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Theory of large angle p-nucleus scattering. I.pd elastic scattering and deuteron form factor
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We derive a new approach to the proton-nucleus large angle scattering which accounts in a systematic
way for Pauli, binding, and Fermi motion effects. We concentrate here on pd scattering. After
antisymmetrization of incident and target protons, the pd amplitude can be separated into (1) the standard
multiple scattering series with the last pp amplitude antisymmetrized and (2) a neutron exchange amplitude
which includes rescattering terms. The optimal approximation designed to minimize corrections is derived
for the antisymmetrized pd amplitude. The single scattering amplitude is factorized into an on-shell

(antisymmetrized) pS amplitude and the deuteron form factor, and it is found to play a main role in the
large angle pd scattering at suAiciently high energy. The results are applied to analysis of pd elastic
scattering data (T~ 300 MeV) which are well reproduced by the calculations. This analysis also permits an
extraction of the deuteron body form factor for values of q which far exceed those measured in ed elastic
data.

NUCLEAB REACTIONS Proton-nucleus scattering. Pauli, binding, and Fermi
motion effects. Antisymmetrization. Minimization of corrections. pd large

angle scattering. Comparison with data. Deuteron form factor.

I. INTRODUCTION

Our aim is the derivation of an approach to
large angle proton-nucleus scattering which will
account for Pauli, Fermi motion, and binding
effects, and be simple enough for applications.
In this paper we restrict ourselves to the case. of
Pd large angle elastic scattering, although the
results can be generalized to heavier nuclei.
(This will be done in separate publications. )

We start with the derivation of the multiple
scattering equations which include an antisym-
metrization of the incident proton with the target
one. This procedure is similar to that of Takeda
and Watson. " However, we do not neglect the
target exchange term"; this term is included
in the properly written, exact final equations.
These equations represent the total Pd amplitude
as a sum of two components. The first is a stan-
dard multiple scattering series. However, those
multiple scattering terms which end with a PP
amplitude contain the latter in antisymmetrized
form. The second component is the target ex-
change amplitude which includes all projectile
rescatterings.

In Sec. III we search for the optimal approxima-
tion for the formal exact solution of the problem.
That is, we seek an approximation for the scat-
tering amplitude (including binding and Fermi
motion effects) such that the first order correc-
tion terms vanish. '4 The procedure differs from
that derived in beefs. 3 and 4, since the exchange

interaction complicates the problem. The ex-
pressions for neutron exchange obtained here have
not been used before. However, the final result
for multiple scattering series coincides with that
of Refs. 3 and 4 where the lastPP amplitude is
taken to be antisymmetrized. In particular, the
single scattering amplitude factors into deuteron
body form factor and on-shell proton-nucleon
amplitude for energy argument increasing with
momentum transfer. '

Our result manifests the compensation of Fermi
motion and binding effects. The difference from
the usual treatments, which neglect binding po-
tential effects [e.g., impulse approximation'
(IA)] is pronounced in the large angle scattering
region. The binding effects are very important
there even for high energy scattering. It can be
demonstrated in the following way. ' Let us con-
sider the single scattering amplitude for elastic
Pd scattering. It can be written as a ground state
matrix element 7', the scattering operator of the
projectile (P) on the target nucleon (P or n) which
is bound by the other nucleon

E~p, (E, k', k) =(Q„k')wp,(E)+T~„(E)(g„k). (l)

Here E is the total energy, k' and k are the mo-
menta of projectile proton in initial and final
states, and Q, is deuterons wave function. The
7 matrix satisfies

vy„=VE„+Vj~(E —K~ —K„—Vn„—Kg) 7'g„, (2)

where E is the kinetic energy of a nucleon and
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V~„is the Pn interaction. The IA is correspondent
to replacement of v&„by tg, a free scattering
operator satisfying Eil. (2) with V3„=0.The
lowest order binding correction to the IA have
been estimated in' to be K -P'

P-p

K-P

(~&'"i~'"),„-&e., k Iv,.iEI k, e.) .
Invoking the Schrodinger equation one finds

(~~i'&isa")» &y„kIPc, +f~„)izIy„k).
The momentum due to Fermi motion is of order
of magnitude of the momentum transfer q = k —k'.
Therefore in the backward scattering region
K~+K„~Eand binding effects are very important.

Section IV is devoted to the application of our
results to the analysis of large angle Pd data.
The peculiar feature of these data is the pro-
nounced backward scattering peak. It has been
studied in many papers, but the standard analy-
sis (without the inclusion of additional degrees
of freedom) did not go beyond the evaluation of
the neutron pick-up reaction or of some Feynman
diagrams. The binding effects have not been con-
sidered and the Pauli principle has been included
only partially. Our results presented in Sec. IV
are, we believe, the first systematic analysis
of these data.

