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A general formalism is proposed for evaluating the effective interaction between valence nucleons, taking
into consideration the low-lying contributions of two-particle two-hole (2p2h), two-particle one-hole (2plh),
three-particle one-hole (3plh), three-particle two-hole (3p2h), and four-particle two-hole (4p2h) correlations.
The formalism consists of solving a hierarchy of multiple scattering type equations with coupling between
various correlations and is naturally combined with the Q-box approach for folded diagram theory. The
energy dependence of the reaction matrix is included in the formalism. The effect of 4p2h correlations is
studied for a simple two-level model for mass 42 by solving the hierarchy of coupled equations numerically
by neglecting the coupling to 2plh and 3plh configurations. The 4p2h correlation with 4p coupled to
isospin 0 has dominant contributions as expected. For a reasonable choice of the energy denominator, the
4p2h contribution to the two-body effective interaction is sizably attractive.

NUCLEAR STRUCTURE Shell model, effective interaction between valence nu:
cleons, particle-hole multiple scattering formalism for low-lying states.

I. INTRODUCTION

An accurate description of the effective inter-
action between valence nucleons is one of the basic
subjects in nuclear structure theory. ' The starting
point of such a calculation is essentially the formu-
lation of Brueckner. The basic two-body vertex
in the microscopic theory of effective interaction
is the Brueckner reaction matrix G, which by con-
struction takes into account short range (high-
lying) two body co-rrelations. The G matrix alone
has been found, however, to be a poor approxima-
tion for the effective interaction between valence
nucleons especially for the low-lying states 2

Various corrections to the G matrix needed for
the calculation of such effective interaction can be
properly incorporated using the folded diagram
theory for the effective interaction. ' ' We use a
particular variant of this approach —the Q-box
approach' —in the present formulation. The G

matrix can thus in principle be used to take into
account low-lying correlations between many par-
ticles. and holes. Special care is needed to avoid
double counting ambiguities in such treatment of
low-lying states. Within the framework of the
Brueckner theory the G matrix adequately treats
the high-lying states. In the present formalism
both high-lying and low-lying states are treated
in a democratic way, following the idea of the
double-partition approach. ' The immediate
space is divided into high and low parts. The high-

lying space is adequately treated to yield the
Brueckner G matrix with some important rear-
rangement effects. The effect of low-lying states
is then included by a multiple scattering formalism
introduced in earlier works. ' "

The renormalization of effective interaction
through core polarization effects has been a long-
standing problem. """ In the case of two
valence nucleons, previous works by Ando,
Krenciglowa, and one of us (H.B.) have used
multiple scattering formalism to study the con-
tribution of low-lying three-particle one-hole
(3p1h) intermediate states to the effective interac-
tion between two valence nucleons. "" The multi-
ple scattering formalism efficiently sums up a
series of connected diagrams that contribute to
the effective interaction between valence nucleons.
The resulting equation, which was obtained using
the multiple scattering formalism, takes into ac-
count full three-particle one-hole correlation ef-
fects. Such an approach was a generalization of
two-particle one-hole multiple scattering for-
malism which was employed to get a generalized
core polarization vertex in the case of a one
valence nucleon. " The energy dependence of the
G matrix is properly taken into account in such an
approach, although it is difficult to include such
energy dependence in a shell-model type approach.
An extensive study was performed for mass-16
and -40 regions by incorporating several impor-
tant physical ingredients into the Sp1h multiple
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scattering approach using different N-N poten-
tials."
It is well known that four nucleons will have

strong correlation in a many nucleon problem.
The two valence nucleons outside core can excite
two nucleons in low-lying states and create four-
particle two-hole (4p2h) intermediate states.
Such four-particle states will have strong corre-
lations and can really influence the effective inter-
action between valence nucleons. The lowest
order 4p2h diagram has already been considered
in such a context. Here in the present work we
develop a multiple scattering formalism to take
into account strongly correlated states of this
type in such a way that it is consistent with the
folded diagram theory. The present approach
therefore takes into account only connected dia-
grams with proper enegy dependence of the G-
matrix vertices. The present method consists in
solving a hierarchy of equations of the multiple
scattering type. At each stage of the hierarchy
only connected diagrams are retained as this
makes the implementation of the formalism much
easier in practive. The 4p2h correlations under
consideration are expected to have physical cor-
respondence with the "intruder state" which can
pose difficulties in "order-by-order" approaches.
These difficulties are now largely overcome. ""
As our basic approach is not "order-by-order" in
the interaction, "intruder" difficulties are not
expected here a priori.

