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The charge form factor of 'Li in the q range of 0 to 7 fm is calculated with a single-channel t + a
resonating-group wave function which is fully antisymmetric and treats correctly the motion of the total
center of mass. Both CO and C2 contributions are taken into account, and proton and neutron distributions
are separately considered. With no adjustable parameters in the calculation, the result obtained shows that a
good agreement between theory and experiment can be achieved. The calculated rms charge radius and

spectroscopic quadrupole moment are equal to 2.44 fm and —3.70 fm', respectively, which agree very well

with empirically determined values.

NUCLEAR STRUCTURE ~Li; charge form factor with resonating-group wave
function.

I. INTRODUCTION

The resonating-group method, described thor-
oughly in various reviews' and representative
articles, ' ' has been extensively used to study
bound-state, scattering, and reaction problems
in light and medium nuclear systems. With the
adoption of rather realistic nucleon-nucleon poten-
tials, it was found that satisfactory agreement with
experiment for bound-state energies and scattering
and reaction cross sections can generally be ob-
tained. As has been emphasized previously, "
this is a method based on the cluster representa-
tion of the nucleus and distinguished by the import-
ant facts that in its formulation totally antisym-
metric many-nucleon wave functions are used and
the center-of-mass motion is correctly taken into
consideration. Consequently, nucleon-exchange
effects, which are especially significant when the
interacting clusters have similar mass, are fully
accounted for and, unlike some other types of ex-
isting calculations, undesirable features associated
with improper treatment of the c.m. degree of
freedom are not present in resonating-group in-
vestigations.

Because of the requirements of total antisym-
metrization and translational invariance of the
wave function, resonating-group calculations are
frequently rather tedious to perform. As a con-
sequence, many studies employing this method
have been carried out by including only a small
number of cluster configurations in the formula-

tion. For example, for the description of the
ground and low excited states in the nucleus
~Ne, "most existing calculations have only taken
a single cluster configuration, namely, the n+ "0
cluster configuration, into consideration. The re-
sults obtained were, however, still quite satis-
factory, which is connected with the fact' that,
especially in light systems, clustering effects
are prominent and, thus, even such simplified
single-channel calculations can be expected to
yield reliable information.

To study the general utility of the resonating-
group wave function, we calculate in this investi-
gation the charge form factor of 'Li by using the
ground-state wave function obtained by Furber"
in a single-channel t+ n resonating-group calcula-
tion. We choose this particular system for a de-
tailed examination, not only because 'Li is an
interesting nucleus possessing a large quadrupole
moment, but also because there is ample evidence
for strong clustering in the ground state and,
hence, a single-channel t+ n calculation should be
sufficient to explain the essential behavior of this
nucleus. Indeed, with a nucleon-nucleon potential
containing both central and spin-orbit components,
it was found by Furber that it is possible to obtain
a good agreement not only with the bound-state
data but also with empirical phase-shift results in
the low-energy region. " Therefore, one antici-
pates that the many-nucleon wave function resulting
from this single-channel calculation is adequate
and one will be able to learn from the form-factor
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calculation some important features associated
with the structure of the 'Li nucleus.

A previous analysis of the 'Li charge form-factor
data was undertaken by Suelzle et al."using a
(1s)4(1P)' oscillator model. By adjusting the oscil-
lator width parameter and the magnitude of the
electric quadrupole moment, a good agreement
with experiment has been obtained. We should
point out, however, that the 'Li wave function used
by these authors does not follow in any clear man-
ner from basic nucleon-nucleon interactions and
the adjustment of the quadrupole moment is an in-
ternally inconsistent procedure. In contrast, the
wave function we adopt here is the direct result of
a strong-interaction study and there are no adjust-
able parameters in our form-factor calculation.

