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An alternative mathematical formulation is presented for the generalized master equation of the exciton
model, introduced by Mantzouranis et al. to describe preequilibrium effects in angular distributions of
emitted particles in nuclear reactions. The exciton model proposed in this paper includes internal transitions
with b,n = 2, 0, —2, and describes both the preequilibrium and the equilibrium stages of the reaction
process. A simple, but exact formula is given to calculate mean lifetimes of exciton states and their
Legendre coefficients, from which double differential cross sections can be easily calculated. The
mathematical improvements of the generalized exciton model greatly facilitate a systematical comparison
with experimental data. In this paper the neutron inelastic scattering data for 34 elements measured by
Hermsdorf et al. at 14.6 MeV were used for such intercomparison. The results show underestimation of
angular distributions at backward angles. However, a good overall fit of all angular distributions is obtained
by adjustment of only two global parameters. It is concluded that further study with regard to the physics
of the model is required. Some local variations in the angular distribution coefficients as a function of the
mass number might be ascribed to level-density effects. Although it appeared that the presently adopted
formulas and parameters in exciton model calculations are not adequate to give detailed predictions of the
energy and angular distributions, meaningful improvements were obtained by variation of final-state
parameters. Finally, some attention was devoted to the unification of the exciton and Hauser-Feshbach
models. By introducing a proper definition of "equilibrium" emission it is shown that consistent results are
obtained for neutron emission spectra calculated with the two models.

NUCLEAR REACTIONS Be, C, Na, Mg, Al, Si, P, S, Ca, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Ga, Se, Br, Zr, Nb, Cd, In, Sn, Sb, I, Ta, W, Au, Hg, Pb,
Bi (n, nx), E=14.6 MeV; calculated o (E„,8), Legendre coefficients. Gener-
alized exciton model, preequilibrium and equilibrium analysis, Hauser-Fesh-

bach model.

I. INTRODUCTION

Preequilibrium statistical theory has proved to
be very useful for calculating spectra of light
particles emitted in nuclear reactions at energies
ranging from 10 up to about 100 MeV. An im-
portant problem in preequilibrium theory is how
to describe the angular distributions of emitted
particles. In this paper we will discuss this
problem in the framework of the exciton model.
Several improvements of the theory are proposed.
Comparison is made with experimental data of in-
elastic neutron scattering at 14.6 MeV for a set of
34 nuclides, a choice motivated by our interest in
possible applications of this work, e.g. , in the
field of design calculations for future fusion re-
actors. Some theoretical results presented here
have already been published in a short communi-
cation. '

For the analysis of preequilibrium angular dis-
tributions, Mantzouranis ef a/."have proposed a
generalization of the master-equation exciton
model for fast nucleons as incoming particles.

In this model, the state of the composite nucleus
is thought to be characterized at each time t by
the exciton number n and a direction 0, which
corresponds to the direction of the projectile on
its way inside the nucleus. In a series of binary
collisions with the target nucleons, the projectile
gradually loses its energy as well as its correla-
tion with the incident, forward direction. It is
assumed that, when emission occurs from a
nucleus in state (n, 0), the direction of the emit-
ted particle coincides with Q. Thus, the first
few collisions (also corresponding to the lowest
exciton numbers) generate the forward peaking
in the emission cross sections, which distinguishes
the preequilibrium part from the evaporative part
of the reaction.

The above-mentioned authors factorize the
generalized internal transition rates from state
(n, 0) to state (m, 0') into the usual transition
rates between different exciton states and an an-
gle-dependent part that is supposed to be propor-
tional to the differential free nucleon-nucleon
scattering cross section:

22 1980 The American Physical Society



J. M. AKKERMANS, H. GRUPPEI AAR, AND G. REFFO

x„„(n-n') = x„„„o(n,n')

do&~ 'do&
= ~n~m d de dg

Let q(n, 0, f) denote the occupation probability for
the composite nucleus state (n, 0) at time t. The
generalized master equation then r eads

+—q(tt, A, t )= t„'„f dA G(AA'')q(tt, t, A', t)
e=n-Z

+ 2
—q(tt, A, t)(N(tt)+

e=n-2 ]

where we have included an emission term with
emission rate m(n). The positive terms at the
right-band side of Eq. (2) describe the feeding to
state (n, 0) from all possible 'states (m, 0'),
whereas the negative terms account for the losses
of the system due to emission and to transitions to
other exciton states.

Strictly speaking, transitions with An=0 have to
be included in the generalized master equation. In
contrast to the angle-integrated case, these X'

terms may not be dropped from the equation be-
cause of the fact that each collision contributes to
the loss of correlation with the initial direction,
irrespective of whether the exciton number has
been changed after the collision or not. Carrying
out a solid-angle integration in Eq. (2), the &n=0
terms cancel and the mell-known angle-integrated
master equation is left4:

d
—,q(s, f)=~'(n-2)q(n-2, f)+ ~ (&+2)q(n+2, f)

-q(n, t) [m(n}+ x'(n}+ x (n) J, (3)

where X'(n}= X„
Comparing Eqs. (2) and (3), it is obvious that

the solid-angle integrals in Eq. (2} spoil the sim-
ple mathematical structure of the master equation
(3). Mantzouranis ef al. have solved the general-
ized master equation by numerical methods. How-
ever, these methods are very time consuming.
Moreover, the calculations of spectra and of an-
gular distributions have to be performed in com-
pletely different ways. In this paper it is shown
that it is possible to reduce the generalized mas-
ter equation to a form similar to that of the stan-
dard master equation (3). This reduction offers
a very fast and simple method to calculate both
nucleon spectra and angular distributions, without .

needing to introduce approximations.
In Sec. II this quite general formalism for the

solution of the generalized master equation is dis-
cussed. An important aspect of the model is that
both equilibrium and preequilibrium components
are treated in a consistent way. The relation with

previously introduced closed-form expressions is
also shortly discussed, Section III specifies the
model parameters, which have been adopted to
calculate the angular distributions.

The above-mentioned mathematical improve-
ments of the model facilitate a systematical in-
tercomparison of experimental and calculated data
for a large class of experiments, such as those
performed by Hermsdorf et al. ' for neutron-in-
duced emission spectra at 14.6 MeV. The re-
sults of this comparison for neutron emission
spectra and angular distributions are discussed
in Sec. IV. In this discussion the role of level
densities in calculations with preequilibrium
models is emphasized. The relation with conven-
tional statistical-model calculations is also indi-
cated. For this purpose, rather sophisticated cal-
culations have been performed with a recently
developed code. ' Finally, in Sec. V some conclu-
sions and recommendations for further develop-
ment of the theory are given.

II. GENERAL THEORY OF THE GENERALIZED EXCITON
MODEL

A. Diagonalixation of the integral operator

In order to reduce the generalized master equa-
tion (2), let us investigate the eigenfunctions of the
integral operator V defined by

Vf(A)=. f dA'G(A, A )f(A'), '

where f is any quadratically integrable function
on the surface of the unit ball, and the kernel G
is given by Eq. (1).

As a consequence of Eq. (1), the. integral kernel
G only depends on the angle o. between the ingoing
and outgoing directions A and O'. Hence it is
possible to expand the k'ernel G into a Legendre
polynomial series. The addition theorem for
spherical harmonics then leads to the conclusion
that the spherical harmonics form a complete set
of eigenfunctions of the integral operator V. In
Ref. I this result was obtained by applying Schur's
lemma.

