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Retardation, quasipotential equations, and relativistic corrections to the deuteron charge
operator
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Four different methods for handling the retardation of a single meson exchange in the nuclear force have been
examined, together with the corresponding contributions to the deuteron charge operator. It is shown that to order
(v/c)' these operators are all part of a single unitarily equivalent family. The Gross quasipotential equation is
examined and relativistic corrections to the deuteron charge form factor are shown to be the same as those
generated by the author's method, when converted to a common unitary representation. The same result has
also been demonstrated for the folded diagram method. The asymmetric terms in Gross's Hamiltonian are
shown to take the place of recoil graph contributions to the charge operator. These terms are necessary for
Lorentz invariance and the "Gross correction" to the deuteron charge form factor.
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I. INTRODUCTION

The extension of nuclear physics into new do-
mains of energy following the advent of modern
accelerators has reopened old questions left un-
answered by a previous generation of physicists.
One of these questions is: How does one introduce
special relativity into nuclear physics consistent
with general principles and with sufficient flexi-
bility to allow model calculations of observables'?
It is understood that since nuclei are basically
nonrelativistic, even (v/c) corrections (first-
order relativistic corrections) would suffice for
most applications. Because it is light and rela-
tively simple, much of the interest has centered
on the deuteron.

Three basic methods have been used in study-
ing relativistic effects. The genesis of the most
common method is the Bethe-Salpeter (BS) equa-
tion. This equation sums exchanges of bosons
of arbitrary complexity between two fermions,
producing a four-dimensional integral (or integro-
differential) equation for the composite wave func-
tion of the two-fermion system. Transition proba-
bilities can be calculated with these wave func-
tions using the method of Mandelstam. In addi-
tion to the usual three-dimensional relative mo-
mentum or relative space coordinates of the fer-
mions found in the Schrodinger equation, the rela-
tive energy or relative time also occurs; this has
no nonr elativistic analog. Concomitantly, there
may be an additional quantum number [to the usual
(n, l, m) for spinless meson exchange between spin-
less "nucleons, " for example] for solutions of the
BS equation which have no nonrelativistic analog. '

Interpretation of solutions of the Bethe-Salpeter
equation is therefore difficult, even if one could
easily solve this equation.

Relatively few attempts to solve this equation
have been made, ' and almost all of these have
used the ladder approximation, summing only the
nonoverlapping Feynman ladder of boson exchanges.
This neglect of crossed ladder graphs has serious
consequences in atomic physics, where it is known
that if the mass of the heavier of the fermions m,
becomes infinite, the resulting two-fermion ampli-
tude (including all photon exchanges) reduces to
the ordinary Dirac amplitude for the light fermion.
This nontrivial result does not hold in the ladder
approximation, where spurious terms of order
(Zo') log(») appear, ' compared to the usual
fine structure terms of order (Zn); these terms
are exactly canceled by the contribution of the
crossed graphs. Consequently the Bethe-Salpeter
equation is rarely solved, but rather is converted
into a three-dimensional equation, whose lowest-
order approximation is the Breit equation. ' A
variety of methods have been used, such as the
procedure of Salpeter and that of Sucher and
others. The Breit equation, while approximate,
has the correct limiting form as nz, -~ and is
simple in form, ' it is widely used.

The form of the Breit equation is what one
would naively write for a two-particle system.
If the Harniltonians of the two free particles are
defined as IIq and &2, respectively, the Breit
equation ' is given by

(z-e, -e, v)y=p,

where V is a function of P(=pq+p2) the total mo-
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mentum, p[= (pq —pm)/2] the relative momentum,
and x(=xq —x2) the relative coordinate of the two
nucleons, whose canonical coordinates and mo-
menta are p& and x, . In addition, V may depend
on the (Pauli) spin operators &xq and o2 of the two
fermions. The usual form of V in atomic physics
is derived from one-photon exchange. ' Note11,13

that p is so defined that [P, x~] =-i& ~. While the
Breit equation has the correct limiting behavior,
it does not have correct analytic properties. In-
deed, the usual Breit interaction allows processes
which are unphysical, such as one fermion making
a transition into a negative energy state. This
spurious behavior is called "Brown's disease"
and must be corrected for. ' Fortunately, for
sufficiently low center-of-mass (binding) energies
compared to the total mass this problem is not
particularly important. Nevertheless it must al-
ways be borne in mind that the form (l) is basically
an approximation which, even though it may yield
binding energies virtually identical to the original
(Bethe-Salpeter) equation, is not necessarily equi-
valent to it in all aspects.

A more serious problem is the lack of unique-
ness of the potential V (to order &). Historically,
two atomic potentials were developed: the Breit '
and Gaunt interactions. They differ in that the
retardation in one-photon exchange, calculated in
Lorentz gauge, was ignored by Gaunt, while Breit
ignored retardation in Coulomb gauge. For the
hydrogen atom, the Gaunt interaction introduces
recoil terms of order o' /m„while the Breit in-
teraction produces o.' /m, corrections. Thus,
the Breit interaction is "better" in the sense that
it produces smaller corrections to the Dirac spec-
trum. The reason is that Coulomb: gauge auto-
matically builds retardation into the interaction
between charges, ' Gaunt's choice of gauge and his
approximations neglected this. The complete set
of all corrections to the energy must be the same,
irrespective of gauge, and higher order (in &)

parts of the potential must be introduced which
are different in the two cases. Clearly the effec-
tive Hamiltonian due to photon exchanges can be
gauge dependent, while the energy itself must be
gauge independent. Because of the close connec-
tion between gauge transformations and unitary
transformations, it should produce no surprises
that the same retardation ambiguity will appear
in the deuteron problem as a unitary ambiguity.

Nuclear physics, as well as atomic physics, has
approached the Bethe-Salpeter formulation of the
deuteron problem with the intention of molding an
efficacious three-dimensional form from the ori-
ginal four-dimensional formulation. A variety of
methods have been used; the primary feature
of these various methods is that they lead to dif-

ferent Hamiltonians. The process is often called
a Blankenbecler-Sugar reduction, while the vari-
ous forms are often referred to as quasipotential
equations. ' These differences have been noted
and studied by Yaes, Woloshyn and Jackson,
and Klein and Lee, among others. Basically,
the different techniques generate equations of
motion where the relative energy has been fixed
by a specific prescription, while enforcing elastic
unitary for the two-body amplitudes. Extrapola-
tions away from the elastic cut are largely arbi-
trary, ' infinite classes of different results are
possible. In addition, certain of the equations
have the form of the square of the Schrodinger
equation and others, in particular the Gross equa-
tion, ' are not symmetric under intercharge of
the two (identical) particles. The other ingredient
is the fact that the potentials are not in general
energy independent.

An energy-independent potential has several
practical and conceptual advantages. The usual
interpretation of the probability density as the
square of the wave function and the Hermiticity of
the Hamiltonian rely upon the effective potential
being independent of energy, as does orthogonality
of different eigenstates in the usual fashion.
Unfortunately, most methods based on ordinary
perturbation theory and the quasipotential methods
previously described generate energy-dependent
potentials. Special techniques have been developed,
however, which allow a systematic generation of
an energy-independent effective potential below the
first inelastic threshold. The oldest method is
perhaps the Fukuda-Sawada- Taketani (FST) for-
malism, an algebraic method. Another is the
folded diagram method popularized by Johnson.
A third method is less elegant and perhaps more
transparent, ' being analogous to the mass and
wave function renormalization used in relativis-
tic quantum meghanics. All three methods for
treating the two-body problem we will classify as
equations of motion methods, as opposed to the
quasipotential reformulations of the Bethe-Sal-
peter equation.