In Sec. II, we give a brief description of the 'Li
resonating-group wave function and discuss the
formulation of the form-factor problem. Both CO

and C2 contributions from proton and neutron dis-
tributions will be taken into consideration. The
results are presented in Sec. III. Here we shall
see that the proton and neutron distributions have
rather different characteristics and, hence, the
charge form factor of 'Be, if measurable, would
turn out to be appreciably different from that of
'Li. Finally, in Sec. IV, we summarize the find-
ings of this investigation and mention other inter-
esting calculations which are worth performing if
one wishes to understand better the properties of
the seven-nucleon system.

II. FORMULATION

&„=0.514 fm"2,

n~ =0.378 fm '.
(8)

(&)

These particular values are chosen in order to
yield correct o, -particle and triton rms matter
radii in accordance with data from electron-scat-
tering experiments. Finally, in Eq. (2), the func-
tion Z(R, ) describes the e.m. motion of the en-
tire system. It can be chosen as any normalizable
function; however, in the present calculation where
the complex-generator-coordinate technique
(CGCT)"3 is used, we shall, for ease in analytical
computation, choose it as

Z(R )

"e&--'. n. +&.n. )R, .'t,

a spin-isospin function having (M —p, ) for the z
component of the spin angular momentum. Also,
the functions P and Q, represent the internal
spatial structures of the n and t clusters, respec-
tively; they are assumed to have the normalized
fo.rms

3 3/4
exp ,'n-„-g (r,. —R,)',

( 4m'

2 3/4Q~
exp --,n, Z (r, —R, )

3m

where R and R, denote, respectively, the c.m.
coordinates of the two clusters. The values of the
width parameters &„and n~ used are"

A. Brief description of the resonating-group wave
function

The formulation of a t+ n resonating-group cal-
culation is described in Ref. 13 and Sec. 5.5 of
Ref. 1; hence, only a very brief discussion will be
given here. In the single-channel approximation,
the wave function is written as

where 6 is an antisymmetrization ope,rator and

(8)

with N„=4 and N~ =3 being the nucleon numbers
of the n and t clusters, respectively.

The relative-motion function f~, (R) is obtained by
solving the projection equation

In the above equation, E~ is the total energy of
the system and H is the Hamiltonian operator given
by

P„=P Q, —f,(R)g"„Z(R, ).
J

(2) T~+ Vv —Tc.m. ~

The function q™~„i.s a spin-isospin-angle function,
appropriate for T=&, S=&, and required values of
orbital angular momentum l and total angular mo-
mentum t with z component M; its explicit form is

'g~«, ——g C(le; p, M —p, , M)1'~(R)t'~ ",
with C(lS&; p, M- p, M) being a Clebsch-Gordan
coefficient in the notation of Rose, "and $f ~ being

where N =N„+N~ and T, is the kinetic-energy
operator of the total center of mass. For the nu-
cleon-nucleon potential V,-z, we utilize the one rep-
resented by Eq. (5.98) of Ref. 1 with X = 2.0 fm '.
In this potential, there exist an exchange-mixture
parameter u in the central part and depth param-
eters V~ and V~, in the spin-orbit part. In the cal-
culation of Furber, "the parameter u is fixed by
considering the bound-state data of both Li and
'Be, while the parameters V~ and V„are deter-
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mined by adopting a best-fit procedure involving
experimental data" for the energy splittings of
the bound levels in 'Li and 'Be, and P+& and
'He+a scattering in the low-energy region. For
our present calculation, where our emphasis is to
study the properties of 'Li, we shall slightly
modify Furber's results in order to reproduce
precisely the experimental triton separation ener-
gies in the ground and first excited states of this
nucleus. Thus, we use

0 = 0.983,

P& —-40 MeV,

V„=216 MeV

in our present calculation. It should be mentioned
that, with these values, even though the quality
of fit to the p++ empirical phase-shift values is
somewhat reduced, there is still a good agreement
between calculated and experimental 'He+ n scat-
tering results in the low-energy region.