Due to the axial symmetry of the solutions
q(n, 0, t) of Eq. (2) with respect to the incident
direction of the projectile (cf. Ref. 3, Appendix
A), we only have to deal with those eigenfunctions
of V that are independent of the azimuthal angle (t),

i.e., the Legendre polynomials P,. Therefore, the
integral operator occurring in the generalized
master equation can be diagonalized according to

dA'G(A, 0')P,(cos8') = p, P,(cos8),

where p, , is the eigenvalue of V corresponding to
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the Legendre polynomial of order l.
The eigenvalues can be determined as follows,

Choosing 8 = 0 in Eq. (5), we may define

J,"G(A, A')dP'= h(x}, where x= coso, . In general,
then, the eigenvalues p. , are simply given by

(6)

theorems it is easily demonstrated that the tran-
sition matrix B, can be diagonalized, and that all
its eigenvalues are real and negative. ' Luider'
already proved this for the angle-integrated rnas-
ter equation. Hence, . the analytical, time-depen-
dent solution of the generalized master equation
ls

q(n, A, t) = Q q, (n, f)P,(cosa).

Making use of Eqs. (5} and (7), taking advantage
of the orthogonality of the Legendre polynomials,
the generalized master equation reduces to the
following set of equations:

—„q,(n, t) = p, ,X'(n - 2)q, (n —2, t)

+ p, ,X (n+ 2)q, (n+ 2, f)

-q, (n, f) [w(n) + x'(n) + x (pg)

+ (1 —p, )X'(n)). (8}

Thus, the integro-differential equation (2) has
been transformed to a set of linear differential
equations, one for each Legendre polynomial of
order l. The form of these new master equations
for the Legendre coefficients of q(n, A, t) is iden-
tical with that of the angle-integrated master
equation (3). Consequently, the calculation of
preequilibrium angular distributions and the de-
termination of preequilibrium spectra can be per-
formed along exactly the same lines. In particu-
lar, the same routines in a computer code can be
used.

9. Solution of' the generalized master equation

Let us write Eq. (8) in matrix form

The evaluation of these integrals will be discussed
in more detail in Sec. III.

Next, we expand the generalized occupation pro-
bability q(n, A, t) into a Legendre polynomial
series:

(10)

where (y,),. and (v,), denote the eigenvectors and
eigenvalues of B„respectively, and (c,),. are in-
tegration constants to be determined from the ini-
tial condition.

Next, let us denote by p the maximum eigenvalue
of B, (i.e. , the eigenvalue with the smallest abso-
lute value). Then it may be inferred from the
Perron-Frobenius theorem and a lemma due to
Wtelandt (see, e.g. , Ref. S) that

v, &p (lo 1)

for all eigenvalues v, of B,. Accordingly, after a
long lapse of time, the I = 0 term in Eq. (10) with
eigenvalue p will dominate. This formally proves
that the angular distributions as predicted by the
generalized master equation will become isotropic
in the limit t- ~. This agrees with the intuitive
picture that the forward peaking in the angular dis-
tributions should be produced in the first stages
of the reaction, whereas the evaporational part
which corresponds to emission at later times
should be roughly isotropic. Figure 1 illustrates
this effect for the case of "Nb. Here, the time
evolution of the neutron emission cross section
(do'/dA)(n, n') is shown by integrating Eq. (10)
from t=0 up to a given time T.

C. Time integral oyer the solution

In direct generalization of the standard exciton
model, the double differential cross section can
be computed from

Here, B, symbolizes the matrix of the transition
rates. Equation (8) shows that we are dealing with
a tridiagonal matrix, a consequence of the, postu-
lated two-body nature of the intranuclear colli-
sions.

Since f dA'G(A, A')=1 according to Eq. (1), it
is immediately seen from Eq. (6) that p, ,= 1 and

~

p, ,j& 1 for l ~ 1. It may be noted therefore that
for 1=0, the X transitions cancel and that B, is
identical with the transition rate matrix of the
angle-integrated master equation (3).

Kith the aid of standard matrix-algebraic

(a, b) = o, Q zu, (n, q) 7(n, A), (12)

where r(n, A) = I q(n, A, t)dt, o, is the composite
nucleus formation cross section, and ru, (n, q) de-
notes the average emission rate of particle b with
energy p from exciton state n. The summation in

Eq. (12) extends over all possible exciton numbers
n, thus yielding both the preequilibrium and the
equilibrium contributions to the cross section.

With regard to applications, therefore, we are
mainly interested in the total time integral of the
generalized occupation probability. The preceding
results enable us to directly calculate this time
integral r(~, A). For that purpose &(n, A} is also
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PIG. 1. Time evolution of neutron emission cross
section (do. /dQ)(n, g') for Nb at E=14. 6 MeP. No
secondary neutron emission has been taken into account.

expanded into a Legendre series:

~(~, fl) =g l, (~)&,(co«) .
l

Owing to the fact that all eigenvalues of B, are
real and negative, time integration of Eq. (9)
from (= 0 up to infinity immediately yields

(14)

Here, the left-hand side contains the Legendre
coefficients of the initial condition, to be further
discussed in Sec. III. Equation (14) uniquely de-
termines the total time integral r(n, 0).

Instead of solving the generalized master equa-
tion (2) numerically and computing the time inte-
gral of the solution iteratively, Eqs. (13) and (14)
show that the same can be accomplished in a much
more convenient way by solving a set of simple
tridiagonal matrix equations. A special feature of
our formulation is that it directly gives the Legen-
dre expansion coefficients of the angular distribu-
tions.

Figure 2 shows the angular dependence of the

FIG. 2. Angular dependence of mean lifetime 7 (n, 0)
for different values of n. The values ~ (n, 0) have been
normalized to 1 at 0~~ = 0. Calculations have been
performed for 83Nb+g at E=14.6 MeV. The solid lines
represent the results of a calculation with the full gen-
eralized master equation; the dashed lines are cal-
culated with X = 0. Here, fl p= 3.

quantities &(n, i1) determined according to Eq.
(14) for different exciton numbers. The solid lines
represent values of &(n, 0), normalized to unity at
g = 0 and calculated for "Nb+@ at an incident neu-
tron energy of 14.6 MeV. These curves give an
impression of the loss of correlation with incident
direction, when the exciton number ~ increases
(i.e. , when the number of intranuclear collisions
that has taken place increases). The dashed lines
in Fig. 2 represent the same quantities calculated
by neglecting X' transitions. -It is clearly demon-
strated that A.

' transitions contribute to a more
rapid convergence to isotropy, as pointed out in
the Introduction.

D. Closed-form expressions for the angular distributions

According to the generalized exciton model, the
forward peaking associated with preequilibrium
angular distributions will be produced by emis-
sion from the most simple particle-hole configu-
rations, i.e., the states with low exciton numbers
In these lowest exciton states the transitions with
exciton-number change 4n =+ 2 are overwhelmingly
more probable than those with ~m = 0 or ~n= -2.
Therefore, it should be possible to obtain good
approximations to the exact solution of the gener-
alized master equation by neglecting X or X'
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transitions. This simplification is often also in-
troduced in the angle-integrated exciton model
(and the hybrid model), to obtain simple approxi-
mative closed-form expressions.

First, let us drop from the generalized master
equation the X transitions only. Then, we may
write the solution for the Legendre coefficients
t, (n) of the time integral T(n, 0) at once by ap
plying Cramer's rule to Eq. (14):

(+ t o)(+ )(n-no)/2
(n) ( 0)

X'(n)+ u(n)+ (1 —i/. ,)X'(n)

P X'(m)
x'{m)+ w(m)+{{—u, ,lx(m)) '

6m=2

where we have assumed, as usually done, that the
system starts in the minimum exciton number no.
This approximative solution of the generalized
master equation demonstrates the role of ~n=0
transitions. They contribute in a different way to
different Legendre orders l, the weight factors
being related to the eigenvalues of the integral
operator in the generalized master equation.

Another, more simple, closed-form expression
can be obtained by neglecting both ~n = 0 and
4n= -2 transitions. Dropping the Xo terms in Eq.
(15) it is seen that

q (n t 0)(i( )(n-))0)/2
r,(~) =

x'(n) + m(n)

eigenvalue being equal to one, the higher-order
eigenvalues are a measure for the relative contri-
butions of the nonisotropic parts to the angular
distr ibution. These anisotropic contr ibutions de-
crease according to the number of collisions that
has taken place in forming the nth exciton state.
This means that the eigenvalues p. , together with
the number of collisions in the nth exciton state
quantitatively describe the dissipation of correla-
tion with the incident direction. Thus, this closed-
form expression quite explicitly clarifies the
general physical picture underlying the generalized
master equation.

