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The formulation of Faddeev-type equations in configuration space is discussed. Numerical solutions are obtained
using splines and the method of orthogonal collocation. Triton observables and wave-function probabilities are
calculated for s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison
with previously published triton results is made; our full five-channel results for the Reid soft-core potential are in
excellent agreement with those obtained by Afnan and Birrell using separable expansion methods.

[NUCLEAR STRUCTURE H, Faddeev calculations configuration space. ]

I. INTRODUCTION

Prior to Faddeev's revolutionary papers' on the
t-matrix approach to the three-body problem,
most of the work on the bound state of the trinu-
cleon syst' em was variational inapproach. Mitra,
however, had realized that for separable poten-
tials one could solve the Schrodinger equation
directly for the triton bound state and n-d scat-
tering length problem. One can, in fact, work
direct1y with the Schrodinger equation for the
triton bound-state calculations, employing local
potentials as well. Part of the purpose of this
paper is to emphasize this point and to remove
some of the mystique often associated by the
nonexpert with the term Faddeev calculation"
when applied to trinucleon bound-state studies.

We choose to work in configuration space rather
than momentum space, because we wish to ex-
plore the wave function of the triton bound state in
terms of spatial coordinates. These are the co-
ordinates where we are familiar with the deuteron
wave function and where our intuition is stronger.
We hope to provide that same intuitive feeling for
exact trinucleon wave functions. Prior to pub-

lishing such studies, we report here on our num-
erical methods and convergence and compare our
results with those previously published. We ex-
amine triton bound-state properties for the local
potential models of Malfliet and Tjon' (s-wave
potentials) and of Reid' [the Reid soft-core (RSC)
potential which includes a tensor force in the
'S, —'D, channel]. We compare binding energies,

wave function probabilities, and rms radii where
available with the momentum space calculations
of Malfliet and Tjon and of Kim and coworkers, "
the configuration space calculations of Gignoux
and Laverne, ' and the separable expansion cal-
culations of Afnan and Birrell. 9

In Sec. II of this paper we discuss the three-
body bound-state equations for the specific case
of three pairwise interacting bosons in an attempt
to make the problem transparent. (The details
of the general spin-isospin equations including
the tensor force are contained in an appendix. )
We emphasize that our equations are equivalent
to the usual t-matrix formulation of the Faddeev
equations for the bound state. In Sec. III, we
outline our numerical methods; in particular, we
discuss the use of spline functions in the context
of orthogonal collocation. In Secs. IV and V there
appears a detailed account of our numerical re-
sults for the s-wave potential model and tensor
force models, respectively. We summarize our
results in Sec. VI.

II. THREE-BODY EQUATIONS IN CONFIGURATION
SPACE

The "Faddeev equations" in configuration space
were first derived by Noyes' for the three-body
scattering problem where the Lippmann-Schwinger
equation does not yield a unique solution. Sub-
sequently, the equations were applied to numerical
studies of the bound-state problem"" as well as
the scattering prob1em. " The angular momentum
decomposition of the wave function in configuration
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space required by these equations is identical to
the angular momentum decomposition in momentum
spa0e. Since the details of the angular momentum
reduction of the equations have been discussed in
many papers, '"~"~"we will not repeat the de-
rivation here. Instead, we shall simply review the
derivation of the three-body equations for identical
bosons interacting via a local two-body potential
starting from the Schrodinger equation in config-
uration space. Equations for particles with spin
are given in the Appendix for the particular cases
discussed in this paper.

We consider three equal mass, spinless particles
with coordinates r» r» and r, . For the indepen-
dent center-of-mass coordinates we use the usual
Jacobi variables

ents indicate which of the coordinate permutations
should be used [see Eq. (7) below].