The relative-motion function f»»(R), or simply
fo(R), for the ground state of 'Li is depicted in
Fig. 1. As has been emphasized previously, ' one
must be very careful in explaining the meaning of
this function. Since it appears after the antisym-
metrization operator in Eq. (1), it cannot be in-
terpreted as proportional to the probability ampli;-
tude of finding the two clusters at a relative dis-
tance R with respect to each other. Because of
this, it has been suggested by many authors" "
that, even for the modest purpose of constructing
approximately an effective intercluster potential,
one must not directly utilize the relative-motion

functions occurring in the resonating-group for-
mulation, but should first perform a projection
procedure by using the operator X' ', where X
represents the norm operator. '

8. Charge form factor of 7Li

To calculate the charge form factor of Li, we
shall take both proton and neutron distributions
into consideration. For this we first compute,
in a definite magnetic substate, the bare form
factors for proton and neutron distributions in the
Born approximation given by

e p['q ~ (, —R, )~ (1+
g ~ (q

c I,tpo)

1 (~p„l, , exp[iq ~ (r, —R, )]2(1—v „)I p~o)

In the above equations, q is the momentum trans-
fer divided by h, and N~ and N„denote the proton
and neutron numbers in 'Li, respectively. The
function Pg, with g being its unantisymmetrized
part [see Eq. (1)], represents the 'Li ground-state
wave function, characterized by / =1 and J = & with
magnetic quantum number M. In defining the mag-
netic substates, we have chosen the quantization
or z axis to be in the direction of the momentum
transfer q.

Upon averaging over initial magnetic substates
and summing over final magnetic substates, "one
obtains for the square of the charge form factor
the expression

l4—

l2

IO

8

6

O

C9
2

hh 2( h/h + 1/2 ) li

where

E3(2=F3(~+~+N F"3],~F
N„

N
1/2 l/2 P+ I/h h!

Np

with F~ and F„being the charge form factors of
the proton and the neutron, respectively. For
these latter form factors, we use the values of
Janssens et al."given by

(i4)

(15)

Fp —Gas +Gay

F.=Gas -Gzv~

with

(iv)

(18)

I I I

2 5 4
I

5 6
R(fl )

9 IO

FIG. 1. Badiel function f&(R) for the ground state of
Li vrith/=1 and 4=3/R.
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C2 2( 3/2 1/2) ' (22)

In terms of these form factors, one can further
write F,„' as

2 2 2F.h -Fco +FC2 ~ (23)

From E,/2 and F,/„one obtains" the CO charge
form factor F«defined as

Fco=.(F3/2+Fi/2) ~

and the C2 charge form factor F~2 defined as

factor E, is a particular feature of the CGCT.
As is seen from Eqs. (12) and (13), the c.m. de-
gree of freedom is certainly taken into account in
a correct manner in our present form-factor cal-
culation.

With the use of the CGCT, the denominator
(g2 lg„) in Eqs. (26) and (27) may be straightfor-
wardly evaluated. The result is

gg g„)=P [C(lSZ; i/, ,M —p, ,M)]'

The mean-square charge radius R,„2 and the spec-
troscopic quadrupole moment Q can then be de-
termined by examining the low-q behavior of F«
and F~„ these are given by"

where

C*„(R')&(R',R")C„(R )dR'dR",

(30)

and

61 colch

q 18l c2
I, dq'

(24) I

G„(R ) = . F", (R')

and 3I(R, R ) is the norm kernel' given by

X(R, R ) =ufo(R, R )++3I,(R, R ),

(31)

(32)
From the above discussion, it is clear that the

quantities we need to compute are the bare form
factors F„and F"„, with M=2 and &. To compute
these quantities, we make use of the CGCT,
which was especially developed for resonating-
group studies involving clusters specified by dif-
ferent oscillator width parameters. This technique
is well discussed in recent literatures'""'" and,
hence, will not be further described here.