Figure 3, which has to be compared with Fig. 2,
shows the angular dependence of w(n, 0) according
to Eq. (17) for different exciton numbers. It is
seen that the development towards istropy pro-
ceeds much less rapidly than when the generalized
master equation is solved. This would lead to a
more forward-peaked angular distribution.

Recently, a method was proposed by Akker-
mans" to obtain the solution of the standard time-
integrated master equation in closed form without
introducing any simplification. Now that we have
succeeded in employing the same mathematical
formalism for both spectra and angular distribu-
tions, the method of Ref. 12 also yields the exact
solution of Eq. (14) in explicit form:

where D„denotes the commonly used depletion
factor in the angle-integrated exciton model. "
Consequently, here we have

1.0 1.0

~(~ f7) r(n) Q (~ ) (n-no)/2

x q ((n„ f = 0)P ((cos8) (n & n), (17)

r(n) being the mean lifetime of an n-exciton state
as given by the usual closed-form exciton model,
and n the "equilibrium" exciton number . . For the
calculation of cross sections one could add a Hau-
ser-Feshbach contribution to account for the
equilibrium part of the reaction. It has been
pointed out previously' that a formula similar to
Eq. (17) may be written for the hybrid model.
Likewise, this formula might be extended to the
geometry-dependent hybrid model (for a review
of these models see Ref. 11).

Expression (17) very clearly reveals some
physical aspects of the preequilibrium reaction
process. Neglecting A. and X transitions, as was
done in deriving Eq. (17), it takes precisely
(n —n, )/2 collisions to create the nth exciton state.
The zeroth-order eigenvalue p,, describes the
isotropic part of the angular distribution. This

0$

La
tg
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00
0 0.1 & 0.5 ~ gc.m.

FIG. 3. Angular dependence of mean lifetime T (n, O)
as calculated from closed-form expression (17), i.e.,
by neglecting both X and X transitions. See further,
caption of Fig. 2.
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/ n-2

fr(n) = qr(no, t= 0)(ir, r)'" "~ T,(n)h, (n) t X'(m)Tr(m)hr(m)~

ic 2

&+ '
p, ,'X' k T, k h, k X k+2 T, k+2 h, k+2

g = fl + 2 4= tl
4s= 2 A@=2

(18)

g r'or(n, ) = ri r(n„ f = 0),
g ', r(n) = i (nr,rt = 0) + P, r

X'(n —2)T,(n —2)

(20a)

&&br(n-2)pt r(n —2) (n=n, +2, . . . , N)

(20b)

and the solution of Eq. (14) is then given by

rr(N) = T,(N)h, (N)r', (N),

gr(n) = T,(n)h, (n) [fr''r(n)+ ir, r X (n+ 2)gr(n+ 2)]

(21a)

(n=N 2, . . . , no). -(21b)

Therefore we believe that in solving the (general-
ized) master equation it is not necessary to make
use of simplifying approximations, such as the
"never come back" assumption.

where N is the maximum exciton number and

T,(n) = [&'(n)+ X (n)+ rrr(n)+ (1 —ir, r)Xo(n)] ', (19a)

h, (n) = [1 —gr'A'(n —2)T,(n —2)X (n)T, (n)h, (n —2)) ',
(19b)

while h, (n, ) =1. In Eq. (18) the first product within
parentheses, clearly representing a depletion fac-
tor, should be replaced for n=n, by a factor one,
and the summation has to be set equal to zero for
n. =N. This summation keeps track of the many
possible paths, due to the inclusion of both X' and

transitions, for the system to reach the nth
exciton state.

In addition, a simple and fast computation
method can be given in order to solve Eq. (14).
This algorithm holds for an arbitrary initial con-
dition, which may be of interest also to the anal-
ysis of gamma-ray or multipartiele emission.
First we compute

results of the present paper is that the kernel G

depends on the angle cv between the considered
directions 0 and 0' alone: G(Q, 0') = G(cosn),
which is a quite natural condition. With regard to
practical applications, one should assume a
definite form for this kernel and, in addition,
specify an initial condition.

A. Eigenvalues

Following Ref. 3, we suppose the scattering
kernel G to be given according to Eq. (1). At the
energies of incident particles in most preequili-
brium reactions, the free differential nucleon-nu-
cleon cross section da /dn is nearly isotropic in
the center-of-mass system of the two nucleons.
Assuming isotropy, we may write for the integral
kernel G with 0 and 0' expressed in the center-of-
mass system of projectile and target

G(0, n') = ~-' cos(e...)a(~/2 e„„) „"", (22)

where K is the Heaviside function and 0„„is the
angle between the directions Q„„and O.,',b in the
laboratory frame. (Note that we are dealing with
three different reference systems. First, we
deal with the nucleon-nucleon c.m. system, in

which the nucleon-nucleon cross section is as-
sumed to be isotropic. Second, we consider the
laboratory frame, indicated by the index "lab."
Third, we have the c.m. system of projectile and

target; in this system the quantities are not in-
dexed. The Jacobian dA„„/dA is introduced in or-
der to transform all relevant quantities to the
latter system. )

The expression for the eigenvalues now be-
comes, according to Eqs. (6) and (22),

III. MODEL SPECIFICATION
' (x+ p)(1+ px)

V r= 2
(1 2p p2)2 Pr(x)dx, (23)

Up to now, the discussion has been general. In
writing the generalized master equation (2), the
angular state 0 of the composite nucleus has been
assumed to be identical with the direction of the
projectile. Otherwise stated, the influence of the
recoil nucleons, which are much slower in most
cases, has been neglected. For an extensive
discussion of these problems, see Mantzouranis
ef al." The only restriction needed to obtain the

where P stands for the ratio of the masses of the
projectile and the target nucleus. Due to the fact
that preequilibrium theory deals mostly with heavy
nuclei and light incident particles, in many cases
it is a good approximation to assume an infinitely
heavy target nucleus. Setting P equal to zero in
Eq. (23), the integral may be explicitly calcula-
ted":
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1 (I =0),

(I =1),

, =( 0 (I odd, I & 1), (24)

( I)(I+2&/2(f t)
2' '(I —1)(l+ 2) [(I/2)!]' (I even).

If one takes, on the other hand, the limit P - 1,
Eq. (23) reduces to the assumption of isotropy as
introduced in the beginning of this section. ~(n, A)dA= ~(n), (27)

Eqs. (22) and (25).
Now the model is completely specified. With re-

spect to the angle-integrated exciton model, the
only new quantities needed to describe the angular
distributions are the characteristic values p, ,
[compare Eqs. (3) and (8)]. Keeping in mind that
B, is identical with the transition matrix of the
standard master equation (3), it is not difficult to
show that

B. Initial condition

%e adopt as the initial condition

4 (n, A, f = 0) = 5„„,w ' cos(e „~)H(n/2 —8 „~)

(25)

where 8„~ stands for the angle between the incident
direction and Q„„in the laboratory system. This
condition corresponds to the angular distribution
after one collision, according to the assumed iso-
tropy of the nucleon-nucleon scattering cross sec-
tion. Because of the fact that the initial condition
(25) is proportional to the scattering kernel G,
the i,egendre expansion coefficients q, (n, t=0) of
the initial condition can be expressed in terms of
the eigenvalues p, , only. One obtains

q, (n, t= 0)= „5„( 4w) '(Hi+I)g, . (26)