For the purposes of the present discussion, we
consider the three bosons to be in relative s
states of angular momentum. We define (for con-
venience and in analogy with the usual prescription
for the corresponding two-body bound-state prob-
lem) the reduced wave function p(x„y, ) for the
l =D partial wave by

y } 0(x y }/(xly1) ~

Equation (4a} (for particles with mass m) can now

be written in the form

8 3
BX1 4 8/1

, +—,— —U(x, ) IP (gx—„y,)

and

(1a)
U( )

0( 2& y2) 0( 3t y3)
+23 2 +03

y, = Z(r, + r, ) —r, , (lb)

where i, j, k imply cyclic permutation. The Ham-
iltonian for the three-particle system is assumed
to be of the form

H= T+ V(x, )+ V(x,)+ V(x,), (2)

where T is the kinetic energy operator in the
center-of-mass coordinates. The total wave func-
tion 4 for the three-particle system can be ex-
pressed as the sum of three terms:

x2 = 2 (xg —4xLy~p + 4yg )

1 9y2= 2 (4xi + 8xDi&+yi }

xs = 2 (xg + 4x~y~ p+ 4y~ )

1 .9
y3 2 (4 1 8xlyli yl )

(7a)

(7b)

(7c)

(7d)

where IP = -mE/5' and U(x, ) = mV(x, )/5'. Using
Eqs. (la) and (1b) one can verify that the permuted
variables are

+=&(x„y )'+4(x., y.}+4(x., y.) = 4, +4.+P. . -

[T+V(x,)-E] (,=-V(x,)[(,+(,],
[T+ V(x,) -E] g, = —V(x,)[g,+ Q,
P + V(.,) -E]C.= -V(x.)[C,+ &.].

(4a)

(4b}

(4c)

Adding these three equations gives back the
original Schrodinger equation. Since the three par-
ticles are identical, the three Faddeev equations
are identical in form and it is only necessary to
solve one of them. Consequently, one needs to
keep only the first equation and to bear in mind
that the subscripts on the wave function compop-

(This is, in fact, the key to the Faddeev decom-
position of the f-matrix equations. ) The functions
g„g„and g, all have the same functional form g
since the particles are identical; the total wave
function is the sum of three partial amplitudes
which differ only in the permutation of the coordin-
ates describing the three particles. The Schrodin-
ger equation

(H E)4 =0- (8)

can then be separated into the three coupled equa-
tions

where p is the cosine of the angle between x,
and y, . Integrating both sides of Eq. (6) with
respect to p, and dividing by 2(i.e., projecting
out the s-wave components of the equation) leads
us to the integral. -differential equation

g2 3 82

4, + —,, -U(x, )-Z2 y(x„y, )

f' 1

=U(x, )J dp, ' ' gx„y,). (g)-1 &&2

Following Noyes" we make the convenient polar
coordinate change of variables given by

x] =p cos8] (IOa)

(8)
Replacing p by —jU in the second term of the right-
hand side of Eq. (8) and using the coordinate re-
lations defined in Eqs. (7a)-(7d) permits one to
reduce this to

82 3 82

, , +-, , —U(x,)-Z' y(x„y, )2+1 31
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y, =-,'Map sine, , (10b)

tentials (e.g. , the Coulomb interaction) which
couples all partial waves.

III. NUMERICAL METHODS

since the exchange integrals then couple only
through the single variable 8 (and not p). Now Eq.
(9) can be written in the form

1 g2
, +——+—» —U(p cos8, ) -E' P(p, e,)Bp' p sp p' se,'

8+

=~ tr(p cose, ) y(p, e,)de, , (11)
8-

where the domain of integration 8, is shown in
Fig. 1 and where 8, is defined in terms of 8, by the
relation cos28, = ——,'[cos28, +p&3sin28, ]. Equation
(11), with the boundary condition that P goes to
zero in the asymptotic region as well as along
x, = 0 and y, =0 (8, =0, and 8, = m/2), is the in-
tegral-differential eigenvalue equation for the
reduced, bound-state wave function amplitude

Q(x„y,) with eigenvalue ff . The corresponding
equations for particles with spin and higher par-
tial waves have the same form except for the ang-
ular factors. In addition, for particles interacting
through more than one partial wave, one obtains
equations for various angular momentum com-
ponents, which couple through the exchangeterms.