The FST method rearranges the equations of
motion of the two-body system so that an effective
potential is derived which is independent of ener-
gy. The basic problem can be stated schemati-
cally, as follows. Imagine that the Hilbert space
of our nucleus can be divided into two sectors
when the meson-nucleon interaction is turned off:
free nucleons (upper) and free nucleons plus free
mesons (lower). When the meson-nucleon inter-
action is turned back on, an effective potential is
generated between nucleons but, unless some care
is exercised, this potential will depend on the
energy. Operators connecting upper to lower
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components are called odd, while even operators
do not connect upper and lower parts. The FST
method eliminates this problem by guaranteeing
that the two components of the original Hilbert
space are totally decoupled below meson produc-
tion threshold. Thus the orthonormality of the
original noninteracting problem is retained in the
more complicated interacting problem. This de-
coupling procedure is precisely what was accom
plished by Foldy and Wouthuysen (FW) in a dif-
ferent physical (though formally identical) problem
using successive unitary transformations to eli-
minate all odd operators, leaving only even ones.
Indeed, the most elegant formulation of FST was
produced using unitary transformations, since
unitary transformations guarantee orthonormality
at every step. A problem exists, however, that
was originally overlooked: Since an even operator
can be converted into an even operator by an even
unitary transformation, the FW method for gen-
erating potentials is not unique. Clearly, nu-
clear transition operators corresponding to exter.-
nal interactions are also not unique, being related
to the various FW Hamiltonians mentioned above
by the same set of unitary transformations. This
lack of uniqueness is sometimes called the Barn-
hill ambiguity, although it was known in various
forms long before the work of Ref. 33. What was
not appreciated, however, was that the transition
matrix elements (as opposed to operators) must
be the same, regardless of the formulation of the
same physical problem. 34

The folded diagram method, on the other hand,
works with the individual components of Feynman
graphs (propagators) and directly attacks the
source of the energy dependence (the relative
time) in the two-body problem. By averaging
over the relative energy in a well-defined way,
a nonstatic, energy-independent instantaneous
potential is generated which is not unique. This
method, described in detail in Ref. 24, has cer-
tain calculational advantages over other methods.

The equations of motion technique of the present
author ' has its genesis in the individual equa-
tions of motion of nucleons and mesons. By
means of an FW transformation, a nonrelativistic
reduction of the equations of motion is made.
This reduction generates meson-nucleon vertices
corresponding to nonrelativistic and relativistic
correction terms. These vertices are connected
by means of ordinary Feynman diagrams using
time-dependent perturbation theory. Because
perturbation theory generates an energy-depen-
dent potential, a renormalization procedure was
used to remove the energy dependence by means
of an expansion technique formally identical to
the expansion of the self-mass function during

mass renormalization in field theory. The ex-
pansion is not an adiabatic approximation, but
rather an expansion about this approximation.
This "mass renormalization" simply defines an
energy-independent meson- exchange potential to
be used in the calculation of the nuclear wave
functions. A similar procedure was used by
Drake in his derivation of the Breit interaction.
The mass r enormalization nec essitates a wave
function renormalization which exactly cancels
the static past of the recoil graph, a result which
also follows from the FST formalism and was
noted by Woloshyn for the BS equation. The re-
sults for the potential and the nonstatic residue
of the recoil graph were not unique. In this case
it was possible to demonstrate that the separate
Hamiltonian and recoil graph (charge) operators
were unitarily equivalent. These results were
later extended to the isoscalar current operator,
as well. The main result of this series of cal-
culations was that certain operators were not uni-
quely defined, but that matrix elements were
unique for a given physical model. Furthermore,
the ambiguities occurred in relativistic correc-
tions and not in the static, nonrelativistic opera-
tors.

The third approach to relativistic corrections
eschewed dynamical assumptions of the type in-
herent in the calculations described above and ex-
amined carefully the requirements of the Poincare
group inherent in any calculation. Many different
people have worked on this approach, but for our
purposes the work of Foldy and Krajcik and
Foldy" are central. In order that the total energy
E of a system of particles with total momentum P,
rest mass M, and rest-frame wave function $0
have the form E= (P +M ), the wave function
must have the form" [to order (v/c) ]

y-, —= [1 —iy (P)]aloe'

where R is the usual center-of-mass coordinate
corresponding to P. The function X has been cho-
sen to vanish when P =0 and does not depend on
R; it can depend on the relative momenta and
coordinates. Foldy has prescribed a condition
for X(P) such that E will have the aforementioned
form. Note that g(P) has the form of a unitary
transformation and is also not unique. Neverthe-
less the parts of y independent of potential ()(0)
are essentially unique and ambiguities are re-
stricted to the potential-dependent parts X, Later,
Close and Osborn used and extended the above
results by examining the conditions under which
the matrix elements of the charge and current
operators have the correct Lorentz transforma-
tion properties. They showed that X played a cen-
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tral role in this important condition. The present
author then demonstrated how a specific series
of model calculations fit the conditions of Foldy
and Close and Osborn and illustrated the model
dependence of X„. Thus, the work of Foldy. and
Close and Osborn established constraints on the
results obtained from any dynamical theory.

Somewhat earlier work by the present author,
unconnected to exchange currents, showed that the
go term defined above was the means by which
Lorentz contraction, the Thomas precession, and
several other relativistic phenomena were in-
corporated into charge form factors. The ex-
tremely complex results of Gross, ' obtained
using his quasipotential method, were simplified
and shown to fit within the framework of the Kraj-
cik-Foldy XD correction (i. e. , purely kinematic)
except for a single potential-dependent term which
was called the "Gross correction. " It was specu
lated that the Gross correction originated in a
X„ term connected with retardation of the nuclear
force. The original Gross work and the original
work of the present author did not include. meson-
exchange currents.

In a separate vein from considerations of retar-
dation and energy-independent potentials which

apply to all meson exchanges, a special set of
considerations apply to pion exchanges because
of the equivalence theorem. This theorem, which
is only approximate, relates the physics of pseudo-
vector and pseudoscalar couylings of pions to nu-
cleons. Effected by means of the canonical trans-
formation of Dyson on field theories, it is more
general than the approximate nonrelativistic ver-
sion which is useful in discussing exchange cur-
rents. Basically, the theorem states ' ' that the
one-pion-exchange currents, together with matrix
elements of the impulse charge operator calculated
with a potential including OPEP (one-pion- exchange
potential), must be the same for both PS (pseudo-

scalar) and PV (pseudovector) couplings to order
g in certain limiting cases. Although this may
appear trivial, it is actually a severe constraint
on approximate calculations. Deleting either the
nonstatic parts of OPEP or the recoil graph (i. e. ,
relativistic corrections) is sufficient to spoil the
equivalence. In an operational sense the equiva-
lence is proven by demonstrating that the Hamil-
tonians and transition operators corresponding to
the two different couplings are unitarily equivalent
in the nuclear Hilbert space. As an interesting
byproduct of this work, the unitary transformation
involved can change the deuteron D-state percen-
tage, demonstrating that this quantity is not mea-
surable.

It should be abundantly obvious at this point that
unitary transformations abound which are associ-

ated with the relativistic aspects of the nuclear
Hamiltonian and charge-current operators. Re-
cently, three criteria were proposed for a suc-
cessful calculation of nuclear charge and current
operators: ('1) The current must be conserved.
(2) The current and Hamiltonian must satisfy the
constraints of special relativity, ' that is, the mod-
el must provide a realization of the Poincare
group. (3) The current and Hamiltonian must
satisfy the (approximate) constraints of the equi-
valence theorem. Although the first two require-
ments are obvious, the third is .also important in
order to establish internal consistency and to
probe any model dependence.