The present formalism takes into account all
possible interactions between four particles and
two holes and is in fact a six-body theory. To
study the effect of four-particle correlation we
neglect the coupling with 3)lh correlation and the
particle-hole interaction from the present formal-
ism. This makes the numerical calculation
simpler. Of course a rigorous calculation must
take into consideration particle-hole interactions
at every stage of calculation. We carry out a
numerical calculation for a simple two-level model
which simulates the mass-42 region. The basic
interaction vertex is obtained by simulating the
realistic 6 matrix. Our model calculation takes
into account pure 4p2h, while Splh correlation
was investigated in detail. ' " The calculation we
perform is a model calculation but through this
calculation we can learn about the effect of strong
four-particle correlation on the effective interac-
tion between valence nucleons.

The plan of the paper is as follows. In Sec. II
we develop the hierarchy of equations. In Sec. III
we represent explicit angular momentum repre-
sentation of such equations. Section IV reports our
numerical calculation and finally Sec. V gives a
brief summary and concluding remarks.

II. MULTIPLE SCATTERING EQUATIONS

The model space projection operator P will have
the form

P= P~ —— ij ij (2.1)

where the summation extends over certain speci-
fied orbits. The Q space projection operator

Q=l —P
is divided in the following way

(2.2)

(~) = ~+ ~Q~ '"—Q~, TQ~,

where &, V, and ~ are, respectively, the kinetic
energy, nucleon-nucleon potential, and 6-matrix
starting energy. Essentially "exact" methods" "
for calculating the G matrix of Eq. (4) have been
developed so that no double counting problems
arise.
According to the folded diagram theory the

effective interaction between two valence nucleons
will have a contribution from all connected dia-
grams with two particles in both initial and final
states. Now we propose a multiple scattering
formalism for summing a subset of the relevant
diagrams. For this purpose we propose a hier-
archy of equations of the multiple scattering type
whose driving terms are always connected. Such
formalism takes into account a large family of
diagrams. In this section we represent the
formalsim diagrammatically and explain their
physical content.

To find out the effect of 4p2h correlations we
have to introduce various correlation operators
between subclusters. The idea is similar to that
which we need in the study of nonrelativistic few-
body problems. For example, the formulation of
a six-body problem becomes easier when ex-
pressed in terms of t matrices of various sub-
clusters. So we construct correlations of the
following types: two particle two hole (2p2h), two
particle one hole (2p1h), and three particle two
hole (3p2h), in addition to 4p2h and 3p1h correla-
tions. There is one interesting difference between
the nonrelativistic few-body problem and the

Q=Qg, +Q!y+Qey~h+ Qgy~h+" (2.3)

where Q,
' has the form of (2.1) with the summation

extending over another major shell and Q,"~ refers
to high-lying two-particle space. Q,'» and Q,',»
are confined to several of the lowest orbits. The
Q space is truncated to the terms exhibited in Eq.
(2.3) and the high-lying terms in Q are treated by
the G matrix which with orthogonalized plane wave
intermediate states satisfies
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T2p2h = 6+ X 2p2h
i=1

(0)

present formalism in that particle-hole con-
figurations can be created or annihilated in the
present formalism.
First we introduce the 2p2h correlation through

the diagrammatic equation in Fig. 1(a). The point
vertex indicates a G-matrix vertex and we include
all possible interactions between the particles and
holes on the right hand side, and the summation
runs over all their interactions. The unknown

in Fig. 1(a) is a renormalized G-matrix
2 yeah

vertex.
In a nonrelativistic few-body problem only sub-

cluster t matrices appear in the driving term of a
bigger problem but the possibility of spontaneous
creation or destruction of a particle-hole pair
correlation involving a larger number of particles
and holes may contribute to the driving term of
correlation involving a smaller number of par-
ticles and holes. This will happen in the 2p1h type
correlation explicitly demonstrated in the equations
in Fig. 1(b) and 1(c). The equation Fig. 1(c) de-
fines the driving term which includes the effect of
2p2h and 3p3h correlations. Such contributions
did not appear in Refs. 8 and 9 because the Q space
was truncated to exclude such correlations. The

unknown T,,~ of Fig. 1(b) is also in a sense a re-
normalized G-matrix vertex.
Next we define the 3p2h correlation. This again

satisfies an equation similar to the equation in
Fi . 1(b), namely the equation in Fig. 1(d) with
the driving term given by the equation in Fig. 1(e).
The driving term now contains both 2p2h and 2p1h
correlations.