We remark that the difficulty"'" of truncating
the three-body wave function will not be a prob-
lem in this paper; we will limit our consider-
ation of two-body potentials to those which are
restricted to interact in no more than the 'S„
'S, —'D, partial waves since these NN channels
provide the main contribution to the binding en-
ergy and this restriction permits us to compare
with the solution of the same problem by other
authors. However, we note that truncation is a
nontrivial problem in the study of truly local po-

8
2

To solve Eq. (11) of the previous section, we
use the technique of orthogonal collocation de-
veloped by deBoor and Swartz. " The wave func-
tion p(p, 8) is expressed as a bicubic spline on
a rectangular grid in the p-0 coordinates

N

y(x„y,)= Q Q a„„s (p)s„(8) . (12)
m=1 g= 1

Here we choose for s„(p) and s„(8) piecewise Her-
mite polynomials. " The method of collocation con-
sists of finding the function P (x„y,) which satisfies
Eq. (11) at M distinct values of p,. and N distinct
values of 8, If one chooses these points to be the
two-point Gaussian quadrature points for each parti-
tion, the technique is known as orthogonal colloca-
tion. The convergence properties of this method are
given in Ref. 17. The requirement that the differ-
ential equation be satisfied at the collocation
points gives a set of M & N linear equations for
the coefficients a „. Thus, one must solve a
matrix eigenvalue problem for the eigenvalue K'
and the eigenvector a „.

There are several advantages to using the meth-
od of collocation. Spl. ines possess excellent stabil-
ity properties"'" when used to solve differential
equations, and the solutions provide a continuous
interpolation for all values of p and ~. Also, the
knots for the splines do not have to be equally
spaced; thus one can use more splines in the
region where the potential is the strongest. I in-
ally, the resulting matrix equation is a band ma-
trix, which considerably reduces the computer
storage requirements. For Eq. (11) one obtains
a matrix with M&N rows and abandwidthof 6M-1.
Since the matrix is a band matrix, only a portion
of the matrix must be stored in the central mem-
ory at a given time. This further reduces the
memory requirements of the program.

The boundary conditions on the wave function
are that p(p, 8) is zero at 8=0 (y, =0) and at
8= v/2 (x, = 0), and that the wave function asym'p-

totically goes to zero for large values of p. The
boundary conditions at 8=0 a,nd 8= v/2 can be
used to reduce the number of Hermite splices
required for the ~ variable, and thereby consid-
erably reduce the size of the final matrix equa-
tion. The numerical calculations are facilitated
by defining a smoother function E(p, e) by

0
e,

FIG. 1. The domain of integration in Eq. (11) of the
text. Equation (11) then has the form
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8'E(p, 8) E(p, 8)»'E(p, 8)
+

4
', + —, 88,

' — p cos8 E p 8 +~
28E(p, 8)

E(p, 8')d8'
Bp (13)

with the boundary conditions

E(p, 8)=0 for p=0,
E(p, 8) = 0 for 8 = 0 and 8 = 2,

where we now write
M

m= 1 n=1

(14a)

(14b)

(14c)

(15)

Finally, we remark on a comparison of the use
of the spline method discussed here with a more
standard finite difference approach. In a single-
channel, three-boson problem we found N, =14
(28 spline collocation points in the p variabLe)
gave an excellent three-body binding energy esti-
mate. In contrast, 40 p points in our finite dif-
ference calculation left us 2@ off in our binding
energy estimate.