In this rather lengthy introduction we have sev-
eral times appealed to the literature of atomic
physics for supporting arguments and insight. In
what follows, we will continue to refer to this
literature where it is relevant. Because the basic
interaction mechanism in atoms is known, calcu-
lational sophistication is advanced. In addition,
some experiments can be performed with accuracy
unattainable in other fields, further pushing theo-
retical development. The lessons of atomic phys-
ics are relevant for nuclear physics.

In the body of this work we will discuss the ef-
fect of pion exchange, as well as vector- and
scalar-meson exchange, on the charge form factor
of the deuteron, keeping terms of order (v/c)
In See. 0 we will sketch the results of the equa-
tions of motion method as derived by the present
author for the ease of the deuteron charge form
factor. In Sec. ID the results of the FST method
for the recoil graph will be discussed, while in
See. IV the folded diagram approach will be ex-
amined. In Sec. V the quasipotential method,
with emphasis on Gross's approach to the deuteron
problem, will be discussed. Finally, in See. VI
the results of the previous sections will be com-
pared and unified. Detailed formulas for various
matrix elements will be relegated to an appendix.
Throughout this work, the crucial importance of
the various unitary transformations which forbid
uniqueness will be emphasized. Indeed, using
these transformations it will be shown that cor-
rect calculations based on these diverse techni-
ques are unitarily equivalent to the order these
calculations have been performed; that is, matrix
elements for form factors and other observables
are identical. Thus, very different techniques
yielding different apPearing results generate iden-
tical physics.

II. FW APPROACH

Since the results of the present author's F% cal-
culation of the elastic deuteron charge form factor
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were calculated in some detail elsewhere, "we
will present only the results. Fortunately, al-
though calculations of individual contributions can
be lengthy, there are only three form factor forms
which arise. from all the (isoscalar) processes
we will discuss. The charge form factor E(q),
defined so that E(0)=1, has the form

F(q) =+'(q) — "q F'(q),

where E and @are the monopole and quadrupole
parts of F, respectively, and Sqq(q) is the usual
tensor operator constructed by replacing x by q,
the unit vector corresponding to the momentum
transfer q.

The three form factors which will arise and
comprise E are the impulse approximation contri-
bution +0, the pion exchange term D, , and the
"Gross" term D~. The latter form differs some-
what for one-pion exchange, denoted by D&, and
for scalar and vector exchange, where it is denoted
by D&. Only linear combinations of I"0, D, Dz,
and D& with factors of t"~ and 6„, the isoscalar
electric and magnetic nucleon form factors, will
occur. Detailed expressions are given in the Ap-
pendix.

There are three basic types of isoscalar proces-
ses which contribute to +, if we restrict ourselves
to ordinary one-bosonexchange; thatis, weignore
isobar contributions, pmyprocesses, and the like.
The first is the impulse approximation, which in-
cludes motional relativistic corrections generated by
X,. The terms generated by Xo have been discussed in
detail elsewhere and are included at the end of4Q

the Appendix, ' we will ignore them and concentrate
on y . The second type of process is the "seagull, "
of which the pair contribution, from virtual nu-
cleon-antinucleon pairs, is typical. The last type
is from the renormalized recoil graph, where
only the nonstatic residue of this graph survives
the exact cancellation of the static part by the re-
norrpalized disconnected graphs. All of our re-
sults can be so categorized.

In addition to these categories, the results may
be further subdivided according to pion exchange,
and scalar- or vector-meson exchange. The
latter category is much simpler, no seagull terms
occur to order (v /c ), for example. Moreover,
two classes of unitary equivalence are generated
for pion exchange and only one for vector or sca-
lar exchange.

In FII (Ref. 29) a general representation was
adopted which allowed a single calculation to sub-
sume the special cases of PS and PV pion-nucleon
couplings to manifest the constraints of the equi-
valence theorem. An arbitrary parameter p was
introduced which determined the strength of the

V&V2 q'() VyV2V= ~~ 2 +. .. i,2
——V+ ~VRET'

q +m (q'+m) (4)

The formalism of FII produced the following pre-
scription. If ho is the nonrelativistic two-body
Hamiltonian (except for V, but including other
meson exchanges), replace qo by commutators of
Vq and V2 with ho.'

I~V„„=,, „., (fl „[a„V,V,]]2(q +m)
—([a„V,], P „V,]}). (5)

Dyson transformation of the PS-coupling Hamil-
tonian. The value p, =0 corresponds to Ps coup-
ling, and ignoring nucleon anomalous magnetic
moment terms, p. =1 corresponds to PV coupling.
The (isoscalar) charge operator is simplest for
p =3, while p. =-1 is the most common (implicit)
choice and tends to maximize exchange correc-
tions. These values of p correspond to the FW
representation we use and not to the free spinor
representation used by those who follow the meth-
od of Chemtob and Rho, which corresponds to
jL( =-1. We will display our results using this
parameter after a brief discussion of the other
contributions.

It was shown in FII that the particular X„arising
in one-pion exchange which is necessary for in-
ternal consistency and I orentz invariance depen-
ded on p-. Denoting this by X~, we demonstrate
in the Appendix that it vanishes for the deuteron
elastic charge form factor. Thus, for deuteron
elastic scattering there are no contributions from
X„ in our formalism for single pion, scalar-, or
vector-meson exchange.26

In addition to generating p. -dependent pion-ex-
change terms related to the equivalence theorem,
the recoil graph generates a speciail type of term
for all types of exchange. The form is deter-
mined by the fact that it builds into the formalism
the effect of retardation of the nuclear force (i. e. ,
finite meson propagation time). A single-meson-
exchange potential has the schematic form VqVq/

(q + m qo ). The problem that we discussed
in the Introduction concerned the interpretation and
treatment of qo, the fourth component of the mo-
mentum q' carried by the meson and depicted in
Fig. 1(a). For free particles qo is given by the ap-
propriate kinetic energy difference of particle 1
(&&q) or particle 2 (&&q) in the initial and final
states. In an interacting system ~, and &&2 are
different and it is not clear which one to use or
which linear combination is appropriate. Neglec-
ting for a moment the vertex functions Vq and V2,
we expand the propagator to first order in q'0 and
obtain
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(a) (b)

(c)
FIG. &. Kinematics for meson exchange including an external electromagnetic interaction in (b) and (c), and (d)

Gross's kinematics with nucleon 1 on-shell (indicated by cross).

Neglecting any isospin or momentum dependence
of the potential part of V, only the kinetic energy
parts of ho fail to commute with V~ and V2 in the
second term in Eg. (5). However, the potential
in the second commutator of the first term will
not commute with the first commutator. This will
generate three-body forces in a many-body sys-
tem, and a special class of two-body forces as
well. Thus three-body forces are inevitable ex-
cept possibly in the "soft" representation discus-
sed below. It is possible to eliminate the entire
first term, with its complicated potential terms,
by means of a unitary transformation (Uap, T} of
h'=ho+ &V~T to first order in URET.

'

jp VgV2
UpgT —— ~{lp I~ ~~Z2. ~q+m j

(5a}

h'™h' - i[hp, PRE T]—= hp + &Vez T (5b)

with v=1. The remaining (last} term in Eq. (5)
then has a simpler structure than what we started
with. For reasons that will become apparent
later, we will label p=0 the "standard" represen-
tation and p= 1 the "soft" representation. In or-

der to investigate further the properties of &VRET,
we will drop the potential terms in ho and replace
the kinetic energy commutators by the differences
of energies &&& before and after the meson is ex-
changed. We find that &VRET can be represented
by

~V~= „,, [(~Z, +~Z, ) (1,)Vj V2 2

2q +m
—24EgnZ2] . (7)

In the center-of-mass frame &&q = &&2 and the
choice p=-,' eliminates &V~,' this is the "no-
retardation" representation, which has obvious
advantages, at least as far as the potential is con-
cerned.