The 2p2h correlation given by the equation in
Fig. 1(a) contains no particles in the initial state.
The 2p1h and 3p2h correlations contain one par-
ticle in the initial state. Next we consider another
type of term which contains two particles in the
initial state.

The Sp1h correlation can be summed to &3~
and satisfies the equation of Fig. 2(a) with the
driving term. given by the equation of ig.F' 2b.
Then we have the 4p2h correlation denoted by
T which satisfies the equation of Fig. 2(c) with
the driving term given by the equation in Fig.

4p2h

i 2 d
In the equations in Figs. 2(b) and 2(d), two co-
existing 2plh blobs implicitly represent a sum of
alternatively repeated two 2plh correlations. Note
that these can be made on-energy-shell for non-
folded diagram contributions. Finally the effec-
tive two-body interaction between valence nu-
cleons is calculated using Qo defined by the
equations of Figs. 3(a) and 3(b), where the con-

T2p1h =
i ~ t

3+ Q 2p1)h
i=1

(b)

T3 p1h 3p1 h

li

62

6
+ X 3p1h

i=1
n

(o)

T2 p1 h = +21h~ + X 2p2h

(c)

(o)
T3plh = p16

c d 1

5
+ X

i =1I

I

12
p2h + + 4p2h

i=1

(b)

T3p2h =
T4p2h =

C

2h + X 4p2h
i=1J| Ji

(c)

(o}
T3p2h =

E1

~~

I&

II 3
2p2h + & 2p

i=1 i=1
(e)

(o)
T4p2h 2h

9
X
i=1

qpgh

FIG. 1. Diagrammatic equations for the 2p2h, 2plh,
and 3p2h correlation operators T, with T be gin the
driving terms. The point vertex indicates a G matrix
and the summation+& runs over all possible interaction
pairs.

+ + 3p2h + + 3plh)
i=1 II

FIG. 2. Diagrammatic equate. ons for the 3plh plh and 4 2h
correlation operators.
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Mc =— +
c d

4
+ X

I I

Ak
4pci + X 3plh + Q

i=1 i=1

(o)

+ 2p2h

T4p2h-
]4

A
M+-T3p3h =

~ T3p'lh
j IIL

A
=T2plh ~M

T3p3r

Qc = )4c) + + ~ ~ ~ ~ (b)

M 2plh
Ii

i

2
th + Q 2p2h (C)

i=1

FIG. 4. The coupling scheme of the various correlation
operators.

T2p) h contributes to M and al so to the driving
terms T3~» T3&» and T4&h

FIG. 3. Diagrammatic expressions of the connected
two-body M box M&, connected two-body Q box Q&, and
one-body M box M' ' . The railed line in {b)) indicates
a particle state in the Pq)i space.

P

nected M box Mc is appropriate for the P+ Q,',
space and the Q box Qc for the P space is evalu-
ated by summing the ~ ladders. The expression
corresponding to the equation of Fig. 3(b) is given
by

PQcP=P Me+Me@33 ), ~, 3 Qtaikc P,

+M

The one-body ~ box I"'here can also be evalu-
ated by using the correlation operators as in the
equation of Fig. 3(c), which is a generalization of
Refs. 8, 9, and 21.

The coupling scheme is described in a diagram-
matic way in Fig. 4. The arrow indicates to which
quantities a particular correlation contributes.
The diagram is self-explanatory. For example,

III. ALGEBRAIC EQUATIONS FOR SPECIFIC 4p2h
CORRELATIONS

Ig. this section we present explicit algebraic
equations for specific 4p2h correlations which
are considered to be important among a hierarchy
of mutually dependent multiple scattering equa-
tions diagrammatically given in the previous sec-
tions. The connected series of equations, T»„