IV. RESULTS OF s-%AVE MODELS

The boundary conditions (14a) and (14c) can now
be used to climate two of the s„(p). We note that
these boundary conditions are not exact." Writing
Eq. (13) at the collocation points (p„8&) gives a
generalized eigenvalue matrix equation which can
then be solved for the eigenvalue K and the eigen-
vector 5 „. The resulting matrix equation has the
form

We begin this study of the accuracy and con-
vergence of our configuration space solution of
the triton bound-state problem (see the Appendix
for the explicit equations) by examining in detail
the s-wave potential models of Malfliet and Tjon.'
The two-body potentials are sums of Yukawas having
a long-range attraction and (in most cases) a
short-range repulsion (see Table I):

V(r) = Vse "s"/r V„e "&"./r . — (17)

which can be solved by the well knownpower meth-
od

In the following discussion of numerical results,
we have several parameters to vary: the number
and distribution of p points, the number and dis-
tribution of 8 points, and the value of p beyond
which we define the wave functiontobe asymptotic.
The p points are distributed according to a scaling
algorithm: (p„„—p„) = (p„—p„,)*S„where S, is the
scale factor. The 8 points are distributed in three
equally spaced intervals: A, 8, C between 0 and

v/2; here A corresponds to the region where the
two-body potential U(p cos8) is large and there-
fore contains most of the 8 points. A few runs
were made in which the 6I points were scaled in

the same fashion as the p points, with a scaling
parameter S~.

The calculation of probabilities and rms radii
is done by means of a direct Simpson's rule
integration of the square of the wave function.
It is well known that a partial-wave expansion of
the total wave function for such purposes con-
verges very slowly. The radial integration limits
for the accuracies quoted were 14 fm with steps
of 0.1 fm. The ~ integral was done with steps of
approximately 0.07 rad. These triple integrals
were quite fast compared to the time required
to solve for the wave function using the analogs
of Eq. (13). We refer to Afnan and BirrelP for a
discussion of the convergence of the probability
calculation in terms of partial-wave expansions.

TABLE I. Potential parameters for the Malfliet-Tjon
models.

Vx I"~ Va pa B
Model (MeV fm) (fm ) (MeV fm) (fm ) (MeV)

I
Il

m
IV
V

513.968
52.490

626.885
65.120

570.316

1.550
0.809
1.550
0.663
1.550

1438.720 3.110
0

1438.720 3.110
0

1438.4812 3.110

2.23
2.23
0.35

These potentials are defined to act only in the
i=0 two-body partial waves; this implies that the
triton wave function will have only a symmetric

S state when a single average triplet and singlet
potential is employed, and S and S' (mixed-sym-
metry) states when distinct triplet and singlet
potentials are used. We have used 5'/m =41.47
MeV - fm throughout.

We consider first the average MT V potential.
Triton binding energies for various parameter
values are shown in Table II. We point out the
following: Convergence with respect to the num-
ber of p points is obtained by N,=12. Reasonable
results are found for the p scale factor S,between
1.2 and 1.4; i'ew points are needed outside of
5 fm, but many points are required near the
origin. The results are somewhat more sensitive
to the number and distribution of ~ points in the



CONFIGURATION SPACE FADDEEV CALCULATIONS. I.

Np Ne B3

10 .

12
14
15
15
15
15
20
15

20
20
20
20
20
2p
20
20
20

28
. 28

15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
15(9,3, 3)
20(12, 5, 3)

14(7, 4, 3)
16(9,4, 3)
18(11,4, 3)
20(13,4, 3)
2O(12, 5, 3)
20{12,5, 3)
19(11,5, 3)
19(12,4, 3)
19(12,5, 2)

28{17,7, 4)
28(17,7, 4)

1.3
1.3
1.3
1.3
1.3
1.2
1.4
1b3

1:3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

20.0
20.0
20.0
20.0
24.0
20.0
20.0
20.0
20.0

20.0
20.0
20.0
20.0
20.0
24.O
20.0
20.0
20.G

24.p
30.G

7.5296
7.5425
7.5415
7.5412
7.5414
7.5411
7.5420
7.5407
7.5405

7.5400
7.5397
7.5401
7.5403
7.5399
7.54OO

7.5398
7.5402
7.5385

7.5402
7.5403

. TABLE II. Triton binding energies for the MT V
model as a function of mesh parameters; the binding
energy of Ref. 21 is 7.539 MeV for comparison.

radii (8)of the triton and 'He (for point nucleons and
without a Coulomb force) are small compared
to experiment due to the overbinding. The value
of I'~ is somewhat smaller than mightbe expected.