Corresponding to the various representations of
the potential are isoscalar recoil graph contribu-
tions to the charge operator p~. These may be
obtained from Eqs. (79) and (80) of FII and have
the schematic form

(I -. v) q 'q'VgVpas
2M(q" + m')'

This vanishes in the "soft" representation and is
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nonvanishing in all others, which is another ad-
vantage of the soft representation. We note fur-
ther that the one-photon-exchange potential in
atomic physics is traditionally calculated in Cou-
lomb gauge. This choice of gauge leads immedia-
tely to a static Coulomb potential and smaller
nonstatic corrections from the transverse com-
ponents of the current. Simply neglecting the
retardation in Feynman gauge leads to nonstatic
corrections involving the complete current; the
difference is a contribution from the longitudinal
current component, which has the form of Eq. (7)
with p= 1 (i. e. , -&&q&&2). Retardation is inclu-
ded in Coulomb gauge, and using this gauge cor-
responds to the soft representation. It was dem-
onstrated recently that transition operators for
spin-flip electric dipole transitions in heliumlike
atoms calculated by traditional methods are
characterized by p„=o (i. e. , v=1). Thus, atom-
ic physics prefers to work in Coulomb gauge (the
soft representation) where recoil corrections to
energy levels are known to be smaller than in
other gauges, as we discussed in the Introduction
while contrasting the Breit and Gaunt interactions.
Also, three-body forces are smaller.

In calculating the coordinate space form of pR,
it is convenient to integrate by parts after multi-
plying by e" " and using the identity q'/(q' + m )
=-—,'V~1/(q' + m ). This produces the q 'x factor
which is characteristic of retardation (i. e. , it
looks like the expansion of a plane wave). For
pions the VqV2 factors have the form crq

' q'o2 'q'
so that additional terms are generated by the in-
tegration by parts which are not present for scalar
and vector exchanges to the order we work. Per-
forming aQ the necessary manipulations we find
that the deuteron form factor contribution I'~ ari-
sing from p& has the form

F~ = G~(Do —D,)(1—v) (one-pion exchange), (9a)

Fz = GzD'a(I —~)

(scalar-, vector- meson exchange) . (9b)

The extra term in the pion result arises from the
spin-dependent Vq V2 factor. Several remarks are
in order. In an effort to simplify the two-nucleon
potential in FII as far as possible, we chose to
work with p = —,', the no-retardation representa-
tion. For that case +~ was —,

' the "Gross" deu-
teron correction, which follows from Eq. (9).
Earlier, in FI (Ref. 28), the standard representa-
tion was used; although it was not pointed out at
that time, this was the first instance that the
Gross correction actually appeared in any form
outside Gross's work as the result of a dynamical
calculation. The first term in Eq. (&) of FI,
when evaluated with deuteron wave functions, is

equal to G~(D& —D) T. he Gross term was "de-
rived" in Ref. 51 but this was not the result of a
dynamical calculation. For this reason the state-
ment in Ref. 49 that retardation corrections had
not previously been calculated is erroneous.
Moreover, the consequences of the equivalence
theorem for pion exchange were also pointed out
in FI; this was the first correct and complete t to
order (v/c) ] calculation of the one-pion-exchange
contribution. Although the full Gross correction
is realized only in standard representation, in
view of our previous discussion the relationship
of the Gross correction to retardation is exactly
as hypothesized in Ref. 38; this will be made even
clearer in Sec. V.

The remaining terms which contribute to the
deuteron form factor are all proportional to D,
for one-pion exchange. To the order we calculate,
the isoscalar seagull terms for scalar and vector
exchange are of order U/m' and we neglect them
these contributions are therefore complete. The
seagull and remaining pieces of the recoil graph
can be obtained from Eqs. (7&a) and (&2) of FII:

F, = [2G' —G'(1+ g)]D,
F„'=(p, +1)G~D /2.

(1Oa)

(lob)

F„=(2G —G t(I+ p)/2+1 —v]]D,

+ G~Do (1 —v) (one-pion exchange). (lib)

For pseudovector coupling replace G& by GE.
It is clear that any linear combination of D and

D& is possible for one-pion exchange. It may be
shown that the wave functions contain p.- and p-de-
pendent terms which, when used in +0, exactly
cancel the corresponding terms in I"„; the matman

elements have no ambiguities. It is crucial, how-
ever, to use the wave functions co~responding to
a given operator when calculating matrix ele-
ments. This was emphasized by Woloshyn and
in FI and FQ. In actual calculations this has not
been done. Note that v =1, p, =3 eliminates E„
completely if we neglect the difference of G& and

SGE.
The specific way in which the unitary equiva-

lence is realized for various observables was con-
sidered in Ref. 44. Basically, some of the con-
tents of the impulse approximation matrix ele-
ments Eqs. (Al) and (A2) are "dialed" out by
means of the transformation and generate D&, &,,
etc. , in the same way Eqs. (A19) and (A20) were
manipulated. Thus, another way in which the

The total potential-dependent correction to the
form factor, F„, is the sum of Eqs. (9) and (10):

F„=G~D~ (1 —p)

(scalar-, vector-meson exchange), (1la)
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peculiar problems discussed here can be stated
is that the impulse approximation is not unique.
The interested reader should refer to Ref. 44.

The calculation which led to Eq. (11) was more
complicated than others which had the same goal,
because the FW transformation generates a large
number of p- (momentum-) dependent terms, each
of which must be incorporated into Feynman dia-
grams in order to obtain amplitudes. This pro-
cedure is a natural way to investigate unitary
equivalence which arise, however. It also allows
us to calculate substantial parts of some crossed
meson- exchange graphs without additional work.
This feature, unique to our formalism, is analo-
gous to the calculation of single-photon recoil cor-
rections in atomic physics where all Coulomb lad-
der graphs are summed in intermediate states.
A virtually identical method has been used by Lin'
to calculate relativistic corrections to atomic po-
tentials and transition operators for use in the
problem of forbidden transitions in heliumlike
atoms.

The momentum-dependent terms referred to
above play a dominant role in proving the Lorentz
covariance of the transition matrix elements of
the current. This was demonstrated in FII. The
proof and subsequent work ' refuted the claim of
Coester' that the relativistic corrections of Ref.
40 were incorrect. The X„ term found by Coester
and needed by him to prove the covariance of
Gross's formalism did not arise (and in fact was
not needed) in Fl. We will see in Sec. V that this
term arises in a natural way in Gross's work be-
cause his formalism is not symmetric under (iden-
tical) particle interchange, while ours is symmet-
ric. It was the assumption by Coester of Gross's
asymmetry that led to his result and the unwar-
ranted conclusion that Ref. 40 was incorrect.
However, the latter work explicitly neglected
meson-exchange currents and was therefore in-
complete.

which agrees with the standard representation.
If the corresponding potential terms are evaluated
from Eq. (23} of Ref. 53, those terms which do
not vanish in the two-nucleon center-of-mass
frame are identical to Eq. (5) for point nucleons.
The FST method generates the same results as
this author's renormalization method. in standard
representation. The existence of various retar-
dation representations and the relationship of the
potential form to recoil contributions to & was
not pointed out in Refs. 49 and 53.

The results of Gari and Hyuga do not agree with

ours if their pion-nucleon form factor is used.
The reason is that their introduction of a form
factor was made in a fashion inconsistent with
relativity. The vertex factors V, are proportional
to the pion-nucleon form factor &,~. These form
factors are expected to be functions of lg =q gp,

2 2 2

just as the propagator was. When integrating by
parts to simplify the coordinate space form of re-
coil operators [see discussion above Eq. (18)] the
actual expression one works with becomes
--,'V,'(E,~ (q' }/(q' +m )). After integrating by
parts, the form factor enters in the transformed
operator in the usual way, rather than in the ori-
ginal form, which generates derivatives of the
form factor while integrating by parts. The deri-
vative terms are spurious.

