

neglecting it does no serious damage to Coulomb
calculations. As noted by Gignoux and Laverne, "
if the T = —', component of the Faddeev wave function
is dropped, the resulting Faddeev equations for
the usual set of S- and D-wave potentials is made
smaller by one component and differs from the
charge-symmetric case by the addition of 2/3V,
to the 'S, potential, presuming of course that only
S waves are kept for the isospin triplet channel.
This may be verified using Eq. (A4). This approxi-
mation is therefore extremely easy to implement
in standard two-, three-, four-, and five-channel
Faddeev calculations.

The first-order wave function change ~C due to
the Coulomb interaction can be written in the
form"

Equation (17) may also be used to write the
second-order perturbation theory result in the
form

i &1V I V3 i 4) I

NAO E EN

[&e I v. Ie& I&c I v, le& I ],
2

(20)

We will demonstrate numerically that the assump-
tions are very reasonable. In a manner similar to
that used in deriving Eq. (3), a hyperspherical
formula for (V,') may be written in the form
n'&g(r)/r'), /3. Note also that the T = —,

' contribu-
tion to 4E,"' can be written in the form

«,"/"=-&c lv, p„,v, le)/«=-&EI „,. (21b)

Clearly this contribution is second order in V„
because only ~4, as opposed to 4, contains T = —,'
components. (The coupled T = —,', T = —, set of
equations for the isospin triplet channel is a 2 & 2

problem in which the off-diagonal matrix element
contribution to the energy comes in second order,
as is well-known, ) Obviously, 4E,"/" is small,
although the large value of 6E makes the energy
shift larger than simple estimates might produce.

V. RESULTS AND DISCUSSION

Specific numerical calculations of Coulomb
energies were performed for several models:
(1) a one-channel (three-boson) model using a
local potential" with repulsion (MT V); (2) a two-
channel calculation using the local S-wave Malfliet-
Tjon I III potential" (MT —I III); (3} a two--channel
calculation using the local S-wave Malfliet- Tjon
II-IV potential" (MT II-IV); (4) a truncated
three-channel calculation using the 'So, 'S, —'D,
components of the Reid soft-core potential"

where 6E, in this equation is not, the same as ~E
in Eq. (18). Furthermore, because there are only
two protons, the Coulomb potential. between the
protons, V, = n/r», when squared becomes V,'

n'/r»' Th. is is easy to generalize to include
finite size; the important point is that the isospin
structure is identical to that of the Coulomb inter-
action. An interesting phenomenon in deuteron
photodisintegration" is that the dipole strength
function peaks at E„—= 2E~, where E„ is the inci-
dent photon energy. Roughly the same behavior
occurs in trinucleon photodisintegration. " It is
therefore reasonable to assume that &E, =—XE~;
furthermore, it is also plausible from dimen-
sional considerations that (4' IV: Ic» -=i/ l&~ I V. I~& I'
These assumptions lead to

-(V —1) i «,"'
i

'
C
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(RSC3); (5) a complete five-channel calculation
using the same components of the RSC potential.
(HSC5). In cases (2) and (3) two distinct ap-
proaches were used: (a) add 2/3V, to the 'S,
potential; (b) introduce an extra channel. (for a
total of 3) by adding the T = —,

' wave function com-
ponent. The BSC cases were computed using the
spectator approximation (2/3V, ) in the 'S, channel.
The one-channel case was used only to test the
hyperspherical formula.

Our results indicate that differencing the eigen-
values of the Faddeev equations with and without
the Coulomb interaction is less stable than using
perturbation theory, Eqs. (15), particularly for the
RSC cases. In addition, the use of perturbation
theory allows us to include the complete Coulomb
potential, rather than just the S-wave projection.
We feel that this is important, since the density
is calculated using all of the wave function rather
than selected projections. Our procedure will
allow us to correlate size and Coulomb energy in
a far more effective manner. A summary of these
results is presented in Table I. Not all the num-
bers are well converged in the last significant
figure, but they have been listed so that diffe-

rences may be taken. Our results for the Coulomb
energy calculation in perturbation theory corre-
spond to a model with the complete Coulomb po-
tential (i.e. , all partial waves) and the usual set
of partial-wave strong interaction potentials.
Quantities labeled with an overscore indicate that
the dipole form of the nucleon finite size was used
in constructing the Coulomb potential. We empha-
size that wave functions calculated using V, must
be used when taking the expectation values of U,
in order for the perturbation approach to be con-

sistentt.