Because of the fact that, in a resonating-group
wave function, the c.m. function appears as a
multiplicative factor, the expressions for F~ and
F"„ofEqs. (12) and (13) may be readily simplified
and become

Xo(R, R ) =5(R —R ),
(N g) ( 2 3/2

31„(R',R')=(-1)*l"' ~l '
EX D0 Ea„C„

(33)

x exp[-A.„(R"+R"') —C„R' ~ R"], (34)

where

withe (1 &x~Na, with N &N„) being the number
of nucleons interchanged between the n and t clus-
ters. In Eq. (32), the functions Xo and X„repre-
sent the direct and exchange parts of the norm
kernel and have the forms

and

1 ($~g I, , exp(2q ~ r, )2(1+r„) I gg) 1

1 (gg I, , exp(iq. r, )2(1 —r„)I p) 1

(27)

16g Naze~
po'(N„ag+Nsaa)

I

4e„n~
(a~+ as)

x
4(a~+ a 2)

N„e„+N e
N agaa(ag+ ao)

3/2

(36)

(37)

(38)

where

F =(Zlexp(iq. R, ) l Z)/(ZlZ). (28)

With the c.m. function Z(R, ) of Eq. (8), it can be
easily shown that

x (a„—aa) + a„aa2N
~ 4xr„ I"0

x&
+W~N~ 1-—a~+a~

0

2

(39)

1
4(Na +Na )

(29)

It should be emphasized that the appearance of the +N~NsI(1 ——(a~+ aa)2
0

(40)
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with

r„=N„N,(n„+n, ) x—(N„n„+N,n, ),
,= N~Ns/N .

(41)

(42)
5 6 7

It is worth mentioning that most of the formulas
given in this article are quite general and can be
applied to other two-cluster A+8 systems, with
A and 8 being s-shell clusters.

The numerators of E~ and E„" can be similarly
evaluated. They have the forms

8'lp e p(f(l ~ &)'(1+&.) l4')
(a2) (c)

= P [C(le; P, , M —l(, ,M)]'

x' G„*(R.'))I (R', R )G„(R )dR dB

(48)

(4 I g e"p(~&' r~)'(1 —r~.) l(1)~)

= g[C(le; p, , M —p, , M)]'

x G„(R')I„(R',R")G~(R )dR'dR . (44)

In these equations, the interaction kernels I~ and
I„can again be separated into direct aad exchange
parts; in other words, one can write

I,(R', R")=[2I',+I;]
+ [(I + I", )+ 5I,'+ 2P]

+[2(I]i+I'2)+4Is~I ]

+[(I +I )+I']
and

I„(B,R ) = [2It+ 2I,']

+ [2(I", + I")+4I,'+ 4I;]

+ [4(P'+ P') + 2Is+ 2Ic]

+[2(I,"+I )]. (48)

On the right sides of the above equations, the sub-
script for I denotes the number of nucleons inter-
changed between the clusters, and the superscript
represents the manner in which the longitudinal
photon interacts with a particular nucleon in the
clusters. As is seen, there are four interaction
types, namely, types al, a2, b, and c; these will.
be separately considered and discussed below.

To explain the origin of the four interaction types,
we utilize the diagrammatical representation in-
troduced by LeMere et al." This is shown in Fig.
2, where each dot on the upper or lower line rep-

FIG. 2. Diagrammatical repre sentation of interaction
types al, a2, 5, and c.

l 21 p p

2(n„+ ns) 4a„4c„' (48)

with

p ~p

=- ~p +~p1 b d
a ~ c„

~.(n&- n, )
N(n„+ n~)

(49)

(50)

5» gj Oq (52)

QN~n ~+ Nsn s)
N ngn s(n g+ ns)
x [(Nan~+N „ns)(n~+ ns') —g(n~ —ns)~], (58)

resents a particular spin and isospin state in the
n or t cluster, and the solid-line exchange loop is
used to indicate the nucleons which are inter-
changed between the clusters. By examining in
detail the resonating-group formulation, one then
finds that these interaction types arise in the fol-
lowing manner:

(i) &yje a1. In this type, the interaction (rep-
resented by a cross in Fig. 2) of the longitudinal
photon is with a nucleon in cluster A (n cluster),
which is involved in an intercluster nucleon-ex-
change process. Note that, for this type, there is
no contribution from the no-exchange or direct
term.