Riska and Radomski have developed a scheme
for extracting the appropriate parts of the recoil
plus disconnected diagrams. This scheme ap-
pears to lack the q 'x terms which are so impor-
tant and lead to the Gross correction. Similar
terms of the form P 'x arise in the same way and

are absolutely crucial for relativistic consistency.
Few details were given in Ref. 54, however.

The Feynman diagram or FST approach of Refs.
52-54 generates pair terms with p, =-1. That is,
these terms are porportional to G~ only, which
follows for any approach which treats the nucleons
as free particles. Thiq contribution is then iden-
tical in form to Eq. (36) .

IH. FST METHOD

The FST method is a method of projection which
allows one to construct energy-independent poten-
tials and orthonormal wave functions. Gari and

Hyuga ' used this method and confirmed the
results of FI. A straightforward evaluation of

Eqs. (19)-(21)of Ref. 49 to order V/m for v, p,
and ~ exchange in the point m-N form factor limit
yields

E„=Gz(Da —D) (one-p—ion exchange), (12a)

Ear =GsDa (scalar-—, vector- meson exchange),

(12b)

IV. FOLDED DIAGRAMS

As mentioned in the Introduction, the folded
diagram technique allows one to construct an
effective energy-independent, nonstatic, Hermi-
tian, instantaneous, nucleon-nucleon potential and
corresponding eff ective transition operators.
Wave function orthonormality is ensured. This
method averages over relative energy (qo) in

Feynman diagrams and generates a class of "equi-
valent" results. Folded diagrams therefore of-
fer another method for handling retardation. The
strength of this technique is that it relies on
time-dependent perturbation theory, is diagram-.



804 J. L. F RIAR 22

matic (pictorial), very general, and systematic.
It has unfortunately been almost completely ig-
nored in work on exchange currents.

We will not describe the derivation of the folded
diagram techniques, but merely quote the neces-
sary results. Corresponding to a meson-ex-
change propagator V1V2/(q +m —qo ), there
exists an effective potential:

1

VFD ——Vg V2 d&' &' —&Kg 1 —A.
' 2

-1

+ ~E2(i + ~' ) /2] '

+ (q + m2)] . (Is)

The function f(&) is symmetric [f(&) =f(-&)] and
normalized to one [ f '1f(&) = 1]. It is obvious by
inspection that one is averaging over qo. The
quantities &~q and ~&2 were defined before and
need not be nonrelativistic approximations. We
wish to calculate only the leading-order relativis-
tic corrections, so we expand the integrand in
Eq. (1S) to order &E -I/~ . Defining e, =(q
+ m2)"2 and

1

f(X')A' dX'—:X,
-1

we find

V1V2 V1V2 (EE AE )2
1+Xl

FD= 2 +2 4 1+
eq e i

(i4)

2SE,~E,

Expanding to the appropriate order, one finds

It follows that &=1—2p. The folded diagram meth-
od generates the same potential we found before.
The preferred representation of Ref. 24 corres-
ponds to &=0 or p= —,', which, of course, elimi-
nates retardation in one-boson-exchange poten-
tials.

The effective charge operator is the sum of four
terms. The first has the form

1

pFD ——-81V1V2 d~'f(~')[&, (&') -&,(~')], (16)
-1

where

X. (~)=
I-'2,-e, +&F2 2e,

x . (17)
y AE1(1 —A.)/2 v AE2 (I —A.)/2

the meson arrives minus the energy before it ar-
rives. The corresponding diagram with the photon
on the outgoing leg [Fig. 1(c)] can be obtained
from the previous result by multiplying by -1 and
modifying the definitions of &E1 (to &E() in terms
of momenta accordingly. After expanding the
&E's to order I/~, this yields

(el+ e2) V1V2q q' (I —t )
PFD 2M e,

(20)

When e&+e2 is replaced by G~, this result is seen
to be identical to Eq. (8).

The confirmation that the retardation ambiguity
of FII and the folded diagram ambiguity are iden-
tical lends considerable confidence to our result.
We note that the 1/e, (leading) term in Eq. (17),
which is the static recoil graph contribution, can-
cels identical/y in each set of folded graphs. We
have also verified that to the order we have cal-
culated, the folded diagram ambiguity is actually
a unitary equivalence. The equivalence of the
various folded diagram results was noted in Ref.
24. Although it was never specifically claimed
that this equivalence was of unitary type, it was
implied.

V. QUASIPOTENTIAL METHOD

The wide variety of quasipotential equations is
discussed in several places. The treatment of
these equations by Woloshyn and Jackson (WJ)
fulfills most of our requirements, and we will
follow it, with modification by Gross to allow
the introduction of. nucleon spin. We begin with
the BS equation for the scattering amplitude of two
nucleons written in schematic form:

(2i)

where V is the sum of all connected irreducible
(two-body) diagrams. This is a four-dimensional
equation. Replacing G by g+ (G -g), where g is
three dimensional, allows the equation for T to be
rearranged in the form

FD —
4e 4

e1V1V2(I+ X) q q'
4Me 4

The corresponding graphs with 1 —2 are identical
with e~-e2,' therefore

p» =- '
~ „E1—S E, + (nE1+ a 2)]. (18)FD 4e 4

T=W+ WgT,

W= V+ V(G-g) W.

(22a)

(22b)

The virtual photon has landed on the initial leg of
particle 1 (charge e1) in the exchange diagram 1(b).
In each case &~ is the energy of the nucleon after

The Green's function g is chosen to have the same
elastic unitarity cut as ~, which does not unique-
ly specify it, however. Nevertheless, Eq. (22a)



22 RETARDATION, QUASIPOTENTIAL EQUATIONS, AND. . . 805

looks like the Schrodinger (or Breit) equation with
8' playing the role of the potential. Since g is not
unique, 8' is also not unique. In view of our em-
phasis on unitary equivalences, it is worth noting
how different three-dimensional equations can
lead to the same 7.', or, in the case of the analo-
gous bound state equation, to the same binding
energy. It is instructive to examine Table I of
WJ, which lists six different quasipotential forms.
As noted by Johnson, several of these forms will
generate energy-dependent potentials. In addi-
tion, several equations have the form of the square
of the Schrodinger equation, that is, they do not
necessarily corrpspond to first-order differential
equations in time. For example (& —H) P= 0 be-
comes (& -& )/=0 after multiplying by &+&.
Finally, parts of the effective potentials are re-
lated by unitary equivalences. Thus the main dif-
ferences of the equations and their effective po-
tentials are (a) energy dependence in V, (b) vari-
ance of the form of the equation, and (c) unitary
equivalence. There is also no consensus that any
one equation is "best" in any sense.

We will examine two different equations, and
one, the Gross equation, in some detail. The
kinematics appropriate to this equation are dis-
played in Fig. 1(d). The system proceeds from a
state of total momentum I', which is conserved,
and relative momentum P to a state with relative
momentum k after interacting by means of meson
exchange. For our purposes V and N' are the
same, since we will restrict ourselves to one-
boson exchange. According to Gross and WJ, the
three-dimensional Gross Green's function g~ has
the form

, ~s 5"(p'- M')
gc.—2%1 ds

&&5"{(P' p', )'- M')(M+P", )(M+P",),
(23)

where s =I' is the square of the total energy,
P'—= v s P/v s, and 6'(Q -M ) —= 5(Q -M )8(Q ).
For the moment we will ignore the spin projection
operators (M +p), which we denote by S; our
spinor conventions are those of Ref. 30.