T3h T4pg h of Fig .4, cor re spond physical ly to
the conventional shell model which takes into ac-
count the coupling between 2p and 4p2h configura-
tions." The path T»»-T»„has been already
investigated in detail.""The approximation
which arises from taking only the path T»„-T,~„-T,&„-Q is the neglect of the coupling
between 4p2h and Splh configurations.
We introduce antisymmetrizing operators de-

fined by

3333~(PP2r) 3 [ P(PP2r) ~(PP2r)4(P2ptr)1

(3.1)

np p p 4(pt P3P3(r 3) r)
(4(pt P3P3(r2) r) ~(P2P3r2) Q e(ptrt r) I PiP3rpt r2r31 P( P3 Ptp3(r2) r)] (3' )

2

n„„,s,P(P t P3(r t»3P4(r3) r)

6 PfP2 PP4 ~ 2 i 3 4 2 1 2 - 3 4 2 I 2

—4 [p,p, r„p,p, r„r', r,' r]n, , n, , p(p, p, (r,')p, p, (r,')r) ~, (3.3)r r'
1 2

P gP3 PPP4 )

where 1' denotes angular momentum and isospin collectively (r -=JT) and 8(pip31 ) -=(-)~t'~3 ~(-)i~3'~3 r,
[ , prPp3, ; r', r,]=([r',][r,])' 'w(p, p3rp, . r', r, ),
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[P1P2F12PSP4 ~23 F1 ~2 ~] ([~1][ ~2] [ ~1][ ~2] ) ~ P3 P4 1 2

&r', r,' rl
with [I ] = (21'+ I).

In the following we use simpler notations:

2y2h 3u2h 3u 4p2& 4u

The equation of Fig. 1(a) for the renormaiized 2p2h vertex @ is given by

344(p, pplp, r, )=G(p,plpp, r, ;~„)4-QG(p, p, p;p;r„.~,.) 4)4(p, p, pip, r, )
&3&4 2Q

+Z G( 1 2 1 2+22&2h) (P3P4 1 2 2)
~2hi 2

232'

+2e(p,p, r,)0„, g [ r,'] W(p, p,h,h„ l, r,')g E(p,h, p'h'r, ';(d,„) o.(p'h'h, p, r,')2 pl'- 8 h
2

+F(h2P4h'P'I'2. , (d „) P(P3h1hPP'I 2)Q g

(3.4)

where F(g) is a p-h coupling of G($) given by

(3.5)

(3.6)

(3.7)G02 =(02h =Eg + EI

h Eh +Eh +Eh' ~g s

where p, denotes a spectator particle not involved in the relevant vertex. The energy denominators are

F(PhP'h'r ') =g [ r ] W(Ph'hP' r2r2') e(Ph'12)G(Ph'hP'12),
I'2

where G is an antisymmetrized but non-normalized matrix element. The G-matrix starting energies are
given by

82:Eh + Eh Ep ((dp I)2Ep ( 2(4l))p) (r)pl: Eh + Eh s
2 3 3 4

82h= Ep 2 + E23 —Ep ((4()p ) Ep ((r)p )) (op. —Ehl + Eh ~ s pP4

,h=Eh +Eh —Ep, (&p)-Ep (&p )) (dp=Eh, +Eh —sp

(3.8)

In Eqs. (3.7) and (3.8), p
is the unperturbed sp energy, while E„and E p include self-energy G-matrix in-

sertions. Hole energies E„can be determined self-consistently on the energy shell, while particle ener-
gies E

p
are to be evaluated off the energy shell. 8' "8' ' Determination of Eqs. (3.7) and (3.8) are based on

the "downward-projecting core" argument ' and thus the vertex @ does not depend on the diagram starting
energy e2.

Next we would like to present the contribution of 8 to the driving term of the 3p2h correlation defined by
T3~'. This contribution which is diagrammatically represented by the first term on the right of the equation
of Fig. 1(e) is explicitly given by

T 3)) (p2)p3p4(r 2) F3) 1 2(1 h)2 r d)81

where

2 3 3 4~ 2 2 P P3P ~2P3P2P3 2 P2P3 3P48 2 2

2 2

'(p 'X, r(p4( I(')pl r(IrI2);)lr)4.2)I

~h h Q [P3~2F3 1 2~h Y1Y2 d] Z F(P2 1P2 1'Y1) g [P2 2 ~3 h1 2Fh Y1YZFd ]
g3 P2 03P4