The kernel I„"(B,R ) has the form

) (B', R )=( ~} Z, (R', B )

x exp[i(l [&u,'„R'+ (d,",8"

+X„(R +R")]-P, (I'},
(47)

where
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~i = -1/[2(o'~+ +s)] ~

2V~ —N~
N(ng+ o's)

(54}

(55)

(ii) Type a2. This type is similar to type al, ex-
cept that the virtual photon now interacts with a
nucleon in cluster B (t cluster).

The kernel I& (R', R ) is simply related to the
kernel I„"(R',8 ) by the equation

I„' (R, 8 ) = I«'(8", 8') . (56)

I;(R, R ) =X,(8, 8 )exp[iX„q ~ (R'+R ) —p,~']

with
(63)

cept that the interacting nucleon is now in cluster
Also, it should be noted that, for this type,

there is no core-exchange (i.e., x=Ns) contribu-
tion.

The kernels P«(H, 8 ) and I„'(8,8") are given by

(iii) &yPe b. Here the longitudinal photon inter-
acts with a nucleon in cluster A, which is not in-
volved in any intercluster nucleon-exchange pro-
cess.

The kernels Po(R, R ) and I~(8, R") are given by

I',(R', 8 }= Ol(R, R )exp[i'„q (R +R ) —1),«q']

(57)

and

cO

Ns'Qs+N„(Ns 1)~A
4N~n s(N~c(~ + Nsc( s)

(64)

(65)

with

N~ c(~+ (N~ —1)Nsns' 4N~&~(N~&~+Ns& a}
(56)

(59)

with

&& exp[i' (1 ~ (R +R ) —p,,„q']

1 fl N
4n (, N'n cCEg ( x'

(6'l)

I,'(((', ((")=( '( z, (H', H )

x exp[iX~q (8'+ 8")—p,„q']

with

N 2

4n„N'n„c„j '

N~ N~ d„
2N( " ') 2c„

(60)

(62)

(iu) TyPe c. This type is similar to type 5, ex-

N~ "N~ d»
cx N 2N x — a+2Qg

(68)

It should be pointed out that, as mentioned in Ref.
29, the diagrams shown in Fig. 2 are considered
to include implicitly all other diagrams which con-
tain additional exchange loops not involving the
interacting nucleon. Thus, diagrams drawn in
Fig. 3 belong also to type a& and type b, and do
not need to be explicitly shown.

All the integrals appearing in Eqs. (30), (43),
and (44) can be evaluated by using the following
gener al formulas:

„G„"(R')exp(lyly 8 )G„(8')dR = C(011;Opp, )C(011;000)
~

[fe(R')]'j«(yqR')dR'

—5C(211; Opp, )C(211;000) ( [f (R')]'j, (yqR')dR' (69)

with j„being a spherical Bessel function, and

G"„(R')K(R', 8 )exp[i(l ~ (uH'+ pR )]G„(R )dR dR

=QQQ(21 + l)(2lq+ 1)i'«~()C(Ll 1; pOp)C(Ll 1; 000)
L g fp

&& C(lN1L; Op p)C(lq1L; 000)
( f, g(R')kg(R', R")J) (aqR')jg (I)qR )fe(R")dR'dR, (VO)
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ni 10

~~
~~

q 3fm

FlG. 3. Other type-a'1 and type-5 diagrams.

In deriving the above equation, we have used the
expansion

E(H') R )=, „Qgk~(R', R )Y~~(R')Y+~" (R ).
77

(7I)

Also, the triple summation in Eq. (70) is rather
simple to carry out. For a fixed value of I, one
obtains nonzero contributions only when l and lz
take on values equal to (L t I). In the actual cal-
culation, we have used I values from 0 up to a
maximum I-„, which is around 10 for the largest
q' value considered in our present study.