Gross's work is characterized by putting one
particle, the spectator, on its mass shell. This
introduces asymmetry in the wave function and
complicates the use of Pauli principle, for ex-
ample. The on-shell particle is denoted by the
cross in Fig. 1(d) ~ It is a simple matter to evalu-
ate the integral over s' in Eq. (28); because rela-
tivistic corrections depend on the center-of-mass
(c.m. ) momentum P, we do not restrict ourselves
to the c.m. frame, which is conventional. We
find

() 2v25(p) - E1)
gs —=— u1u1(p))v2v2(-p2),2M (25b)

where the spinors are normalized according to
the invariant convention, u u=1, instead of the
usual covariant convention uu= 1. The additional
spin factor S has removed the apparent energy
dependence (~s in g~" in Eq. (24) and the result-
ing Green's function denominator has the Schro-
dinger or Breit form, obtained from (&-Z1- E2
—V)(=0. The Green's function also has spin
projectors and the & function which aQows us to
reduce the original BS equation to a three-dimen-
sional equation. If Eq. (22) is iterated, the effec-
tive potential in the positive energy subspace cor-
responding to the exchange in Fig. 1(d) becomes

u(p2)u(p2) Tu(p))u(p2) (26)elf ~P '4+Pl QP qp g~Q

where Y is the product of spinor factors pertaining
to a given meson exchange which may depend on

Co ~

We will divide the relativistic corrections in

V~, into two parts' . the retardation part in the
denominator which is the same for all exchanges,
and the part arising from the spinors in the nu-
merator. The retardation part will be dealt with
first. Expanding Eq. (26)'in powers of 1/M we
find

V =- + +I 1I 2 I 1I 2+E1 +(I 1I2)
q" +m' (q" +m') Q' +m' ' (27)

24
vi &(P1 —Z))$

& s&1 2(P p'/v s ) —v s -ic '

where we have defined &(= (p{ +M ), and p1
= (p1, p1), etc. This bears little resemblance to
the Schrodinger equation and, even worse, con-
tains extra energy-dependent factors which could
force the potential to be energy dependent. The
spinor factor 8 compensates for this, however.
In order to transform g& to a usable form we will
expand all the kinematical quantities in powers of
1/M, keeping terms of order 1/M beyond the
nonrelativistic limit for both nucleons. Because
particle 1, the spectator, is on-shell, its spin
projection operator can be represented by
2Mu1u1(p1), where a sum over helicities is im-
plied. Particle 2, the target, is off-shell and
its spin projection operators are linear combina-
tions of positive energy (u2u2) and negative energy
(v2v2) spinors. We therefore divide g& into two
parts: gq' (positive energy) and gc

' (negative
energy). Defining E=P, we f—ind after a tedious
calculation

gs =—-2))i
@ E, , u)u2(p))u2u2(p2) (25a)(+) ~ (p1 1) t I
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where V~V2 depicts the nonrelativistic numerator
factors and &(VqV2) represents the relativistic
corrections to them. Note that the retardation
term (&V„sr) is not symmetric under interchange
of 1 and 2. The retardation potential ean be sepa-
rated into e. m. parts and frame-dependent terms
which depend on P. We find

~+Rrr = &VREr+n VREr{P) + &Va{P) ~

where ~VRET is the standard-representation retar-
dation potential in the c.m. frame and &V„sr(P) is
the set of P-dependent terms obtained from Eq.
(98f) of FII for pion exchange or Eq. (26) of Ref.
26 for scalar and vector exchange. These terms
are the "standard" frame-dependent retardation
terms which are crucial for Lorentz invariance.
The remaining term has the following form for
pion exchange:

~ 2

& Vg {P)= [7', og
' Va2 ' VP ' 4].

4m

Use of Foldy's relation, Eq. (14) of FII, produces
a contribution to X„denoted by X&.'

2

Q = (og ' Po2 ' Vh + g2
' Po'r ' Vh) + Xo, (30a)

P'x
Xg —

4M 0~ (30b)

where Vo is the nonrelativistic potential. For
scalar- and vector- meson exchange, the spin-de-
pendent factors are missing, and only & survives.
The term ~ is precisely the term in the wave
function deduced by Casper and Gross, ' which
leads to the "Gross correction. "

Let us summarize the derivation of ~V~. The
retardation potential can be separated into three
parts, two of which are symmetric under particle
interchange and are included in the standard-rep-
resentation results derived by a variety of methods
in Secs. II-IV. The third term is new because it
is antisymmetric under particle interchange, ' it
le'ads directly to the "Gross correction" using
Eq. (A20). For pion exchange there is an addi-
tional term in + which can be shown to produce a
form factor contribution -C&D,. The terms in F
which arise from X„we will denote E„(~for mo-
tion); thus far we have

Fg ——G~(Do —D, ) (one-pion exchange), (31a)

(scalar-, vector-meson exchange).S g

(31b)

In order to complete the calculation we must eval-
uate the &(VqV2) factors. For scalar and vector
exchange they are identical to those found in Ref.
26 and do not lead to any additional X„ terms. For

pseudoscalar-coupling pion exchange, the result
corresponds exactly to the representation p =-I.
This leads to X~, which was shown earlier not to
contribute to elastic scattering to order 1/M .

Pseudoveetor coupling requires a special dis-
cussion. Gross" "defines a pion-exchange po-
tential which is a linear combination of pseudo-
vector and pseudoscalar couplings

&=~(I) r(2)g'Ar(q) A2(-q), (32a)

where

(1 —X)
A, (q)=Xy, + yr qy, . (32b)

„{p(' + p2' —pi' - p2')
2M

{33b)

where ( ) indicates an expectation value with re-
spect to two-component spinors. Equation (33)
indicates that with the exception of a small term
of relative order (1/M ), Gross's PS and PV forms
are identical in the positive energy subspace. We
find, furthermore, that Eq. (33) leads to

1 X
V„,= V.",, [r,(, p„, Vl j], (34 )

which leads to a X term for PV coupling, if we
insert p2 =-p+P/2,

Xpv =- O'2
' Po'~ ' Vh, (34b)

and an additional term independent of P which can
be removed by a unitary transformation Spy,

2

s = (og 'p, (Tr %Iran. (34c)

Eliminating both these terms from the PV poten-
tial and therefore from the deuteron wave func-
tion generates two additional contributions to F
which are identical; their sum has the form

bFp~ —DER + 4F» —2G@D, (36)

The X» term is a motional term and has been
labeled appropriately. With this transformation
the wave functions for both PS and PV couplings
should be the p =-1 choice.

The remaining process which contributes to the
charge operator to order V/I is the pair or sea-
gull process. For isoscalar transitions there is

This depends on qo. The remaining qo-independent
terms are symmetric under particle interchange.
Manipulation of the spinors in A leads to the fol-
lowing results:

Qg~gQg =Qg Y5 Qg ~ (33a)

(X- I)~
M2A2&2 M2y +2 +

4Mz (&2 (p2 + p2))
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no such contribution from vector, scalar, and
PV-coupled pion exchanges. There is a contribu-
tion from PS-coupled pion exchange, which may
be calculated using g& . This negative energy
channel is the origin of Gross's deuteron "P
states, " and produces a contribution

~+so = 2&~D ~ (26)

This completes the catalog of deuteron form fac-
tor contributions, which will be tabulated momen-
tarily.

Although we have evaluated only isoscalar ma-
trix elements, it is instructive to calculate those
isovector contributions which depend on the total
momentum of the two-body system in an arbitrary
frame of reference. These contributions deter-
mine the behavior of the matrix elements under a
Lorentz transformation and have a prescribed
form [see Eq. (96) of FII]. In Gross's formalism,
contributions for PS coupling come from X„and
X(: alone and can be shown to have the correct
form. For PV coupling additional contributions
arise from ppv and the usual PV-gauge term,
which exactly cancel. For scalar and vector ex-
change, the sBuation is identical to the one discus-
sed in Ref. 26. Lorentz invariance in Gross's
formalism is therefore verified, which is no sur-
prise, since his formalism can be formulated
covariantly.