A super scr ipt 0 indicates the hyper-
spherical formula was used to calculate ~E,"' and
the prime indicates that Coulomb distorted den-
sities were used. The vms radii reeve calculnfed
fox Point nucleons only Th. e quantities &E~ and
~E„are the eigenvalue differences from the
Faddeev equations and the perturbation theory
estimates of ~E, using the S-wave projected
Coulomb potential, respectively. The latter quan-
tities should be equal, and in fact are quite close
except for the RSC5 case which is the least well
converged of all our calculations. We expect that
the perturbation theory estimate is more accurate
than &R~. Note the substantial difference between

TABLE I. Properties of 3He and H for various potential models. Entries are discussed in
the text.

MT II-IV MT I-III RSC5

E, (MeV)

Ec (keV)

~~'~ (keV)

DE {keV)

aE' (kev)

~E('~ (kev)

4E, (keV)

DZ&~~ (keV)

Ec (keV)

~E~+ {keV)

(%%uo)

&L (%)

(~')'H~,' (fm)

(r')'H» {fm)

4E~ (keV)

&E@ (keV)

&EJ. (keV)

4E~ (kev)

11.88

1028

1042

1026

851

0.68/0. 79

1.367/1.394

1.287

1020

1020

839

840

12/5

8.54

700

647

639

1.95/2. 17

1.772/1. 805

1.616

656

656

624

6/4

6.38

608

614

640

590

598

1.88/2. 21

8.O1/8. O6

1.987/2. 036

1.770

525

525

605

660

609

617

609

1.66/1. 93

9.1Of9.17

1.894/1. 933

1.698

558

554

530
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~E, and ~E~ or ~Ep. This reflects the difference
between using the complete V, and its S-wave pro-
jection, and is particularly large for the BSC
cases. The error due to using projected Coulomb
wave functions in matrix elements of the complete
Coulomb potential should be quite small.

'The first important observation is that the first-
and second-order results vary over a wide range
for the point Coul. omb interaction and over a sub-
stantial range for the finite-size Coulomb results.
The next thing to note is the correlation between
&E, and 1/(r')~sr, ' T.his correl. ation is only par-
tially present in ~E,"' indicating that the latter
quantity depends on other variables (such ss Es).
The two separate radii for 'He quoted in each
entry were calculated without (4) and with (4)
Coulomb modified wave functions, respectivel. y.
The effect of the nucleon finite size in V, wa, s
relatively unimportant, except for the tiny T =-',

state probabilities quoted in the last line (quoted
without and with finite size) and the large change
in &E, in the MT II-IV case. The latter effect is
due to the lack of repulsion in the potential, which
produces wave functions that are sensitive to the
short-range behavior of the Coulomb interaction.
Repulsion in the other potential models makes
them relatively insensitive to this unphysical ef-
fect. The entire T = -,' state and the indicated in-
creases in S'- and D-state probabilities when the
Coulomb potential is introduced, are examples of
the distortion effect of the Coulomb interaction.

Of primary interest is the comparison of &E,"'
and the corresponding quantity calculated using the
hyperspherical formuLa, hE", . The ~E", for the
MT II-IV case is too small, but the inclusion of
finite size (overscored quantities) dramatically
decreases the discrepancy. The remaining cases
have values for &E", which are too large by ap-
proximately 4 percent, in agreement with Bef. V,

while the inclusion of the proton finite size reduces
the discrepancy to less than 1.5 percent. In addi-
tion, the M7.'-V potential generates a 'H energy of
7.54 MeV, rms radius of 1.727, hE,"'/&E,"' equal
to 716/674 keV and &E,"/&E," equal to 736/674
keV. These results are summarized in Fig. 1,
which illustrates &E,"' plotted against (1/x)„ the
hyperspherical quantity. The cir cles and triangles
refer to point Coulomb and dipole form factor
cases. The solid line indicates the hyperspherical
prediction, while the "error bar" of +2 percent
is only meant to give the eye a scale. The arrows
point to the values of (1/r), calculated using the
experimental form factors for He and 'H, which
allows us to deduce 682 and 639 keV for the point
and finite-size Coulomb energies. " If the devia-
tions we have observed are representative of the
actual physical situation (which is by no means

I050

1000

950

900

&' 850
0)

800; C.)

CI &50

700

650

600

550-—--—-&-
0.70 0.80

I I

090 I.00 I.IO

(~/r)c (f~ )

I.20

FIG. 1. Test of the hyperspherical formula AE',."
vs (1/r), for point Coulomb (circles) and finite-size
triangles) Coulomb potentials. The error bar (+3%)
is to guide the eye only. The arrows indicate point and
finite-size values of (1/r) „calculated using the physi-
cal values of the trinucleon charge distributions.

guaranteed), assuming a 2 percent error for the
hyper spherical formula is reasonable. Table I
also contains a calculation (&E,"') using the finite-
size version of the hyperspherical formula and the
Coulomb modified densities. These results should
differ from ~E," by 2~8,"' approximately, as
suggested by Eq. (13), and they do.