The MT I-III results are much more interesting.
The binding energy is slightly larger than the 8.3
MeV quoted by Malfliet and Tjon.4 We found it
necessary to multiply the potential quoted in Table
I of Ref, 4 by 0.9866 to ensure a deuteron binding
energy of 2.23 MeV. (We note that the binding
energy appears to be more sensitive to the N~
distribution than some of the wave function pro-
perties. ) The model binding of 8.536+.003 MeV
is very close to the experimental value but the
rms radii are slightly large compared to the ex-
perimental values. Thus, such an s-wave model
can come close to reproducing experimental wave
function properties in addition to the binding en-
ergy, but it is not completely adequate. As one
might anticipate, the value of Pz (= 1.95%) in this
model is slightly larger than the corresponding
quantity in a model which includes a tensor force.
We close this section with the remark that the
MT I-III appears to be the best local, s-wave po-
tential model presently available for trinucleon
studies.

grid. As few as 14 6I points could be utilized to
obtain a reasonable binding energy if at least 7 of
these points were placed in the region A. where
the potential is large. (For the more repulsive
RSC potential discussed in the riext section, it
was found that 7 was insufficient for the accuracy
desired and that at least 9 were required. ) In
general, our results (&, = 7.540 + 0.001 MeV) com-
pare favorably with the separable expansion result
(@=7.539 MeV) of Ref. 21. We note that our
binding energy differs slightly from the original
7.3 MeV result by Malfliet and Tjon.4 It is neces-
sary to multiply V(x) in Ref. 4 by a factor to ob-
tain the two-body binding energy of 0.35 MeV
quoted in Table I of the reference"; note that the
quoted potential strengths for Eq. (13) of Ref. 21
were erroneously divided by w.

We next consider the singlet and triplet po-
tential models M T II-IV (no repulsion) and M T
I-III (soft repulsion). For these models we quote
representative results in Table III. The N & II-IV
model is of interest only for completeness: The
one-term Yukawa does not do a good job of repro-
ducing either the 'S, or 'S, phase shifts (in con-
trast to one-term separable potential models)
although parametrized to reproduce the correct
scattering length and deuteron binding energy,
respectively. We note that the binding energy
obtained is slightly lower than the value of 12.1
MeV quoted by Malfliet and Tjon. The rms charge

V. RESULTS FOR THE RSC MODEL

The RSC potential model as defined by Reid'
has many partial waves. We shall limit our con-
sideration, as mentioned above, to the 'S, and
Sy D j components since they provide the bulk

of the triton binding and we can compare directly
with previously published results. In the results
quoted below, the best estimates" do not neces-
sarily correspond to any one set of parameters,
but may correspond to a synthesis of several sets.
In addition, the errors are clearly an estimate.
Both are obviously subjective and may be slightly
incorrect. The reader is free to play the same
game with our numbers.

We shall consider first the three-channel ap-
proximation to the full five-channel calculation.
In this approximation the tensor component of the
wave function is retained only for the interacting
pair; that is, the spectator nucleon is assumed
to have zero angular momentum with respect to
the c.m. of the interacting pair. The results of
sample calculations in this approximation are
shown in Table IV. We estimate our binding en-
ergy to be @=6.380+0.005 MeV. This result is
essentially independent of the number of p points
down to N, = 14; it is sensitive to the distribution
of ~ points. A typical run with scaled 8 points
(S~=1.35) gave 6.379 MeV, Pz ——1.90/o and values
of P~ and B identical to those in (18)and (19)below.
We note that I'~ appears to be so well determined
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TABLE QI. Triton results for the triplet-singlet models of Malfliet and Tjon for typical mesh parameters.