In the present author's formalism the recoil
graph contributions make an important contribu-
tion to I orentz invariance, because this is the
only place the frame-dependent, isovector P ' xV
terms can arise. Isoscalar terms of the same
general form which lead to the Gross correction
in the deuteron can only arise in the "standard"-
recoil correction. The motional factor X(-. gen-
erates the same set of terms in Gross's formal-
ism. As noted by Woloshyn and Gross, the re-
coil graph is included in the BS formalism. The
motional corrections X& and X» arose because of
asymmetry introduced into Gross's equation
through the on-mass-shell condition applied to one
nucleon. As indicated in WJ an alternative and
symmetric quasipotential method exists which ac-
counts for the relative time according to the ori-
ginal prescriytion of Blankenbecler and Sugar.
The Green's function then has the schematic form

g- J) ds'& "((P'/2+0) -M )5"((P'/2-k)2 —M')

(pl P2)) = 6 (pl p2 ) y (SI)

which places both particles off- shell symmetri-
cally. If the retardation potential is calculated,
only the retardation potential &V~P) appears.
Since this potential is imyortant for purposes of

Lorentz invariance and appears in everyone' s
method, its appearance is hardly surprising.
However, the fact that this potential vanishes for
P. =0 tells us that the above prescription corres-
ponds to the "no-retardation" representation (v
=—,'), favored by Johnson and used in FD.

Finally we compile and add all the contributions
to the form factor corresponding to our result in
the p =-1 and standard representations, and the
Gross results that we have deduced and conveAed
to the same representation. These are shown in
Table I for all the various cases we have treated:
scalar- and vector-meson exchange, PS and PV-
coupled pion exchange, and Gross's linear com-
bination of pion couplings. We have denoted the
contributions from Gross's nonsymmetric opera-
tors with an asterisk (*). The second seagull
contribution arises from upv. The first observa-
tion is that although the separate columns are
different for the two cases, the totals are the
same. This illustrates what we have stated many
times before. Different representations spread
the total result differently over separate "physi-
cal" processes, such as recoil graphs, gauge-
term graphs, pair graphs, etc. It therefore
makes no more sense to try to separate these dif-
ferent, coherent physical processes experimen-
tally, than to "measure" the gauge in electrody-
namics. It also appears possible, as we sur-
mised in FD, to remove Gross's asymmetry by
means of unitary transformations, at least for the
processes we have examined in this work. The
wave functions that we must use in calculating the
matrix elements &~ and D, are then symmetric
under interchange. Our previous discussion has
also clearly confirmed the relationship of the
Gross correction to retardation in the potential,
which was previously speculated. This correc-
tion is known to be numerically important.

A1though we have tried to deduce what Gross's
results should be to order (v/c), only a limited
calculation by Gross exists. This calculation of
the charge form factor part of the PS result es-
tablished that the sum of the "Gross correction"
and the pair term was equal to previously publish-
ed results by others. The monopole part of the
pair term was given in the form (2G„-GE) D, It
is possible to verify from Gross's equations that
the complete result is actually (2G„-G~)D,. This
disagrees with our previous calculation of Gross's
pair term (2G~ ), although the sum of this cor-
rection and the "Gross correction" is the same
as what we found. Three obvious possibilities
for this discrepancy exist: (I) We have incorrect-
ly dealt with the asymmetry in Gross's equations,
although this would imply that there are additional
uncalculated processes which contribute. (2) Be-
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TAQI, E l. Gross and Friar results for the deuteron form factor converted to a common representation. The columns
labeled with an * denote contributions to Gross's results which arise from nonsymmetric operators. The two forms Dc
and Dc have slightly different forms because of the spin dependence of the pion-nucleon vertex.

Motion Seagull
Vector scalar

Recoil Seagull Total

Gross

Friar

G~sD

G@Dc

GzDc

G@Dc

Gross

Friar
Gs(Dc -D.) 0

G@(Dc—D )

Q&c+ (2' —Gz)D,

GAD@ + (2G~ —G@)D,

PV

Gross

Friar

GzDc

2G@D~ Gz(Dc —D~)

~(ps) + (x ~)pv

Gs(Dc+ &~)

Q@(Dc+D )

Gross

Friar

2G~D A.

2GzD, + 2 tD, (G&- Qz) G~(D, D, )

(y X)Q~D, GE(Dc + D,) + 2A(G&- Q~)D,

G@(Dc + D ) + 2A, (G@ G@)D

cause of the way Gross separates out the Gross
correction term, which is common to all meson-
exchange models, any additional terms from mo-
tion are forced to appear elsewhere. (3) Gross
showed many years ago in his earlier work that
errors in his approximate calculation of the deu-
teron form factor could be as large as relative
order 1/M . This is just the order we are now
calculating In fact it was by neglecting most of
the singularities in a relative energy integral for
the form factor that the asymmetry was intro-
duced. We do not believe, however, that (3) is
the case, and (2) is the most likely possibility.
The fact that the charge form factor has correct
Lorentz transformation properties to order 1/M,
at Least as we have calculated it, would indicate
that the corrections to Gross's form factor are
probably no larger than order (1/M), at least for
one-boson exchange.

Regardless of the reason for this minor discrep-
ancy, the fact that our total results agree to the
order we have calculated has to be regarded as a
major success. In view of the large number of
common representations that exist in the literature
for handling retardation and the equivalence theo-
rem, Gross's agreement of his PS corrections
with one other calculation which uses different
representations must be regarded as fortuitous.
No agreement with PV coupling would have been
found, for example. Nevertheless, with appro-
priate care the agreement has been demonstrated
and the equivalence theorem for PS and PV coup-

lings may be shown, by deleting the equivalence-
breaking nucleon anomalous magnetic moment
terms in Table I.

The Dyson transformation, which established the
limits of validity of this theorem, relates "equiva-
lent" field theories. Using perturbation theory,
the equivalence of matrix elements may then be
established. This is completely nontrivial, since
we are not making n'onrelativistic approximations,
etc. In the previous discussion we pretended that
the entire Hamiltonian was the kinetic energy. To
be consistent we should have included the potential
terms as well. We could not consistently do this
in the FST, folded diagram, and Gross approaches
because we had restricted ourselves to one-boson
exchange. In FII, however, additional couplings
between isoscalar scalar or vector bosons and
pions were introduced that allowed the complete
Hamiltonian (kinetic energy plus scalar and vec-
tor boson potentiaLs) to be used in establishing
the unitary equivalence. These additional terms
included three-body forces and contributions from
direct and crossed boson-plus-pion forces. The
inclusion of crossed graphs is unique to FII.

In addition, the Dyson transformation changes
the PS theory, with its large pair terms, into a
modified PV theory, with small pair terms. The
latter theory has substantial gauge terms (true
seagull terms) which take the place of the "pairs."
For this reason no particular attention should be
paid to the amount of negative energy states ';
this quantity, like the deuteron D-state percen-
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tage, is easily changed by a unitary transforma-
tion. For the same reason it is pointless to sepa-
rate physical processes which have identical
structur e and coupling constants into "relativis-
tic" and "nonrelativistie" parts according to which
Feynman graph provides their genesis. As an
example of this, we note that the e'X /2M term
in the nonrelativistic Hamiltonian with electro-
magnetism (p —eA) /2M is due to a pair term. It
would make little sense to call the p /2M term,
and the ep 'X/M term nonrelativistic while label-
ing the A'/2M term relativistic.