One notable effect is the non-negligible change
in the 'He rms radius due to Coulomb expansion,
which further increases the discrepancy between
theory and experiment. In many previous calcula-
tions, it was remarked that the experimentally
known radii"'" of 1.'10+ 0.05 fm for '8 and 1.89
+ 0.05 fm for 'He were in good agreement with the

BSC5 calculations. These remarks are incorrect
because they fail to take into account the finite
size" of protons and neutrons which are neces-
sarily included in experimental data, but are often
left out of calculations. Using " (x')', ~'=. 0.636 fm
and (r')„'~'= -0.34 fm, one finds the "experimental"
point nucleon values of the 'H and 'He rms radii,
1.56 and 1.69 fm. Alternatively, our point values
of 1.698 and 1.933 fm correspond to finite nucleon
ra,dii of 1.831 and 2.092 fm. We note that the
Coulomb interaction changes the isoscalar and

isovector components of the 'He density by roughly
equal amounts, 0.033 and 0.039 fm.

%'e indicated earlier that the T = —', component. of
the wave function makes a very small contribution
to observables. We have isolated this contribution
to M, and (x')'„~,' for the two cases we examined.
Defining
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TABLE II. Second-order Coulomb properties of He for various potentials. An overscore
indicates the use of V, . Entries are discussed in the text.

MT II-1V
MT II-IV
MT I-III
Jl/IT I-III
RSC3
RSC3
RSC5
RSC5
MT V
j/IT V

13.6
5.4
5.1
3.9
5.6
4.6
4.9
4 p

7.2
4 4
4.7
4 p

4.6
4.1
4.1
3.6

0.970
0.219
0.358
0.226
0.352
0.255
0.334
0.239
0.374
0.221

78+ 3
29+ 3
32+ 3
23+ 3
24+ 2
19+2
28+ 3
22k 3

6.5+ 0.3
2.4 + 0.2
3.7+ 0.4
2.7&:0.4
3.7& 0.3
3.0+ 0.3
3.9+ 0.4
3.2 + 0.4

171
96
83
63

&E = &E + AE' ' and (r')' '= ((r') + &(r')' ')' '

we find that the isovector part of the matrix ele-
ments involving the T = -', components generates
(essentially) the entire contribution. For the MT
II-IV case, the T =

& contributions are ~', '
= -0.99/-0. 31 keV and [&(r')'„~']'~' = 0.052/0. 043 fm
for the point and finite-size problems, while the
MT I-III case generates -0.32/-0. 22 keV and

0.053/0. 049 fm for the corresponding cases. Both
changes are negligible. Table II lists the effective
energy for the T = $ state [&E(—,')] calculated using
our value of P, &, and Eq. (18b). These numbers
are only significant in that they are large; using
Eg. (2lb) leads to different (but large) values for
&8, for example. This is a reflection of the mixed
symmetry of the T = —,

' components, whose spatial
structure is typical of states of high energy and
leads directly to a tiny I', &,. Alternatively, the
matrix element of the Coulomb potential between
T =-,' and T =-,' states is small because the Coulomb
potential is smooth and does not easily connect
primarily space-symmetric and mixed-symmetry
wave functions. These two statements are not
really different in content.

'Table II also contains the second-order Coulomb
energies &E,"'. The second column contains the
scaled values of ~@'(~P'); that is, we assume
that ~,"'-~ ~,"'~'/Es and have scaled the num-
bers tothe "physical" values of ~,"'=640 keV and

E~ = 8.5 MeV. Except for the MT II-IV point
Coulomb result, these numbers are approximately
the same, with the point Coulomb results roughly
—,
' keV higher. The scaled sum rule (g —1) from
Eq. (20) is listed in the next column. The finite-
size results are all approximately the same,
indicating that the scaling assumption is reason-
ably good. The effective excitation energy ~E, is
listed in the next column, with an error estimated
by assuming that the error on &E,"' is +0.5 keV.
Scaling these numbers by the appropriate E~ re-

Second Order He

Coulomb Energies —h, Ec

0
0) 9—

Point Nucleons

+ Finite (Dipole) Nucleons

(rf -m) (I-III) (RSC&) (Rst-5)