For neutron-induced reactions it is most straight-
forward to use Eq. (25) with n, = 3 as the initial
condition. In doing this, the Pauli principle and

several compensating effects of the nuclear geo-
metry are neglected, such as the finite size of the

nucleus, refraction of the incident wave, and re-
fraction or reflection of the outgoing wave at the
nuclear surface. ' The geometry effects may be
very important at the rather low energies con-
sidered in the next part of this paper (Sec. IV). To
give a rough estimate for the refraction of the
incident particle, in this work we have adopted
the quasiclassical approximation in the limit of a
large refractive index, being useful at low incident
energies. This approximation leads to Eq. (25)
with n, = 1 [in addition we have taken a vanishing
value for the emission rate go(1) =0, thus sup-
pressing elastic scattering). This gives exactly
the same angle-integrated emission spectra, but
less-forward-peaked angular distributions, in

better agreement with experimental data. " The
other effects mentioned are not separately ac-
counted for; in Sec. IVB the deviations from the
model specification given here are empirically in-
vestigated by adjusting the kernel C occurring in

and in the limit for high values of /,

~
$, ,~-2(2/7r)' 'I '~'. (28b)

Combining Eqs. (28) with the initial condition (26),
the absolute convergence for all exciton numbers
n is easily checked for all expressions derived for
7(n, A) in Sec. II. Equations (28) also indicate that
the higher-order contributions rapidly decrease
with respect to the isotropic part, even for the
lower exciton states. This suggests that in many
numerical calculations it will be sufficient to con-
sider only a few Legendre polynomials. The nu-
merical calculations carried out, and presented
in the next section, confirm the usefulness of the .

present model at this particular point. It has to
be noted, however, that with a truncated I egendre
polynomial series, slightly negative values may
result for G(A, A') at large angles.

IV. COMPARISON WITH EXPERIMENTAL DATA

A. Experimental data base

The simple mathematical solution of the gen-
eralized master equation given in Secs. II and III
facilitates the calculation of angular distributions
for a large number of cases. An extensive set of
angular distributions of inelastically scattered
neutrons has been measured at 14.6 MeV by
Hermsdorf et al. ' This homogeneous set of data
spans a large mass range, thus constituting a

where ~(n) = f q(n, t)dt, the mean lifetime of the
nth exciton state. Moreover, the isotropic (zeroth
order) part of the time integral ~(n, A) always
equals (4') ' times the angle-integrated time in

tegral ~(n) of the occupation probability. Ac-
cordingly, the above scheme leads to an entirely
cons istent picture.

Finally, we address the problem of convergence
of the i,egendre series for w(n, A). For simplicity,
let us suppose that the eigenvalues p, , are given
according to Eq. (24), i.e. , P = 0 approximation.
Applying Stirling's formula, it follows that

4I-5(2~~+ ~~ s I-5/2 (28a)
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useful data base for a systematical comparison
with calculations. Part of the work discussed
in this section has been discussed in more detail
in a laboratory report. "

The data of Hermsdorf ef al. are neutron emis-
sion spectra measured from. 2 to 14 MeV at five
scattering angles. It should be noted that not only
neutrons from the (n, n') reaction, but also neu-
trons from other processes, mainly from the-
(n, 2n} reaction, contribute to these spectra
Since the (n, 2n) reaction gives rise to two emitted
neutrons, the spectra have to be interpreted as

S(E, g, 8) = d'0„„./dqdQ+ 2d'o'„,„/dgdA.

These data have been integrated over 1-MeV en-
ergy bins between 2 and 11 MeV by the experi-
menters.

The quantities S(E,q, 6) have been used to calcu-
late Legendre coefficients by means of a least-
squares fitting procedure. For each value of q
three coefficients (1=0, 1, and 2) with standard
deviations and correlation coefficients were com-
puted. In most cases the normalized values of y'
appeared to be much larger than unity; therefore
the errors were multiplied with the square root
of y'. The reason for these rather bad fits origi-
nates from the fact that the measured spectra are
not smooth functions of q, but display a consid-

1000—
127I

+ 5f,P,(cos8)]. (29)

In Fig. 5 the thin lines represent the Legendre
polynomials fitted to the summed experimental
iodine data. It is clear that much of the structure
observed in Fig. 4 has disappeared in Fig. 5. Ot-
her examples of these fits are given in Figs. 6-11.

erable fine structure. ' Qn the other hand, the
(statistical} uncertainties in the measurements
are quite small. In Fig. 4 the three-term Legen-
dre polynomials fitted to the 1-MeV averaged ex-
perimental data for iodine are shown. More ex-
amples of these fits are given in Ref. 14.

The observed structure in the data suggests that
for inter comparisons with statistical- model re-
sults, much larger energy intervals must be con-
sidered. Therefore, we have summed the Legen-
dre coefficients over the energy ranges from 2 to
li MeV and from 6 to Il MeV. In the last-men-
tioned energy range, competing processes are
either absent or give negligible contributions,
so that a good comparison with calculated an-
gular distributions of inelastically scattered
neutrons is possible. This approach follows that
of Pearlstein, "who has recently performed a
similar intercomparison, but only for angle-in-
tegrated data. The experimental data, summed
over the range Aq = 6-11 MeV are given in Table
I, where the Legendre coefficients have been nor-
malized according to

='""'( ' [1+3fP (cose)dO 4m

dQ

mb sr
2to3 MeV

B. Calculations with global parameters
— 3 to4 INeV

4to5 IMeY

5to6 IIeV
6to7 WleV

7to8 NleV
8 to9 NleV
10 to11Mev
9 to10 tWeV

10—

0c.m.

FIG. 4. Experimental angular distributions of neu-
trons emitted from the reaction I+n at E=14.6 MeV.
The data points have been integrated over 1-MeV in-
tervals by Hermsdorf et al. The solid curves repre-
sent three-term I egendre polynomials fitted to these
data points, expressed in center-of-mass coordinates.

The code PREAlvG (Ref. 7) has been used to com-
pute the emission spectra and angular distribu-
tions. The angle-integrated cross sections are
calculated in this code according to the paper of
Betak,"with the improved solution of the master
equation as described by Luider. ' In all calcula-
tions it was assumed that the target element con-
sisted of only one, i.e. , the most abundant, iso-
tope. For the single-particle level-density para-
meter g, and the average transition matrix ele-
ment M', the usual global parameters g=A/13
and M'= 190/A'E (Ref. 17) were adopted in our
calculations. The pairing-energy corrections P
were taken from Gilbert and Cameron. " The in-
verse neutron reaction cross sections were cal-
culated according to the optical model with para-
meters of Wilmore and Hodgson. " Competitive
charged-particle reactions were taken into account
for protons and n particles, using inverse reac-
tion cross sections calculated from optical models
as specified in Hefs. 20 and 21, respectively.
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TABLE I. Experimental and calculated integrated (n, n') cross sections and angular distri-
bution coefficients in the energy range from 6 to 11 MeV.