12
P ]ggd

2 i r3r&

x l (p2 p3p4(r2) 4'3 plp2(ril)' p )I, ($.9)
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(p2 p3p4(r2) r3 1 2(r)h) rd ) (rd r)) r8) 6(p2p4 1 2 r2)5r I' 5drd ~
(0) [r,]

~2y 2 n

Now in explicit angular momentum representation T» satisfies

(3.10)

~3 ( P2 PSP4(r 2) r ~82 (r ri)

3= r'4'l + 43. .. G(P PEPIP(»)r3. (PE P'EP4 (r2) r2, "1"3(r3);r4 31)}
P3P4

1+ rr(h, h, h', h,' r,)r„(p„pEp,(r,)r, ;h,'h', (3 „);r,;,)j83 ndhand12
6+—133.3 14233 Q IP2r2r3 hlh2rll EEEErEI Q hP(PEhEP(hIXE)

83 g 3 4 12
yi 2 Py h'

1

X Q Ip(r2( 2 "I"Erl XEXErElr3.(pl pEp4(r2)rl, . I"3(13);rEp1)} (h )()
r 3r„'

In Eqs. (3.9)-(3.11) and the following, the energy dependence of F and 6 have been suppressed but im-
plicit. This energy dependence and the energy denominator e, can be identified following the standard dia-
gram rule. 3

Next we give the contribution of such 3p2h correlations to the driving term of 4p2h correlations denoted
by T4p T4p is given by

T 4 (P1P2(r1)P3P4(r2) r4 1 2(rd) r()d ~2)

3=—43
3 Q G(PEPEPIPE r1)(P'(PIPE(r1)P3P4(r2)) 4'h1h2(r3) rx 42)j

4

where

2+ @ ~h'lh Q I p1p2r4r2 r1r l Q [p1rSr4 I1p2rh T1$2rddl Q 2+(p & p'@' y, )Pic P3P4
3 1. 2

p'n'11

x g IPI r, )'E, hlh21'3 xEEEr&)22 (Pl IPE PEPE(1'2)}1'Er(,hlh2(r(); r&43)},
4n

(3.12)

f2 (P1 IP2 P2P4( 2)] 3r4 1~2(r)h) rog

@ d [p1r3r d rh r4 rdl 72'(p2 p2p4(r2) r2, I21142 (I,); r„~2 —&,) 5... (3.13)

fP'(P1P2(r 1)P2P4(r2) r4', "P2(rd; r.d,'&2)

=g [P,P2r 4r2; r, r2]t2"'(P„&P„P2P4(r2)] r, r4;hP2(r, ); r„;~2). (3.14)
E'3

Equation (3.12) is diagrammatically represented by the equation of Fig. 2(d). Finally T4, for 4p2h correla-
tion given by the equation of Fig. 2(c) satisfies

~4 (p1p2(r1)p3p4(r2) r4 1 2(r)1) r d ~2)

(o) + ~ ~ Pi P2pi P2 ~ 1 T4 P1P2 ~i P3P4 ~2 ~4 1 2 ~n ~ 4 ~2
4 ~, ~2

+ Z G(hlh2 1 2 r3) 4 (P1P2(r1)P3P4(r2)r4 hl 2 ( 3)' r 4 32)}n' n'12
8+ e. .. , a,,& [P,P, r4r, ; r, r21 Q [P1r2r4 I41I 2ra»ter„] 2Z(PP, P1I4I y1)Pit'2&304, 1

3 yr1 2 p n1 1

lpl 2 4' I 2 3' Y432 El Iplplp2 4 2 I 31
@dr d ~i

x r4 (PIP2(rl)PEPE(r2)r4 hlh2(r3); ) 4', 22)j ' (3.15)
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The contribution of T4, to the M box MQ4pph will be
given by

M (abed 1';e2)

xG(p3p4hth2f II) T4,(ab(1 )p3p

x (I'I ) I'4, II @2 (1'h) ' I ', 62}.
(3.16)

This completes the presentation of the simplified
4p2h equations. Here we neglect the coupling to
correlations of type 2plh and 3plh. The energy
dependence of the G matrix is dropped for simpli-
city after Eq. (3.8} but it is supposed to be there
and can be included in numerical calculation.
Furthermore, the center-of-mass treatment ' '
and the high-lying space rearrangement effect can
be easily incorporated by adding terms to the G-
matrix mertex as was done in Refs. 10(b) and 11.