MT I-III

Np
Sp
Ng
~mm

a, (MeV)
E{3H)(fm)
A(3He) (fm)
&s(%)
Ps (%)

16
1.3

16(9,4, 3)
20.0
11.880
.1.29
1.37

99.32
0.68

2p

1.3
20(13,5, 2)

20.0
11.880
1.29
1.37

99.32
0.68

16
1.3

16(9,4, 3)
24.0
8.537
1.62
1.77

98.05
1.95

16
1.3

16(9,4, 3)
20.0
8.537
1.62
1.77

98.05
1.95

20
1.3

20(13, 5, 2)
24.0
8.535
1.62
1.77

98,.05
1.95

20
1.3

20(12, 5, 3)
24.0
8.536
1.62
1.77

98.05
1.95

24
1.3

24{Se=1.15)
24.0
8.536
1.62
1.77

98.05
1.95

that model parameter variations were unable to
budge that quantity from 8.01%, although Ps was
model sensitive. Our best estimates of the wave
function probabilities (in percent) are

Ps = 90.10~0.02

Pg =1.89+0 02 r

&~ ——8.01 a 0.01 .
(18)

The corresponding estimates of the 'H and 'He
rms radii (without a Coulomb force and for point
nucleons) for this underbound model are

R('H) = 1.77 + 0.01 fm,

R('He) = 1.99 a 0.01 fm . (19)

Our binding energy estimate agrees reasonably
mell with the previous results of 6.4 MeV by
four different groups. "'" Homever„our I' s
and P~ differ to some extent with the quoted values
of (1.8%, 7.6%) and (2.0%, 7.8%) of Refs. 6 and 14,
respectively. Our radii values differ only slightly
from the values 1.76 and 1.99 fm of Ref. 14, but
this implies a difference in our isoscalar radii
as mell as isovector radii. Based upon the results
discussed below for the full five-channel. calcula-
tion, we believe our results to be more accurate.
Unfortunately, we do not have a separable expa, n-

sion result to compare with here.
Sample results for the full five-channel calcula-

tion are shown in Table V. Unfortunately, the size
limitation on our matrices did not permit us to ex-
plore as completely as before the dependence of
the results upon the number of p and 0 points.
However, the results quoted are for parameter
sets which proved adequate in the three-channel
approximation just discussed. We list our best
estimates of the binding energy, mave function
probabilities, and rms radii in Table VI along
with the corresponding quantities of Brandenburg,
Kim, and Tubis, ' of Laverne and Gignoux, ' and of
Afnan and Birrell' for comparison. We note that
the induced &-state probabilities are largely mean-
ingless as we have no p-wave potentials; however,
we include them in order to give a total accounting
of our probability. We note that our overall agree-
ment appears to be best with the separable ex-
pansion work of Ref. 9. We essentially confirm
the results of Laverne and Gignoux, ' although we
disagree slightly with their P~ value and our
radii differ outside of the estimated error limits.
In fact, the apparent agreement for R('He) is
fortuitous in that both the isoscalar and isovector
radii differ. We refer to Afnan and Birrell' for
a discussion of the Pn disagreement (and corres-
ponding Ps difference) with Brandenburg ef al. ;

TABLE IV. Triton results for the RSC (~SO, 3g -~D&1 potential model in the truncated three-channel approximation
for typical mesh parameters. Probabilities are given in percent and radii in fm.