Element
~~~ (6-11 MeV)

Exp. Calc. 1 ~
f& (6-11 MeV)

Exp. Calc. 1~
f2 (6-11 MeV)

Exp. Calc. 1~

Be
C
Na

Mg
Al
Si
P
S
Ca
Tl
V
Cr
Mn
Fe
Co
Ni
CU

Zn
Ga
Se
Br
Zr
Nb
Cd
In
Sn
Sb
I
Ta
W
Au

Hg
Pb
Bi

211 +16
146+ 6
192 + 8
181 * 5
167+ 3
141 + 4
199 + 10
180 *13
263 + 25
183 + 6
146 + 7
212 + 8
154~ 9
132 ~ 5
95+ 4

114 + 3
131+ 7
123 + 6
206+ 10
233 + 16
193* 8
198 +21
180 + 7
185 + 4
217 + 6
236 + 8
189 + 16
247 + 7
211 + 17
301 + 13
239+ 9
347 + 29
350 + 21
356 + 23

172'
182b
266
102b
196
133
199
125
100 '

141
211
162
212
162
207
142
192
159
194
165
183
190
227
201
218
209
219
222
280
287
251
257
386
369

0.21 ~ 0.03
0.19 + 0.02
0.13 + 0.02
0.25+ 0.01
0.18 + 0.01
0.16 + 0.02
0.23 + 0,02
0.32 ~ 0.04
0.28 + 0.04
0.34 + 0.02
0.24 + 0.03
0.25 + 0.02
0.19 ~ 0.02
0.14 ~ 0.02
0.16 + 0.03
0.18 + 0.01
0.09 ~ 0.03
0.19+ 0.02
0.17 ~ 0.03
0.17 + 0.04
0.16+ 0.02
0.17 + 0.05
0.36 + 0.02
0.22 ~ 0.01
0.22 + 0.02
0.21 + 0.02
0.32 + 0.04
0.24 ~ 0.02
0.38 ~ 0.04
0.32 + 0,02
0.15 + 0.02
0.31 + 0.04
0.27 + 0.03
0.26 + 0.03

0.28'
0 20b
0.25
0.24b

0.27
0.26b
0,27
0.30
0.32
0.33
0.33
0.33
0.33
0.34
0.33
0.34
0.33,
0.35
0.34
0.37
0.35
0.37
0.36
0.38
0.37
0.38
0.38
0.38
0.38
0.39
0.39
0.39
0.38
0.37

0.10 + 0.04
0.14 + 0,02
0.09 + 0.03
0.12 + 0.01
0.07 ~ 0.01
0.06 + 0.02
0.11 ~ 0.03
0.03 + 0.04
0.18 + 0.07
0.07 ~ 0.02
0.18 + 0.02
0.08 + 0.02
0.09 + 0.03
0.06 + 0.02
0.06 + 0.02
0.07 + 0.02
0.12 ~ 0.03
0.05 ~ 0.02
0.09 ~ 0.03
0.13 + 0.04
0.11 ~ 0,02
0.10 + 0.05
0.11 + 0.02
0.09 + 0.01
0.11 + 0.01
0.11 + 0.02
0.07 ~ 0.04
0.12 + 0.02
0.10 + 0.05
0.14 + 0.02
0.04 ~ 0.02
0.18 + 0.05
0.13 + 0.04
0.14 + 0.04

0.017
0.013b

0.028
0.023 "
0.027
0.027 b

0.028
0.032
0.036
0.038
0.037
0.038
0.037
0.040
0.038
0.040
0.039
0.041
0.040
0.045
0.042
0.045
0.042
0.047
0.045
0.047
0.045
0.045
0.045
0.046
0.046
0.048
0.045
0.044

~Calculation 1: g=&/13, P according to Gilbert and Cameron (Ref. 18).
"Extrapolations have been used to obtain values at the highest emission energies, where

the level densities vanish due to large pairing energy corrections.

Secondary particle emission was not accounted
for in the calculations. This means that the cal-
culated neutron cross sections correspond to the
spectrum of the first emitted neutron; see also
Sec. IVD.

The Legendre coefficients were calculated in the
code PREANG as described in Secs. II and III. For
the first three expansion coefficients of G(Q, 0')
we have adopted the formulas p, ,=1, p, , = —', —P/2
—2P'/15, and p, , =-,' —4P/5+ P'/4, where P =1/A.
These expressions approximate the integral given
for p, in Eq. (23). Higher-order I egendre coef-
ficients were not calculated because of the fast
convergence of the Legendre polynomial series
(Sec. IIIB) and because the experimental data
were also analyzed with only three terms. The

calculated Legendre coefficients were averaged
over 1-MeV intervals and renormalized in the
same way as for the experimental coefficients.
The calculated quantities summed from 6 to 11
MeV are given in Table I (Calc. 1). It should be
noted that for a number of nuclides the results
are unreliable due to excessive pairing-energy
corrections; see Sec. IVC. For these cases the
1-MeV averaged data at the highest emission en-
ergies have been extrapolated by assuming the
Legendre coefficients to be constant. The ratios
of experimental and calculated values are dis-
played in Fig. 12, where it has been assumed that
the logarithms of the ratios have symmetric er-
rors. The weighted mean values and standard
deviations according to the lognormal distribution
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dQ

(mb/sr)

dQ

mb st

1OO- -— 2-11MeV
Exp.

100—

——Gale. 1

Gale. 2
-- Exp.
—Calc. 1

Exp.

10

0
Oc.m.

Gale. 1

- Gale. 2
7E'

FIG. 5. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction I+n
at E= 14.6 MeV. The data have been integrated from
a=2-ll MeV and e= 6-11 MeV. The curves labeled
Exp represent three-term Legendre fits through the
experimental data of Hermsdorf et al. Calculation 1
was obtained from exciton-model calculations with
the usual global parameters. In Calc. 2 the approxi-
mated closed-form expression {17)was used at n &n.
In both calculations the angular distributions are seri-
ously underestimated at the backward angles.

10 =

'1
0

6-11 INeV

Calc 2

—Gale. I

Gale. 2
7r

10OO
AI

dQ

mb sr

0 C.rn.

FIG. 6. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction 27AI

+n at E=14.6 MeV. For explanation of symbols see
caption of Fig. 5. This figure illustrates that the ap-
proximation of Calc. 2 is less good for light nuclides.

are indicated in Fig. 12 and Table II.
A first conclusion of the results of Calc. 1 with

standard parameters is that the mean values of
the integral cross section ratios (given in Table
II) are very close to unity and that there are no

large systematic deviations as a function of the
mass number (see Fig. 12). Thus, with a simple
set of global parameters it is possible to obtain
quite good fits for the angle-integrated cross sec-
tions.

The calculated angular distribution coefficients
f, given in Table I are systematically too high,
whereas the f, coefficients are much too low.
Furthermore, there are some systematical de-
viations as a function of mass number, in parti-
cular, for A=60-80; see Fig. 12. Some exam-
ples of Calc. 1 are given in Figs. 5, 6, 8, and 10,
together with experimental angular distributions
and results of other calculations. From these
figures it follows that reasonably good agreement
is obtained at forward angles, although the angu-
lar distribution is underpredicted at the backward

100—

2-11 MeV

Exp.

10
IIeV Calc. 3

— Exp.

1'

0
6I c.m.

FIG. 7. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction Al+n
at E=14.6 MeV. The curves labeled Calc. 3 were ob-
tained from a calculation with two adjusted global para-
meters p ~ and p2 to fit the experimental Legendre coef-
ficients for 34 nuclides. Note the improvements at back-
ward angles, compared with Gale. 1 (Fig. 6).
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angles. For some other elements, e.g., Fe, the
agreement between experimental data and the re-
sults of Calc. 1 is less satisfactory, also at the
forward angles, ' see further Sec. IV C.

Before trying to improve the angular distribu-
tion results by means of adjustment of global mo-
del parameters, we discuss the results of Calc.
2 (see Table II), in which the simple closed-form
expression given in Eq. (17) was used to calculate
the angular distributions. This expression was
derived by assuming that ~n=0 and ~n= -2 tran-
sitions are not possible. %e have substituted Eq.
(17) into our code, assuming isotropy for particles
emitted from exciton states with n ~ n. Using the
same mean lifetimes ~(n) and the same input para-
meters as in Calc. 1, we obtained much more for-
ward-peaked angular distr ibutions for nuclides
with mass numbers below A =90. In fact, f, (6-11
MeV) varied only from 0.37 to 0.40 over the en-
tire mass range. This shows that, in particular,
for nuclides with light masses the 6~=0 and
&n= -2 transitions have to be taken into account.
Apparently these transitions are more important
for nuclides with light mass numbers, where n
is not much higher than pg, at the energies con-
sidered here. This conclusion may be of impor-
tance for hybrid-model calculations. " In Figs.

1000

do

mb sr

100—
2-11 INeV

Exp.
Gale. 3

10—

Exp.
Gale. 3

1
0

ec.m.

FIG. 9. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction YI+ n
at E=14.6 MeV. Calculation 3 gives much better re-
sults at backward angles, compared with Gale. 1
(Fig. 5}. See captions. of previous figures for explana-
tion of symbols.

1000 1000
W

d0'

dQ

(mb/s

dQ

mb sr

100=
2-11 INeV

——Gale. 3
Exp.---—Calc. 1

100 =
2-E1 Mev

Gale. 3
Exp.

----- Gale. 1

10--

6-11 MeV

Exp.
Gale. 38

-- Gale. 1

10-

, 6-1 Gale. 3
Exp.

-- Gale. 1

0 m/2
0 c.m.

1
0 m/2

Oc.m.

FIG. 8. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction Cr+n at