III. RESULTS

10

C4

U

10

I
0' I

4

7
I

~~~~

6 fm

I

7

In the (+n system where the nucleon-number
difference of the interacting nuclei is small, it
was shown that core-exchange effects have major
significance and can be approximately represented
by a rather strong effective internuclear interac-
tion which is not only parity-dependent but also
long-ranged. " As a consequence, it is found here
that, because of the appearance of the core-ex-
change (x=3) type bterm-in I~ of Ecl. (45), the
value of L„must be chosen to be quite large at
high momentum transfer. This is demonstrated
in Fig. 4, where we show the convergence behav-
ior of E,h' as I„increases. As is seen, the value
of L„necessary for an accurate determination of
E,h' should be at least 6 for q'=3 fm"' ard 8 for
q'=6 f

In Fig. 5, we show by the solid curve the cal-
culated E,h' values for q' up to 7 fm '. The em-
pirical data shown are those of Suelzle et al."
From this figure, one sees that there is a rather
satisfactory agreement over the whole range of q'
studied. Considering the fact that in our present
investigation the charge form factor is calculated
straightforwardly from a resonating-group wave
function obtained in a nuclear-structure study and
no adjustments are made, we must view this as an
important development in establishing the sound-
ness of the resonating-group approach to solve
problems at least in light nuclear systems.

Contributions from CO and C2 interactions are
also depicted separately in Fig. 5. Here one finds
that the CO contribution is dominant for low-q'

l

IO

IO

c) 10-5

lZ

E
o

u lo

IO

co

10-'—

10
0

I I

4
q't, fm ')

/

6

FIG. 5. Comparison of calculated and empirical re-
sults for E~h . Contributions from CO and C2 interac-
tions are also shown.

FIG. 4. Convergence behavior of F2+ as a function of
L~ for @2=3 and 6 fm-2.
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values smaller than about 2 fm '. At high mo-
mentum transfers, the contribution comes instead
mainly from the C2 term, which indicates that the
'Li nucleus has a large intrinsic quadrupole de-
formation in its ground state. This latter feature
is correctly contained in the wave function used
in our calculation, because it is one of the main
advantages of a resonating-group or cluster-model
calculation that collective behavior in the form of
nucleon clustering is generally taken into account
in an adequate manner.

Using Eqs. (24) and (25) and the low-q' behavior
of the form factors, we determine the rms charge
radius R,h and the spectroscopic quadrupole
moment Q. The results are

and

R, = 2.44 fm

Q = -3.70 fm'.

(72)

(73)

Comparing with the empirical values for R,h of
2.35 +0.10 fm obtained by a model-independent
analysis" of experimental data at low momentum
transfers less than about 1 fm ' and 2.39+0.03
fm obtained by an oscillator shell-model analysis"
of higher-q' data, we conclude that our result
obtained here is quite good. As for the spectro-
scopic quadrupole moment, the experimental, ly
determined value" is -3.66 +0.03 fm', which
agrees well with our result given by Eq. (73).

From Fig. 5, one also notes that the calculated
curve for E,h' lies sl, ightly below the data points.
The reasons for this discrepancy are likely as
follows.

(i) The wave function used was the result of a
single-channel resonating-group calculation with
only the t+ n cluster configuration taken into ac-
count. Because of the rather low compressibilities
of the clusters involved, the specific distortion
effect' was anticipated to be relatively unimport-
ant"" and, hence, has not been explicitly con-
sidered. However, it is certainly evident that this
effect will influence, although not to a large ex-
tent, the behavior of the wave function in the
strong-interaction region and, thereby, affect
somewhat the result of the form-factor calcula-
tion. Therefore, it will be worthwhile to carry
out a further resonating-group calculation which
includes both t+ ~ and n+ 'Li cluster configurations
in the formulation. Since in 'Li the n+ 'Li thresh-
old occurs at a higher energy than the t+ o. thresh-
old, the relative-motion part of the n+'Li com-
ponent will drop more sharply in the surface re-
gion of the compound system than that of the I;+ n
component. Consequently, it would be reasonable
to expect that, with such a more refined wave
function, the calculated magnitudes of R,h and Q

and

Z'„=-.'(Z,'„+a~„,) (a=p or n)

I'ic, =2(E,'(, F',),) (i=p —or n),

(74)

(75)

is shown in Fig 6 From this figure one may
easily infer that the proton and neutron distribu-