Np,

Sp
Ne
I max

B3
A('H)
A(3He)
Ps
&s'
PD

20
1.2

20(12, 5, 3)
24.0

6.383
1.77
1.99

90.10
1.89
8.01

20
1.3

20(12, 5, 3)
24.0

6.383
1.77
1.99

90.10
1.89
8.01

2P
1.4

20(12, 5, 3)
24.p

6.382
1.77
1.99

90.11
1.88
8.01

20
1.4

20(12, 5, 3)
30.0

6.382
1.77
1.98

90.11
1.88
8.01

20
1.4

20(13,4, 3)
24.0

6.383
1.77
1.99

90.10
1.89
8.01

15
1.3

15(10,3, 2)
24.0

6.381
1.77
1.99

90.09
1.90
8.01

15
1.3

15(11,3, 1)
24.0

6.376
1.77
1.99

90.11
1.89
8.01
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Np
Sp
Ne
Psax

14 14 14 14
1.3 1.3 1.3 1.3

14(8,4, 2) 14(9,3, 2) 14(10,3, 1) 14(10,3, 1)
20.0 20.0 20.0 18.0

B3
R( H)
R(3He)

s
Psr
P2J,
P4J,
PD

7.02
1.71
1.93

89.06
1.75
0.04
0.04
9.11

7.02
1.7Q

1.90
89.15
1.66
0.04
0.04
9.11

7.Q1

1.70
1.90

89.16
1.66
0.04
0.04
9.10

7.01
1.70
1.89

89.16
1.66
0.04
0.04
9.10

TABLE V. Triton results for the RSC potential
(~SO, 3S&- D&) in the full five-channel calculation for
typical mesh parameters. P robabilities are given in
percent and radii in fm.

we find a binding energy of 7.02+0.02 MeV, which
is in reasonable agreement with the three pub-
lished estimates. Our overall results appear
to agree best with the separable expansion work, '
although we are in significant disagreement with
only the I'~ estimate of Ref. 7. Our I's results
are the least well converged and the most uncer-
tain.

We note that our rms radii calculations bear
the expected relation with the model binding en-
ergy: Overbinding produces radii that are too
small and underbinding produces radii which are
too large. We emphasize that obtaining the cor-
rect triton binding with two-body s-wave potentials
that approximate reasonably the two-body scat-
tering data does not ensure that the correct rms
radius will result.

they have omitted certain channels from th'e pro-
bability calculation. Our experience has shown us
that P~ is one of the most firmly fixed predictions
of the model, reasonably insensitive to any mesh
parameter variations. Finally, a single scaled- 0
run (S~=1.35) gave the values listed in Table VI.

VI. SUMMARY

We have shown that our computational proce-
dure is sufficiently precise as to permit us to
carry out our intended studies of the ground state
trinucleon wave functions. Our results for the
Malfliet- Tjon s-wave potential models agree with
their original published numbers to better than
5'. We find agreement with the separable expan-
sion estimate of the binding for an average sing-
let-triplet potential with replusion to about 1 keV
out of 7.540 MeV. For the BSC potential ('S„
'S, —'D, ) in the truncated three-channel approxi-
mation, we find agreement with the binding energy
estimates of previous local potential calculations
to within 20 keV of our 6.380 MeV. However,
we obtain slightly different wave function proba-
bilities. For the full five-channel RSC calculation,

This work was performed under the auspices of
the U.S. Department of Energy.

APPENDIX: SPIN-ISOSPIN EQUATIONS
FOR THE TRITON

We consider the case of local nucleon-nucleon
interactions acting only in the 'So and S] Dy
states. For the partial-wave expansion of the
wave function we use the J-j coupling scheme and
write the wave function in the form

g(x„y,)= Q g, (x„y,)
I=1

where

E = orbital angular momentum of particles 2 and
37

s = spin angular momentum of particles 2 and 3,
j = total angular momentum of particles 2 and 3,
I = orbital angular momentum of particle 1 rel-

ative to the center-of-mass of particles 2
and 3q

S = spin of particle 1 (S= s),
= total angular momentum of particle 1,

TABLE VI. Comparison of five-channel RSC triton results rvith those previously published.
Probabilities are given in percent and radii in fm.