E = 14.6 MeV. Calculation 3 gives much better results
at backward angles, compared with Gale. 1. See
captions of previous figures for explanation of symbols.

FIG. 10. Experimental and calculated angular distri-
butions of neutrons emitted from the reaction S'+n at
E=14.6 MeV. Calculation 3 gives much better results
at backward angles, compared with Calc. 1. See
captions of previous figures for explanation of symbols.
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1000
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4.0

EXP/CALC.
2.0-

1 0 d)A.

0.5-

gU~

n n A
I

o
O

I I

o'pp (6-1'I NIeV)

fq (6-11IfIeV)

100 =-:

2-11 MeV Ca)c. 3
Exp.
Cate. 6

2,0-
I10-O -~~-

10
6 -11 MeV

to~ l~m
~IP'

Cafe. 3== Calc. 6
Exp. 10- &

f2 (6-11MeY)

1.0-

0 m/2
Oc,m.

0.5-

FIG. 11; Experimental and calculated angular distri-
butions of neutrons emitted from the reaction Fe+ n
at E=14.6 MeV. This curve illustrates that adjust-
ment of level-density parameters of ~SFe (Calc. 6)
gives further improvements, compared with Calcs. 1 and
and 3. This applies particularly for nuclides in the mass
range A = 60-80 and to magic nuclides. See captions of
previous figures for explanation of symbols.

5 and 6 the results of Calc. 2 are compared with
those of Calc. 1 for I and Al, respectively.

Returning to the discussion of results of Ca.lc.
1, we note that all calculations seem to underpre-
dict the values of f„which mainly affects the
cross sections at backward scattering angles. In
fact, the model parameters specified in Sec. III
always led to decreasing cross sections as a func-
tion of angle. However, from the experimental
data it follows that quite often the cross sections
increase at backward angles. An empirical way
of improving these results could be to modify the
adopted angular distribution of the kernel G(A, 0')
by adjusting its Legendre coefficients. We found
that multiplication factors of p, , and p, , of 0.87 and
1.74, respectively, were needed to obtain a mini-
mum value of X' for the coefficients f, and f, (see
Table II, Calc. 3). Some results of Calc. 3 are
also shown in Figs. 7-11; similar figures for all
34 nuclides are given in Ref. 14. Quite acceptable
fits were obtained for most nuclides with these
two global parameters. This is completely in line
with the present status of preequilibrium theory,
where effective parameters such as @=A/13 and
M'= 190/A'E are currently used. It is difficult to

0 40
I

80 160 200 240
A

FIG. 12. Ratio of experimental and calculated I,egen-
dre coefficients of neutron emission cross sections of
neutron-induced reactions at 14.6 MeV as a function of
the target mass number. The experimental coefficients
[see Eq. (29)J were obtained from three-term Legendre
polynomial fits to experimental data of Hermsdorf et al. ,
integrated from e= 6-11 MeV. The calculated coeffi-
cients were obtained from Gale. 1, with standard
exciton-model parameters. Circles, triangles, and
squares stand for odd A, even A, and magic N or Z,
respectively. The average values and standard devia-
tions are indicated by horizontal lines. See also Tables
I and II (Calc. 1).

give a quantitative physical explanation for the
proposed adjusted parameters, p, , and p, . It is
likely that they result from geometry effects not
explicitly included in the model (see Sec. IIIB).
We notice, however, that the adjusted globa. l
parameters are mass independent, in contrast to
the empirical formula proposed in Ref. 3 to ac-
count for finite-size effects. Also, these global
parameters might partly be the result of the lim-
ited validity, in particular at lower energies, of
the "fast-particle" concept (compare Fig. 2 of Ref.
3). Remaining discrepancies are mainly found in
mass regions where the nucleon numbers are
magic or nearly magic. Therefore, besides
further improvement of the angular distribution
theory itself, it is necessary to devote some at-
tention to the level-density problem.
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TABLE II. Overall comparison of experimental and calculated data for 34 nuclides.

Calc.
No.

AE
(MeV)

Exp./C ale.
cross section X2

Exp./C alc.
f1 coeff. X2

Exp./C ale.
f& coeff.

2-11
6-11
2-11
6-11
2-11
6-11
2-11
6-11
2-11
6-11
2-11
6-11

0.95

0 98';~ - 0.26

See Calc. 1

See Calc. 1

1.00"

1 2+1
~ -0.6

0.92~

0~ 24c
- 0.19

See Calc. 5

66 0.52

76 +0~ 33

0.34"

p 63 +0 ~ 26-0.18

0.72

1 p3+Oe45-0.31

102 0.68"

76 . 0.82 „+0,'27

60 0.74

32 0 97

See Calc. 5

10

7.5

5.0

10

5.5

3.6
3 2+2. 5~

-1o4

2 7b

2 5+1+5
~ -0.95

1.10

1.00 0'44

4.8

5 +3a2
~ 107

5.4

-1i8

1.3'
1 0+0.77c

~ - 0.44

7.0

6.0
3.8
5.0
2.9

4.8
7.8

5.3

4.8
2.8

~Calculation 1: standard exciton model parameters, g= &/13, I' according to Ref. 18.
Calculation 2: approximated closed-form expression, Eq. (17).
Calculation 3: adjusted p1 and p2 values, multiplication factors of 0.87 and 1.74, respec-

tively.
Calculation 4: level-density parameters with shell corrections according to Ref. 18.
Calculation 5: adjusted final-state level densities (Table III) without pairing-energy cor-

rectionss.

Calculation 6: as Calc. 5, with adjusted p2, multiplication factor of 1.95.
"Arithmetic mean value.
'%eighted mean values and standard deviations according to lognormal distribution.

C. Variation of level-density parameters

In the adopted model the particle-hole density
formula of Ericson" with some additional cor-
rections introduced by Williams" and Betak" have
been used. This formula contains only two para-
meters, the single-particle level-density parame-
ter g, usually taken as A/13, and the pairing-
energy shift P. Evidently, this gives a rather
poor description of the experimental level den-
sity over a large mass and energy. range. There-
fore, the sensitivity of the calculated results to the
adopted level-density parameters was investigated.

In a first attempt to improve the results of
Calc. 1 we have modified g according to

g = (6/v')(0. 0091VS+ 0.142)A., where the shell cor-
rections S were taken from Gilbert and Cameron. "
This modification gave far less satisfactory re-
sults for the angle-integrated cross sections,
notably for nuclides with closed or nearly closed
shells, such as those near Pb (Ref. 14). The
overall results of this calculation are given in

Table II, Calc. 4. Quite remarkably, the results
for f, and f, were almost the same, even for the
magic nuclides. '

In order to understand these results, we have
investigated the role of the level densities of the
compound and residual nuclides g, and g„, respec-
tively. It appears that a decrease of g, leads to
enhanced preequilibrium components in the spec-
tra and thus enhancement of f, . This follows from
the fact that g„ like M', enters into the expres-
sion for the internal transition rates. A decrease
of g„reduces f„but may give rise to either en-
hancement or reduction of the high-energy tail of
the spectra, because apart from the reduction of
preequilibrium emission, the spectrum shape is
flattened.

The use of more realistic values for g, would

also imply a change in the previously fitted values
of M'=190/A'E (Ref. I I), as both parameters en-
ter the expressions for the internal transition
rates. Since in fact, the main task of g, is to con-
trol these transition rates, it was decided to keep

g, at its usual value A/13. In further calculations
we have only varied the values of g„and P„.

The adopted level density, summed over all
possible particle and hole numbers, is in good
agreement with the expression for a one-fermion
gas
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p(E) = exp(2 v'aU)/U (E»P), (30)
1

where a= (v'l5) g and U=E —P. Evidently, this
formula only holds at energies much larger than
the pairing-energy correction, although it is still
used at energies very close to I'. This leads to
the underprediction of the high-energy tails of the
energy spectra, mentioned before. Therefore,
in the usual statistical model, other —more em-
pirical —formulas ' are employed, the parame-