Scaled DEc

MODEL

FIG. 2. Magnitude of the second-order Coulomb en-
ergies gE~~ before (above) and after (below) scaling for
the four potential models discussed in the text. Circles
and triangles indicate the point and finite-size cases.

suits in the next column. Note that the inclusion
of the T =-', state increases ~E,"', which increases
~E,'", thereby lowering 6E,. This would bring
the BSC results closer to the MT results, parti-
cularly for the (physical) finite-size case. We
thus expect p, —1—= 0.24+0.03 and X=—2.75 —3 for
this case, which results in a scaled value of ~E,"'
= -4+1 keV. A plot of unscaled and scaled values
of &E,"' is shown in Fig. 2. Our value for X is
somewhat higher than that found for dipole excita-
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tions. " If one uses the hyperspherical formula
for the sum rule, one finds values of (U, ') some-
what too large by 5-10 percent; it therefore works
less well than for (U,). This is quite a reasonable
result, since V, is a smoother operator than V,',
and the hyperspherical approach is better for
smoother operators.

There exist few previous calculations which can
be used to compare with our results. Kiang and
Ng" calculated variational wave functions using
two different central potentials with a point
Coulomb interaction and found -20 keV and -9
keV, respectively, for ~E,"'. Their results,
scaled as we conjectured, give -4.6 and -5.4 keV,
consistent with ours. Delves and Hennell's"
variational results for the Hamada-Johnston po-
tential yield -4.5 keV for a point Coulomb inter-
action, which scales to -4.4 keV. Erens" found
-12 and -5 keV for the MT II-IV and MT I-III
potentials, which agree with our results fairly
well. His results for the Coulomb energies for
the former potential are approximately 3-5 keV
larger than ours and 10 keV larger for the latter
potential. Correspondingly, his radii are slightly
smaller, more so for the latter potential. Overall
agreement on the second-order scaling hypothesis
must be considered good, and the physical value
of ~E,"' correspondingly small.

Few calculations exist for the T = ~ state. Using
a variety of models without tensor forces, Oh-
mura" found T = —,

' state probabilities generated
by a dipole modified Coulomb force ranging from
3 to 7&10'. He also found changes in I'~, of

roughly 0.1 percent. Both numbers are consistent
with ours. Gignoux and Laverne" found 20 10 '
for the BSC3 model, which also included other
charge- symmetry-breaking potentials. Their
change in the 'He radius, 0.08 fm, was somewhat
larger than ours, as was the change in I'~,. A

similar calculation for the dTS potential gave
10 10 '. Bell and Delves, " on the other hand,
found 50 & 10 ' for a simple Yukawa potential in

a variational calculation. Gignoux and Laverne"
found -610 keV for &E,"' in the BSC3 model, while
Haftel" found 608 keV. Hennell and Delves" found

smaller values of ~E, but their radii are also
somewhat different for the BSC case. Malfliet and
Tjon" found 630 keV for the BSC potential, in

general agreement with our result. The Gignoux
and Laverne" result for BSC5 appears to use the

projected Coulomb potential and thus is consider-
ably smaller.

VI. SUMMARY

We have calculated first- and second-order
Coulomb energi:es using perturbation theory and

Faddeev wave functions for several different NN

potential models. The first-order results have
been compared with those of the hyperspherical
formula in each case, and. the agreement was
found to be good (better than 2%) for nucleons with
finite size. This permits us to scale model re-
sults for &E,"' to the correct physical size. The
validity of scaling for the second-order results
has also been tested and found to be more than
adequate for our purposes. The difference between
"first-order" Coulomb energy estimates using
wave functions with and without Coulomb distortion
is essentially 2~E,"'. Thus, the use of phenome-
nological methods which fit the 'He charge density
double counts the second-order contribution, and
it must be slbf, acted in those cases, which in-
creases the 'He Coulomb energy.

The hyperspherical formula, when aP&lied to

eyrie)'imental data, ' uses (4p„, —pa)/3 (if we ignore
the neutron's form factor). This is equivalent
to p, + p„ if these latter quantities are identical for
'He and 'H, which was assumed in the derivation
of the formula. Since p„, contains Coulomb ef-
fects, the assumption is untrue, and the numeri-
cal output of the formula contains a multiple of the
hyperspherical approximation to ~E,"'. We find

bEexy bE()) + 8 bE(2) 4 bE(2)( )H (22)

APPENDIX A: FADDEEV EQUATIONS

For 'He we consider three identical particles
with spin equal to one-half and isospi. n equal to

where ~EH' and ~EH ' are the hyperspherical
estimates of &E,"' and &E,"', respectively, while
&E„"'(v) is the isovector part of bEH" The latt.er
quantity is roughly 4 of ~EH" in the cases we have
examined, and &EH" itself is a reasonably good
approximation to ~E('). Thus, ~EH"'=—~EH(