P resent calculations
Afnan and

Birrell
Laverne and

Gignoux
Brandenburg,

Kim, and Tubis

B3
R( Hel
R( H)

Ps
Ps
Pp
P~

7.02 + Q.Q2

1.90 + 0.01
1.70 + Q.Q1

89.13+ 0.04
1.68+ 0.04
0.08
9.11+ 0.01

7.02
1.90

89.1
1.7

7.0
1.90
1.65

89.2
1.8

9.0

6.98

90.2
1.7

8.1
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(lo, so)jo

(0, 0)0

(0, 1)1

(2, 1)1

(0, 1)1

(2, 1)1

(L, ,s )J

(0 1)1

(0, —.')-.'

(0, —,')-,'

(2, 2)2

(t,T )T

(1 2)2

(0 I)1

(0, —,')-,1

(0, —,')-,'

(0 1)1

J =total angular momentum of the triton,
t~ = total isospin of particles. 2 and 3,

TABLE VII. The 5 states in J-j coupling; which com-
pose the triton wave function when the N-N interaction
is limited to ~SO and $-3D&.

T = isospin of particle 1, and
7 =total isospin of the triton.

For such an interaction effective just in the 'S,
and Sl Dl states, only the five states listed in
Table VII are needed. These states are the same
as those discussed by Harper, Kim, and Tubis. "
The three channel" approximation referred to
in Sec. V of the test corresponds to retaining only
the first three components listed in the table. For
a model in which there exists just 'S, and 'S, po-
tentials, only the first two states listed in Table
VII are retained.

For the states listed in Table VII, the resultant
set of coupled Faddeev equations corresponding
to Eq. (6) of Sec. I are

8 3 8

.8X1 4 8XZ

l (l +1) 3L (L +1) -~ (f),(x„y,) — Q v~o, ~ (x,)y, (x„y,)

a~,'(" ),~ J ""
xZ „) K ', s(xi y„) )e&(x., y,), (A2)

TABLE VIII. Kernels for triton Faddeev equations.

Kf f K4g =E42=0

3K(2=-
4

K, , =E, 4=0

K4 3
———[3t~ —2~3$P& (p) + P&(p)]

K44 ———[l+ 2~3t ~P, (p)+ 3t 'P2(p)]

Kg 5
——3-2[-(2g —5+ 2t )+2~3(C —()Pg (P) —4Pp(P)]

3Ku =-4

K22 =-

K45 = — j—- (3( —7)+ 2~3(2( —-g" )P((p)

+ (5+3)( )PP(P) — ( P3(P)
6~3

5

3
K5 )

——--P2(I(L)

E23 =E24 =0

1X = --K(5

K3g =K32 =0

K3,3 ——--[1—2~3$P& (p) + 3t"2P2(p)]

K~4 =—[3t ~+ 2W3t ~P&(p)+P2(p)]

X = ~ (3$ 2 —7) —2~3(2( ~+-t)P&(p.)

+ (5+ 3(2)P2(P,) + )P3(P)
6~3

-i M3 3~3
K5 3 ~ $P$ (P) —(1 +3( )P2(» + ~3 (P)

K,=
1. (»+ (1+3& '»2(»+ & 'P3(P)

17 3~3 31K = ———+ (( —()P (p,)+—P (p,)55 8 20 40

+ (g —g )P3(P) ——P4 (]L(,)
3~3

C = —,—"=tane,
Xj
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(~ y )
~n l~yl~(~ )

13 1
(A3)

The explicit expressions for K ~
~ are given in

Table VIII. Again the "three-channel" approxima-

where the reduced wave function &f& is defined by tion corresponds to dropping components 4 and 5
in Table VII and setting E, , K4, E 4, K, to zero
in 'Table VIII. For the s-wave potential model
(having only 'S, and 'S, potentials), only compon-
ents 1 and 2 of the wave function are retained along
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