ters of which have been fitted to obtain agreement
with experimental information from low-lying
states and neutron resonances. The simplest of
these approaches is the "back-shifted" Fermi-
gas model, "where only two parameters are ad-
justed, a and &. The last-mentioned parameter

. appeared to be negative for many nuclides, in con-
trast to Eq. (30), where the (positive) pairing en-
ergy P causes a forward shift. Although there is
a large discrepancy between forward- and back-
ward-shifted level-density formulas, both descrip-
tions are used in statistical-model calculations.
It is very important to overcome these problems
in connection with the preequilibrium model, at
least at the fairly low excitation energies con-
sidered in this paper. A more fundamental treat-
ment of the level-density problem is highly de-
sired. A simple starting point of such an investiga-
tion could be the renormalization of particle-hole
densities such that the summed level density
agrees with the back-shifted Fermi-gas model.

Meanwhile, a practical way of studying at least
some effects of level-density parameters of the
residual nuclides on spectra and angular distribu-
tions could be to drop I'„, while adjusting g„. From
calculations with various values for g„, it turned
out that it was possible to obtain good agreement
for both the angle-integrated spectra and the f,
coefficients, with standard deviations of less than
30/q and a rather good representation of the experi-
mentally observed mass dependence of f, ; see Ta, —

bles II and III (Calc. 5) and further intercompari-
sons in Ref. 14. Moreover, in a number' of cases
the calculated energy dependence of the spectra
and f, coefficients was considerably improved,
particularly for the lighter elements. '4 Although
these results are not based. upon realistic level
densities, they show very clearly the importance
of level-density parameters in the calculations.

A further improvement of the results of Calc. 5
was obtained by multiplying p., with 1.95, in order
to fit the experimental f,, values; see Table II,
Calc. 6. In Fig. 11 the results have been plotted
for Fe, together with those of Calc. 3. Similar
goad fits were obtained for most other elements
in the mass range A =60-80. Impressive im-
provements were also obtained for Ca (Ref. 14).

TABLE IG. Experimental and calculated f& coefficients
in the energy range from 6 to 11 MeV with adjusted
level densities.

Element
f~ (6-11 MeV) Adjusted

Exp. - Calcs. 5, 6 g~ (MeV-~)

Be
C
Na

Mg
Al
Si
p
S
Ca
Tl
V
Cr
Mn
Fe
Co
Ni

Cu
Zn
Ga
Se
Br
Zr
Nb
Cd
In
Sn
Sb
I
Ta
W
Au

Hg
Pb
Bl

0.21 + 0.03
0.19 ~ 0.02
0.13 + 0.02
0.25 ~ 0.01
0.18 + 0.01
0.16 + 0.02
0.23 ~ 0.02
0.32 ~ 0.04
0.28 + 0.04
0.34 + 0.02
0.24 + 0.03
0.25 + 0.02
0.19 + 0.02
0.14 + 0.02
0.16 ~ 0.03
0.18 ~ 0.01
0.09 + 0.03
0.19+ 0.02
0.17 + 0.03
0.17 + 0.04
0.16 + 0.02
0.17 ~ 0.05
0.36 + 0.02
0.22 + 0.01
0.22 + 0.02
0.21 + 0.02
0.32 + 0.04
0.24 + 0.02
0.38 + 0.04
0.32 + 0.02
0.15+ 0.02
0.31 + 0.04
0.27 ~ 0.03
0.26 + 0.03

0.23
0.29
0.13
0.22
0.18
0.14
0.21
0.27
0.29
0.29
0.20
0.28
0.19
0.16
0.19
0.17
0.13
0.18
0.19
0.31
0.14
0.15
0.32
0.26
0.30
0.25
0.33
0.34
0.38
0.37
0.38
0.38
0.37
0.37

0.41
0.76
1.02
1.20
1.46
1.01
1.86
1.99
2.50
2.97
2.53
3.07
2.67
1.87
2.88
2.25
2.54
2.47
3.21
4.49
3.14
3.15
5.50
5.00
6.00
5.00
6.79
7.44

11.7
12.4
12.5
14.0
14.2
15.1

'Compound-nucleus level densities as in Calc. 1; ad-
justed final-state level densities without pairing-energy
corrections.

D. Relation with Hauser-Feshbach model

There are many differences between Hauser-
Feshbach (HF) type of calculations and exciton-
model calculations. In the exciton model, the de-
scription of the reaction process is more gene-
ral, but angular momentum effects, excitation of
discrete levels, and multiparticle emission are
not taken into account, whereas the adopted level-
density formulas are not very realistic (Sec. IVC).
The relation between the HF, exciton, and various
direct reaction models is not well established at
present. We assume that direct single-particle
transitions are included in the exciton model in a
statistical way, but that direct collective excita-
tions are not accounted for. In this section neu-
tron emission spectra calculated with rigorously
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applied HF theory are compared with those cal-
culated with the exciton model. It is shown that
when the exciton model is used to simulate equili-
brium emission, there is good agreement between
the results of both calculations, provided that the
same level-density parameters are used. This
fact offers the possibility to connect the two mod-
els in a consistent wa.y.

The simulation of pure equilibrium emission in
the framework of the exciton model was performed
by looking for the stationary solution of the angle-
integrated master equation (3):

10

(b/ MeV)

1.0
~

0.1 I
I
I
I

I
I
L

Nb

exp. Hermsdorf et al .

Hauser - Feshbach calc .

t t neutron (n, 2n)
2" neutron (n, 2n)

(n, n V)
other neutron emission

dq(n)
dt

(31)
I

I

I

I

I
I
I

I

r

I

Detailed balance (and, of course, neglect of emis-
sion) leads to the condition

q(n) = q(n —2)X'(n —2)/x (n) .
Thus, a proper definition of the equilibrium ex-
citon distribution is obtained by the relations

0.01—

I

I

I

I

I

I

I

I

un

I

I
I

I
I
I

I

I

q(n) = q(n, ) X'(m —2)/X (m),
m= tip+ 2

q(n) =1.
(33)

By considering q(n) a.s the initial exciton distribu-
tion [instead of q(n) = 6„„],the angle-integrated
and time-integrated master equation is easily
solved;" yielding the equilibrium emission.

The HF calculations were performed with the
recently developed code PENELOPE, which was
used to calculate emission spectra of the reac-
tions (n, n'y), (n, 2n), (n, np), (n, nn), (n, pn),
(n, nn), and (n, yn) for "Nb and "'I targets. These
calculations were performed with carefully evalu-
ated optical-model parameters, level-scheme
data, and level-density parameters. For the de-
cription of the level density, a slightly modified
version" of the composite Gilbert-Cameron
formula, "was used, the parameters of which
were obtained from fits to recent level schemes
and neutron resonances or from systematics. "
Some results are shown in Figs. 13 and 14, with
indication of the major components of the emis-
sion spectra. At emission energies below about 6
MeV, the predominant components come from the
(n, 2n) reaction, from which the first and second
neutron emission spectra are plotted separately
in Fig. 13, It should be noted that the sum of
these two contributions needs to be added to the
other contributions to compare with the angle-in-
tegrated and energy-averaged data of Herms-
dorf et al. On the other hand, for a comparison
with coincidence measurements of Schroder etal. ,

"
performed for the reaction '"I(n, 2n)"'I at K= 14.1

0.001
0

MeV, the average of the two (n, 2n) spectra is re-
quired; see Fig. 14. Both figures show that (n, 2n)
contributions are reasonably well described with
the HF model. This suggests that, at not too high
energies, the HF model can be successfully used,
if a preequilibrium calculation is introduced for
the emission of the first neutron only.

As has been discussed before, our present ex-
citon model does not take into account multiparti-
cle emission. For the sake of comparison, we
have added the HF emission spectra, of the

2 4 6 8 10 12

e(MeV)
FIG. 13. Experimental and calculated neutron emis-

sion spectra of the reaction Nb+n at 14.6 MeV. The
experimental data of Hermsdorf et a/. have been in-
tegrated over A a= 1 MeV and 60=4m . All calcula-
tions have been performed with the HF code PENELOPE,
without any parameter adjustment. The figure shows
the calculated total neutron emission spectrum with
various components, integrated over 0.25-MeV intervals.
Below e= 5.77 MeV the (n, 2n) reaction dominates; at
higher emission energies there is only inelastic scat-
tering. Fluctuations in the calculated curves are due
to excitation of discrete levels or to threshold effects.