IV. TWO-LEVEL MODEL CALCULATION

In order to illustrate the feasibility of our treat-
ment and also to get an idea of the importance of
the 4p2h state contribution to the two-body valence
interaction, we employ a two-level model with a
j~=& particle orbit and a j„=-', hole orbit which
simulates mass-42 systems. We use the equations
presented in Sec. III but with the neglect of the p-h
and h-h interactions, considering that the p-p
interaction among four particles is principally im-
portant and that the p-h and h-h interactions could
be absorbed in the p-h single particle energy dif-
ference in an average sense. With this approxi-
matidn, two holes enter only into the initial and
final interactions. We do not evaluate the standard
second-order 4p2h diagram as it is well known.
The G-matrix elements that are used in this cal-
culation are G(j 'JT) =-1.6, -1.1,-1.5, -2.3 MeV
for J=1, 3, 5, 7, T=O, and -1.4, -0.9, -0.4,
-0.2 MeV for J'=0, 2, 4, 6, T=1; G(j ~j„2JT)
=-1.3, -0;3 MeV for J=1, 3, T=O, and 1.9, 0.4
MeV for J=0,2, T=1. These matrix elements
simulate the energies obtained by diagonalizing a
G matrix with full (OflP} configurations. I' Ener-
gy dependence of the G-matrix vertex is not taken
into consideration and a common value D is used
for all energy denominators.

We solve a series of multiple scattering equa-
tions with a successive displacement iteration
method so that each order of iteration includes
far more than the corresponding order of per-
turbation series. The renormalized 2p2h vertex
Ij of Eq. (3.5) can be obtained trivially and is put
into the driving term T&~0', Eq. (3.10), for the 3p
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FIG. 5. Contributions to Q&4~hPT) from 4p2h correla-
tions T4& with different VhTh, J4T4). The energy denomi-
nator is taken as D= 11 MeV.

multiple scattering equation (3.11) for T3,. The
equation for T» is solved by iteration and the
solution is then substituted into the driving term
T4'~0', Eq. (3.13}, for the 4p multiple scattering
equation (3.15) for T&,. The equation for T4, is
also solved by iteration and then the solution is
used through Eq. (3.16) togive aQ box Qc4»h(j, 'JT)
which fully includes a set of 4p2h intermediate
state contributions to the two-body effective inter-
action.

The 3p amplitude T» converges very quickly.
The strong 4p correlation shows up in the solu-
tion of T4, , therefore the convergence of iteration
highly depends on the 4p angular momentum and
isospin J4T4. As naturally expected, the T4~ for
T4 ——0 is most enhanced and gives dominant con-
tribution to Q«»„, since this corresponds to the
o, -cluster-like correlation. Figures 5(a) and 5(b)
show the contribution to @~4»„(JT=01) and
Qc4»h(JT =10), respectively, from different
(J„T„,J4T4) components in the case of the energy
denominator D =11 MeV. All these components
contribute attractively to Q in this case.

By varying the energy denominator D we can find
out the position of the pole for each J4T4 com-
ponent, which somehow corresponds to the energy
gain of the corresponding 4p "state" due to the
internal correlation. Figure 6 displays the worst
convergence behaviors of contributions to Qc4»h
as a function of iterations for T4, . We can see
that the T4 ——0, J4 ——0, 2, and 4 contributions
start to diverge at D = 9.5, 9.0, and 8.5 MeV, re-
spectively, implying that these 4p2h states come
down from the unperturbed energy by those
amounts of energies. The location of the pole
is of physical interest so that divergent series can
be of physical interest. A choice of D =11 MeV
used in Fig. 5 may thus correspond to the situa-
tion where a J4T4 ——0 0 4p2h state is 1.6 MeV above
the 2p state. It is interesting that even in the
D =10 MeV case, which is only 0.5 MeV above the
pole for J4 —-0, the contribution to Qc4»h still re-
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FIG. 6. Convergence behaviors of contributions of T4&(J'4T4= J 0, Jp'&= 01) to Q&4gh(g, T= 1) as a function of itera-

tions.

mains not too large. Anyway the extreme sensi-
tivity to D as seen in Fig. 6 indicates the necessity
of treating the energy denominator self-consistent-
ly with the G matrix in the realistic case. It is to
be noted here that the present multiple scattering
equation could be solved in a noniterative way, be-
cause it forms a simple inhomogeneous linear equa-
tion, although ail the omponents are not indepen-
dent, owing to antisymmetrization. Convergence
of T4, for other than J4 ——even, T4 ——0 is very quick.