tions possess rather different characteristics.
Compared to the proton distribution, the neutron
distribution has a larger rms radius and is more

IO'

tron dist.

0
O0

10

IO

IO
0 I 2 3 4 5 6 0 I 2 3 4 5 6 7

q'(fm') q'(fm')

FIG. 6. Magnitudes of form factors F~&p, F~&2, Fgp,
and F&2 for proton and neutron distributions in Li.

will turn out to be slightly smaller than those
given by Eqs. (72) and (73) and thus agree even
better with empirically determined results.

(ii) In the q' region up to about 6 fm ', the val-
ues of the body form factor for the o', particle,
calculated with the wave function of Eq. (4), agree
quite well with those empirically determined. "
On the other hand, the body form factor for the
triton, calculated with the wave function of Eq.
(5), is smaller than the empirical result by about
10% at q' = 3 fm ' and about 40% at q' = 6 fm '."
This indicates, therefore, that to obtain a better
agreement with 'Li empirical charge form-factor
values, one may need to further perform a reso-
nating-group calculation which employs a more
flexible triton wave function (e.g. , a two-Gaussian
function) than the one we adopt here.

Improved calculations" incorporating these parti-
cular features can be readily car ried out within the
resonating-group framework by using the CGCT men-
tioned above. The results obtained should pro-
vide us with additional information concerning
the complicated structure of the nucleus 'Li in its
ground state.

The behavior of the quantities E~«and E~, for
the proton distribution and the quantities &Qp and
E~ for the neutron distribution, defined as
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intrinsically deformed. Based on the viewpoint
of the cluster model, ' this type of difference may
be explained as arising from the fact that the ratio
of neutron-to-proton number in the lighter cluster
(i.e., f cluster) is larger than that in the heavier
cluster (i.e., o. cluster).

Together with the observation that the 'He sep-
aration energy in the ground state of 'Be is appre-
ciably smaller than the triton separation energy
in the ground state of 'Li, the above discussion
indicates that the charge form factors of 'Be and
'Li are likely to be substantially different. To
verify this, one needs, of course, to perform an
elastic electron-scattering experiment on the nu-
cleus 'Be. Quite clearly, this will be an interest-
ing experiment, the result of which will yield con-
siderable information concerning the el.ectromag-
netic structure of the seven-nucleon system. How-
ever, because of the unstable nature of 'Be, with
a half-life of about 53 days, we fuI. ly expect that
to successfully carry out such an experiment will
not be a simple task.

IV. CONCLUSION

In this investigation, we calculate the charge
form factor of 'Li by using a wave function which
is obtained from a single-channel t+ ~ resonating-
group study. 'The main characteristics are the
following: (i) a totally antisymmetric wave func-
tion is used, (ii) the c.m. motion is correctly
considered, and (iii) no adjustable parameters
are involved. Both CO and C2 contributions are
included in the calculation, and proton and neutron
distributions are separately taken into account.
The result shows that a good agreement between

theory and experiment can be obtained. The cal-
culated values for the rms charge radius and spec-
troscopic quadrupole moment are equal to 2.44 fm
and -3.70 fm', respectively, which agree very
well with empirically determined values.

At present, there exist also CO form-factor
calculations with resonating-group wave functions
for the nuclei 'Li,""C,"and "Ne." In a.I.l these
cases, satisfactory agreement with experiment
has been obtained. Together with the interesting
results obtained here, our conviction is reinforced
that the resonating-group method is a sound mi-
croscopi, c approach to solving nuclear problems
and should be extensively used, especially in
light- and medium-weight nuclear systems.

The successful conclusion of this investigation
indicates to us that we should proceed to examine
other electromagnetic and also weak-interaction
problems in the seven-nucleon system. These
problems incI.ude the radiative-capture reaction
of 'He by 'He, the M1 and M3 form-factor study
in 'Li,"the electron capture of 'Be, and so on.
Among these, especially the radiative-capture
calculation" should be carried out soon, because
it is crucial to the solution of the solar-neutrino
problem, which is an outstanding puzzle at the
present moment.
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