In particular, in the (n, pn) and (n, nn) reactions, dis-
crete levels are excited by neutrons with rather small
energies. The results at e &0.5 MeV are not very ac-
curate in this calculation. The .figure illustrates the
complexity of the shapes of the neutron spectrum com-
ponents at low emission energies, which at present
can only be calculated with sophisticated HF models.
There is good agreement with experimental data for
energies below 5 MeV.
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do
d&

(b/ Mev)

1.0

127(

exp. Hermsdorf et al .

Hauser - Feshbach calc.
exp. Schroder et al,

(n, gn) - coinc.

Hauser- Feshbach calc. ,

(n, gn)

do

(b / NleV)

1.0—
exp. Hermsdorf et al.
Hauser - Feshbach calc. ,

assuming only (n, n i )
Exciton model cale

Exciton model calc. ,

assuming only equil .

0.01 0.01—

0.001
0

I

10 12

e (Mev)

FIG. 14. Experimental and calculated neutron emis-
sion spectra of the reaction 3Nb+n at E=14.6 MeV.
The experimental data are neutron spectrum measure-
ments of Hermsdorf et al. and (n, 2n) coincidence mea-
surements of Schroder et al. (at 14.1 MeV). The cal-
culations have been performed with the HF code PENELOPE,
without any parameter adjustment. Shown are the cal-
culated total emission spectrum and the (n, 2n) spec-
trum, obtained by averaging the neutron spectra for the
first- and second-emitted neutrons. The figure illus-
trates the capacity of the HF model in calculations of
emission spectra at low energies.

(yE, yi'~), (yi, pip), and (n, nn) reactions and of the
first-emitted neutron in the (n, 2n) reaction. The
resulting HF spectrum may be compared with the
equilibrium spectrum calculated from the exciton
model. As follows from Fig. 15, the results of
this intercomparison are quite satisfactory. The
adopted level-density parameters for "Nb were
almost the same in both calculations, i.e., a= 11.65
and 11s76 MeV ' in the HF and exciton-model cal-
culations, respectively. %ith this proviso, the
two models are seen to be consistent (compare
the conclusions of Cline and Blann'). Therefore,
energy distributions calculated with the HF model
for those channels where preequilibrium effects
are important, could very well be replaced by en-
ergy distributions calculated with the adopted ex-
citon model. A similar remark applies to the
calculation of angular distributions.

Instead of trying to include preequilibrium ef-

I I I I

2 4 6 8 10 12

e (NleV)
FIG. 15. Results of exciton-model and HF calcula-

tions assuming no secondary particle emission in the
emission spectrum of the 3Nb(n, n') reaction. The
dashed curve was obtained by assuming that the initial
exciton distribution was at equilibrium, Eq. (23). This
figure illustrates the consistency between the HF model
and exciton model. It also shows the failure of the HF
model at high emission energies, where the measure-
ments correspond to inelastic scattering only.

0.001
0

V. CONCLUSIONS

Our formulation of the generalized exciton model
leads to an extremely simple description. Special
characteristics are the following:

1. The same mathematical formalism applies to
the analysis of both energy and angular distributions.

2. 'The Legendre coefficients of the angular distri-
butions are directly calculated.

3. A unified description (at least in principle) of
preequilibrium and equilibrium stages of the reac-
tion is followed.

4. Transitions with &m = 0 explicitly influence the
shape of the angular distributions, in contrast to
the angle-integrated spectra.

5. Mean lifetimes and their Legendre coeffi-

fects in HF type of calculations, an alternative ap-
proach could be to refine the present exciton model
by including multiparticle emission (e.g. , Ref. 30),
angular momentum effects, y-ray emission (e.g. ,
Ref. 31), and discrete level excitation.
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cients canbe calculated with af ast, explicit formula
[Eq. (18) or Eqs. (20) and(21) j, withouttheintro-
duction of approximations.

The mathematical improvements to the general-
ized exciton model presented in this paper greatly
facilitate a systematical comparison with experi-
mental data. The calculations performed for neu-
tron emission spectra, measured at incoming
neutron energy of 14.6 MeV, indicate that the
adopted model describes energy distributions
better than angular distributions which appear
to be systematically underestimated at the back-
ward angles. Still, the generalized exciton model
is reported" to be more useful in this respect than
the alternative intranuclear cascade model. We
have shown that the approximation of the "never
come back" assumption, occurring in the hybrid
model and in some formulations of the exciton
model, leads to further underestimation of the
angular distribution at backward angles for the
light nuclides (A (90). An encouraging result, in

favor of the generalized exciton model, is that a
good overall fit of the angular distributions for all
34 nuclides was obtained by adjustment of only two
global parameters, which empirically account for
several physical phenomena in the nucleus not ex-
plicitly included in the model (Sec. IVB). Though
quantitative physical arguments for this adjustment
are lacking at present, this would imply that a good
description of angular distributions for a very
large mass range can be obtained with the ai:d of a
few global parameters only, as in the case of the
angle-integrated spectra. Therefore, the general-
ized exciton model is promising, but further theo-
retical effort is needed. It seems that, particu-
larly, the assumptions made in the specification
of the model (Sec. III) are too drastic. We also
conclude that the results are very sensitive to the
choice made for the initial condition of the angular
distribution. This is to be expected because the
shape of the angular distribution is largely deter-
mined by emission from the lowest exciton states.
Therefore, further improvement of the expression
for the initial condition, Eq. (25), is very impor-
tant. By assuming n, = 1 [and m(1) = 0] for nucleon-

induced reactions, a rough estimate has been
given for the effect of refraction of the incident
particle at the nuclear surface. This leads to
improved agreement with measured data at 14.6
MeV.

The extension of the model to angular distribu-
tions opens up new possibilities for improving
preequilibrium theory as a whole. It appears that
in several respects the nuclear level densities
are not properly treated in the exciton model,
at least at the fairly low excitation energies con-
sidered in this paper (Sec. IVC). From various
calculations with different values of the final-state
level-density parameters it was found that the
agreement between experimental and calculated
data could be improved for the first-order I egen-
dre coefficient of the angular distribution (f,) as
well as for the angle-integrated spectra (Tables
I and III). Therefore, it seems that much of the
observed structure in f, (Table I) should be as-
cribed .to level-density effects. A critical reex-
amination of the level-density problem is highly
desirable. Another important problem is the
unification of the statistical Hauser-Feshbach
model and the exciton model. Although our
adopted exciton model includes equilibrium emis-
sion, its description of the deexcitation of the
compound state is rather crude compared with

rigorously applied HF theory. '
However, a pro-

per definition of equilibrium emission in the
framework of the exciton model leads to very
similar emission spectra as is shown in Sec.
IV 0. This consistency allows the introduction of
preequilibrium effects in the HF model. Alter-
natively, the exciton model could be refined by
including multiparticle emission, angular momen-
tum effects, etc. We expect that the simplicity
of the present description of the generalized exci-
ton model will greatly facilitate these model ex-
tensions.
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