Galculated values of Qce»„(j e OT) with D ='11
MeV are -0.241, -0.133, -0.115, -0.134 MeV for
J=1,3, 5, 7, T=O, and -0.300, -0.169, -0.104,
-0.085 MeV for J=0,2, 4, 6, T =1. These are
sizable enough to give a physical effect on the 2p
system in view of the fact that realistic bare G-
matrix elements are smaller than G(j e4ZT) used
here, since the latter simulates full(0flp) ef-
fects.

V. SUMMARY

We have developed a general multiple scattering
formalsim for the effective interaction between
valence nucleons, which fully takes into account
low-lying Splh and 4p2h intermediate state con-
tributions. Five kinds of correlation amplitudes,
2p2h, 2plh, Splh, 3p2h, and 4p2h, are introduced
to evaluate only the connected series of diagrams
and they constitute a hierarchy of mutaully depen-
dent multiple scattering equations. This is a
generalization of the previously used 2plh and
3plh multiple scattering formalisms. As already
proved, this approach is flexible in the sense that
the energy dependence of 6-matrix vertices, cen-
ter-of-mass treatment, and rearrangement effects
can be easily incorporated, and at the same time
maintains a transparent connection with the linked-
valence connected diagram perturbation theory.
Combination with the Q-box approach for evaluating
folded diagrams is naturally achieved. Explicit
angular momentum coupled expressions for the
general equations diagrammatically shown in Sec.

II can be given straightforwardly, although we have
presented them only for a particular path of the
hierarchy that we used in our numerical investiga-
tion. The multiple scattering equations have a
form to be easily solved by a simple linear itera-
tion. For strongly correlated amplitudes it will
also be possible to solve them as a set of coupled
algebraic linear equations. The noniterative way
of solving is the only way when the iterative series
is diverging. Divergent iterative series does not
mean that the solution does not exist.

Numerical calculation has been carried out for
a simple two-level model which simulates mass-
42 systems. A series of equations, T2p2h T3p2h
-T4»„-Q, have been solved by iteration, with
the neglect of the p-h and h-h interactions. The
4p correlation with isospin 0 has dominant don-
tributions to the two-body effective interaction,
as expected. The net contribution of the connected
4p-2h correlation is sizably attractive for a rea-
sonable choice of the unperturbed energy denomi-
nator. Of course this schematic model calcula-
tion is not meant to draw any definite conclusion
for the realistic 4p2h effect; however, this cal-
culation gives us a prospect for applying the
present approach to a more realistic situation. In
mass-42 systems, for example, we need to take
into consideration three hole orbits and four par-
ticle orbits, or moreover to incorporate the pos-
sible o. clustering, and the sensitive dependence
of the 2p2h matrix element G(PtP2hth2JT) on the
relevant orbits. Such aspects can only be treated
in realistic calculations.

The formalsim proposed in this paper is more
general than those used to include 2p'ih (Refs. 8, 9)
and Sp2h (Refs. 10, 11) correlations and also main-
tains the advantages of these approaches. A move
realsitic calculation of 2plh, Splh, and 4p2h cor-
relations should involve the solution of the coupled
set of equations presented in Sec. II and not the
neglect of the coupling as in previous works. The
number of coupled equations depend on the defini-
tion(2. 3) of the truncated Q' space. The contribu-
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tion (relative importance) of the various terms of
the Q' space to the effective interaction is not ob-
vious. We can include more terms in this Q'
space, in principle, and this will increase the
number of coupled equations. There have been
several calculations which use the shell model22

or cluster model" to couple 2p and 4p2h configura
tions. These calculations give valuable informa-
tion on the coupling structure, especially through
close comparison with various experimental data;
on the other hand, their treatments are not within
the r'igorous effective interaction theory in that,
for example, disconnected diagrams are included,
while folded diagram contributions are not in-
cluded. The present approach could hopefully con-

tribute to putting the problem on a firmer theoreti-
cal basis.
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