+VbEz")/3, and in order to correct this overesti-
mate of bE,") we must subtract 4&Eg'/3 from
&EH"', which increases the hyperspherical esti-
mate of 4E, from experimental data:

Using the previously calculated value' of &EH"'

(639 keV), we estimate the pure Coulomb trinu-
cleon energy difference to be ~E, = 644+ 12 keV,
where we have utilized our estimate of ~E,"'= -4
+ 1 keV. We find a substantial change of approxi-
mately 0.04 fm in ()'"/~2, when Coulomb distorted
wave functions are used; this results from the

Coulomb expansion of the wave function. We con-
firm the small probability for the T = ~ wave func-
tion component (P,&,

~ 10 '), which is attributed
to its mixed-symmetry nature.

We would like to thank Dr. S. Coon for a very
useful discussion. This work has been performed
under the auspices of the U. S. Department of

Energy.
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one-half. For the independent center-of-mass
coordinates we use

x ~ = rg —rg, )

TABLE III. The quantum nuxnbers of the three 4=2
states formed from three particles interacting in rela-
tive S states by means of strong plus Coulomb poten-
tials.

e = (1+P' )+P('&)P(x„y,)

= g(X„y,)+ 4 (X„y,)+ g(z„y2), (A1)

the distance between the interacting pair j and Q,

and

y,. = —,
' (r,. + r„) —r, ,

the distance between the third particle and the
center of mass of the interacting pair. The three-
particle totally antisymmetric wave function is
written as

(2. &AS~ (2 &4&n

(-.', ~)-.'

(-,', 0)-,'

(1 g)3

" ' l[(&.&.)L., (-,', s.)&.]
n +11

xZM, (
—'„i )T),

where +(x„y,) is antisymmetric under the inter-
change of the interacting particles 2 and 3. The
operators P" and P' ' are the cyclic permutation
operators for the three particles. The Hamiltonian
for the three-particle system is

H = T + V(x, )+V(x, ) + V(x,),
where V(x, ) = V„(x,)+,—'[1+v, (2)][1+w, (3)]V'(x, ) is
the nuclear interaction plus the Coulomb inter-
action. Since 4 is totally antisymmetric, the
three Faddeev equations are identical, and it is
only necessary to solve one of the three equations.
Consequently, we consider only the equation for
(j'(x)&7&)» e

&

[T + V(x, ) —&]((~„y,)
= -V(x, )[g(x„y,) + ())(~„y,)]. (A2)

For (I)(X„y,) we use a partial-wave expansion in
the I -8 basis:

= orbital angular momentum of particles 2 and
3

= orbita. l angular momentum of particle 1,
s = spin angular momentum of particles 2 and 3,
t, = isospin of particles 2 and 3,

= total orbital angular momentum,
S = total spin,
T = total isospin, a.nd

= total a,ngular momentum.

For the calculations of T = —,
' wave function com-

ponents presented in this paper we consider only
particles in relative s states, i.e. , l =X =I- =0.
For a system with a total angular momentum of

— one-half, only the three states listed in Table III
are needed.

'The coupled equations for the three channels
listed in Table III are obtained by substituting Eq.
(A3) into E(l. (A2) and projecting out the various
channels. The resulting equations are

(
8 3 8 ( 1

;+ — .-~' ( (x » ) = &),, ( ,), („,(x,„», ) + "d'"&' !e,((*., ».) - &«( ( » ))I. ., .
+ U (x, ) 2/3&, (x„y,) —-- —P, (x„y,)y2

+ ~)L( 4y 2pg2 242 2&72 3 2&~2x,y2

(A4b)( , +—,, rr' (x„() &(~», ) (,( „-),) =— ~g ' '
( 2«(, (x„w.)+l 4.(~., w. )1I-,

—

(
+U (,)I- ~

("4', &" & ' ("(, &' &

v2

x,y, v2
4& (x2) y2) 4 42(x2& 3 2) 6 43( 2& V2)12 4 6 (A4c)
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where

and the. nuclear force llRs R Sp part Rnd R Sy part.
The quantity p. is the cosine of the angle between

'xy Rnd y, ~ For the numerical solution of these

equations, they are rewritten in terms of the
variables p and e„where

xy p cos6i

Rnd

y, = —,'v 3 paine, ,

and the resulting equations are solved using the
techniques in Ref. 11.
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