Gross's model, unlike ours, includes some
processes to all orders. In particular, the nega-
tive energy components are carried along with the
positive energy ones at each step of the wave func-
tion calculation. In traditional (nonrelativistic)
calculations they contribute to two-boson exchange
potentials, for example, Nevertheless, these
components can be calculated, in principle, using
perturbation theory, assuming that the perturba-
tion expansion converges. This is particularly
true of the equations of motion method, which re-
moves the negative energy states and generates
effective operators which reproduce the effect of
such states.

VI. DISCUSSION AND CONCLUSIONS

We have discussed a wide variety of methods,
based upon perturbation expansions of various
types. It has been assumed that the expansions
make sense, although it is certain that there are
conditions under which the expansions do not con-
verge. We have also restricted ourselves to the
deuteron problem in order to show the equivalence
of various methods. The simplicity of the two-
body problem does not extend to the many-body
problem, and it is by no means clear that these
techniques have equal applicability to the more
complicated problem. For example, the BS ap-
proach to the many-body problem is likely to be
intractible.

We have stressed the lack of uniqueness of op-
erators, as opposed to matrix elements, and the
importance of the equivalence theorem and the
Dyson transformation. This has been misiriter-
preted, unfortunately, because of the accidental
ec[uality of the nonrelativistic limits of Dyson's
transformation and the one Barnhill used. The
latter transformation is quite far removed from
the physics of exchange currents; what is impor-
tant is the relationship of PS to PV couplings.

.Although we have dealt only briefly with Lorentz
invariance, this principle is central to the entire
discussion of relativistic corrections. We have
seen that various dynamical paths to realizing

this principle exist; no unique prescription exists,
and, the fact that one method works does not mean
that others are wrong.

The various representations used are by no
means equally distributed throughout the litera-
ture. We have seen that the standard representa»
tion for retard. ation was naturally generated by the
FW, FST, and Gross methods. The free spinor
(p =-I) representation is also the most common.
By an amusing coincidence these representations,
among the ones we have discussed, mmimize-ex-
change contributions to the isoscalar charge op-
erator.

A number of different one-photon-exchange po-
tentials have appeared recently,

'

derived using
various quasipotential equations. Some surprise
is usually expressed that certain of these diverse
potentials do not agree with the Breit interaction.
These differences are generally traceable to an
energy-dependent potential or the use of Feynman
gauge in the photon propagator and different treat-
ments of the retardation. For each separate
quasipotential formulation of the two-nucleon po-
tential is a corresponding treatment of the elec-
tromagnetic problem. As we discussed in the
Introduction, however, this does not mean that all
are equaQy "good, " and if one is restricted to one-
photon exchange, there will be an (electromag-
netic) gauge dependence of the potential which re-
sults.

We would suggest therefore that the various
methods which are used in calculating relativistic
corrections be carefully examined for internal
consistency in order to determine any energy de-
pendence in the potential, as well as the repre-
sentations. That is, a nonrelativistic reduction
of the equations of motion should provide enough
information to determine these specifics. Each
technique will lead to different transition operators,
Hamiltonians, and wave functions. It remains to
be seen which method, if any, will prove superior
to the others in the various applications which
will arise.
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APPENDIX

We list here explicit forms for the various con-
tributions to F, the deuteron charge form factor.
The impulse approximation to I", denoted by I"0,
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has the form

S'p —G,' C (X)q p(qx/2)dx,
0

Ep 2Gg Jt Q(x)jp (qx/2)dx
0

(A1)

(A2}

C(x) =u'(x) + uP(x) (A3)

where G& is the isoscalar nucleon form factor
[Gs(0) =1] and j„is the usual spherical Bessel
function. In addition

defined in terms of f=g/2m and the usual pion-
nucleon coupling constant g, the pion mass m, ,
and the nucleon mass M.

The remaining type of exchange contribution D~
has the form

2 ee

D,' =- — dx qxjg(qx/2)[c(h" + 2h'/x)
m

+ 4v 2Q(h" —h'/x)],

(A12)

and

Q(x) =~(x)pe(x) s'—Ix)/~ (A4)

dxq —j,(qx/2) C(h"-l /x)
fpv8 " d
2mm 0 de'

are the charge and quadrupole combinations of the
usual deuteron reduced wave function components
u (S state) and pu (D state). The two most common
physical quantities calculated from I" in the small-
q limit are the mean-square radius (assuming
point nucleons) (r )n and the quadrupole moment
Qn. For the impulse approximation we find

for pion exchange, which leads to
~0

Jt
dx»'[C(I -+ 2I /x)

4Mm, ()

(I "—4h'/x)
2

(A13)

(y) =-,' x C(x)dx,
0

q, =„, J) x'q(.}d..
0

(A5)

(A6)

+ 4v 2Q(h" —k'/x)] (A14}

2

Q~ = — ' dxx C(h"- h'jx)

This contribution leads to

(A8)

An additional pion-exchange contribution to &,
denoted by D,(q), can arise and can be decomposed

.according to Eq. (3):
2

D = dx lp'(x)qj|(qx/2)[C(x) +4vYQ(x)],
r

(Av)

f vS
D =- dxl'p'(x) qj (qx/2)(C —Q/vY)

2Mm

2Vf4 j,(qx/2)2x

(a" —4h'/x) . (A15)

It is demonstrated in the text that all our deuteron
results can be expressed as linear combinations
of +0, D, and D&. %e restrict ourselves to con-
tributions of order V /M where V is the static
OPEP; thus our corrections to E0 have the dimen-
sional form fp'm, /M which is approximately 0.01
and sets the scale of the corrections.

For scalar- and vector-meson exchanges, D&

has a simpler form (denoted by the prime) than
for pions, because the nonrelativistic potential Vp

has no spin dependence. The form of && is given
by

f2 44

(r ),=- — dxxh'(x) (C + 4vYQ), (A 9)
0

2

q, =- ' dx»I {x)[(C q/W) Q '],

d
C(x)q p(qx/2) Vpd,M dq

d OO

q( )j,(qx/2) V,d»,de4 0

(A16)

(A1V)

where we have defined

(A10)

P( )
4

I
+q fN (1 )e e

(A11)

which is dimensionless. The last relationship
holds if the pion-nucleon form factor +,+ is iden-
tically one. In addition, the rationalized pion-
nucleon coupling constant fp =f m, /4m =0.079 is

where V0 contains the necessary isospin factors
and appropriate Yukawa form in coordinate space.

The transformation X„which arises from pion
exchange has the form

2

X„=~ (0 —1)((rg ' Pop ' Vi'p
8Mm

-~, ~I~, P)~(1) ~ ~(2),

(A18)
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(A-19)

(A20)

with

po(q) = e,e"*i (A21}

and

(I+ r, (i)~~, It'I - ~p(i) „G'
(A22)

For the specific X„given above, namely Z„, we
find that &&p) vanishes because X, is antisymme-

where r(i) is the isospin operator of the ith nu-
cleon, the isospin factor has the value -3 for the
deuteron. Any )(„ term in the wave function can
be converted into an effective charge operator
using Eqs. (2). We find

&0 IPo(q) I 0) =&to lop(q) + &p(q) I to),

&p(q) =i[X., po(q)]

tric under spin interchange.
The remaining relativistic corrections (F=E„-

+F,+ &Eo) can be obtained from Ref. 40 in the
form (to order 1/M')

EFp=(1-qq /SM )G~Fp(q )-,G~ gFp
16M dq

+ (2G„-GJ„)E„, (A2S)

wher e the Darwin-I'"oldy, I.orentz contraction,
and spin-orbit contributions are the three separate
terms. In addition, the arguments of G~ and +p
must be q (the four-momentum transfer) rather
than q . These four kinematical corrections are
common to the early work of Gross and the pres-
ent author. Until recently, pair and other poten-
tial-dependent contributions had not been con-
sidered.
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