~ )
P P

FIG. 1. Schematic representation of pd scattering.
Target and projectile protons are denoted by indices
cc 1 and )c 3 )) re spectipe$y

where c, is the deuteron binding energy:

(Ki +V»)$, =~op, .
The antisymmetrized wave function g can be
written"

1
${X3~12 X1~23)

+G[(V„+V,)X,Q„—(V, +V»)X,Q»]], (8)

where X, = 6 (P —p —k) and

Xi&23-=6(P-p —k)$3[2(P —K+p)]
= 6(P - p - k)g, [P- -,'(K+ k)] . (9)

In order to find the scattering amplitude into the
final state X3'Q» we use the relation"

II. CONSEQUENCES OF THE PAULI PRINCIPLE
FOR pd SCATTERING

Consider Pd scattering in the frame where the
total Pd momentum equals K& Fig. 1. Two pro-
tons, with total momentum P, are denoted by
indices "1"and "3," where the latter is the pro-
jectile. All derivations are done in the momen-
tum representation.

The wave function p3 of the system with pro-
jectile 3 to be asymptotically in a plane wave of
momentum k is

G = G + G (V„+V2, )G,

where
3

G E Ec Vca

With Eqs. (10) and (11) we rewrite (8) as

+G(V„+V»)iIi.

(10)

(12)

(4)

G is the total Green's function

(k3 X3~12 (V13 23)X3~12 t

where X3= 5(p - k) and $12 is the deuteron ground
state wave function. Hence we get

X. It,.-=6(p- k)4, [ P--.'(K p)]

=5(p —k)Q [P ——'(K+k)] .

The second term of Eq. (12) is the so-called
target exchange term and it is neglected in the
standard treatment. "We account for it by re-
writing Eil. (12) accordingly.

First we write down the matrix elements of
potentials V;&.'

&p', P'IV„lp,P) =V„(p'-p)&(P'-P), (»a)
&p', P'IV„lp,P) = V „(P'—P)5(p' —P' -p+ P),

where K; is the kinetic energy of nucleon i and

V„is two nucleon potential. The total energy E
ls

(K k)'E= —+ +co,
2m 4m (6)

&p, P
I v„lp,P) = v,„(I—P)6(p - p) .

(13b)

(13c)

Then introducing the "exchange" potentials
J V jP$3 where P» is the permutati on operator

on particle labels "1"and "3" (hence V;, are very
long range potentials):
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&p', &'lv,.lp, » =V„(p+p'-&)5(p-p'), (14 )

&p' p'lv lp P&=v. (p' —&)~(p'+P-&') (14b)

&p', &'lv,.lp, &) = V,.(&' - &)5(p'+p- &), (14c)

Combining Eq. (22) with Eq. (18a) one gets finally

(24a)

one obtains, using Eqs. (4) and (9)

(V..— i.)x,4'23- (V23- »)Xs&»*

(V» V23)X 14 23 (V13 23)X3~12 '
(15)

where

d d dT T31+ 32 31+ 31

+ 7'31GT32GT31+ ' 'd d (24b)

We note that only the potential V™»does conserve
the total momentum of the PP pair and corres-
ponds to the standard pp exchange potential. The
potentials V23 and V» do not conserve the total
pair momentum. (One sees in the following that
V23 and V» generate the neutron pi ck-up pro-
cesses. ) Now we introduce the T matrix:

(V23»)X3~12 ( 13 V23)4 TX3~12 t (16)

T =
2

(T T'"), -=1 (18a)

T = (V„+V, ) + (V, + V,)GT,
T'"= (V»+ Vis) + T'G(vi2+ Vi3) .

(18b)

(18c)

One sees from Eq. (18b) that T corresponds to
the scattering of nonidentical nucleons and can be
expressed through the multiple scattering ser-
ies'.

31 32 31 32 32 31
d d d d d d

+ &3.G732«3. +d d d

where 73; —= T~d~ is the proton 3-target nucleon i
direct scattering matrix

(19)

so that the elastic scattering amplitude to the
state X,'Q» is &X3$»lTlX,Q»). From Eqs. (12) and

(15) we find

1 1
T =

~2 (v„+v„)—~(v„+v„)
+ (v»+ V23) GT .

One obtains after some algebra that the operator
T can be divided into direct (T~) and exchange
(T'") parts:

and 7» is the antisymmetrized PP scattering ma-
trix

ex
31 31 31 ' (24c)

T'„"is defined by Eq. (21b). One sees that Eqs.
(24b) and (24c) define the scattering matrix T'
in the form of the standard multiple scattering
series where the last pp scattering matrix is
antisymmetrized. Eqs. (24a)-(24c) are the formal
exact solution for pd scattering.

III. OPTIMAL APPROXIMATION FOR pd
ELASTIC SCATTERING AMPLITUDE

In Eqs. (24) we find operators v, which are the
solution of the many-body scattering equations
(20) and (23). Equations (24) also contain Green's
function G (Eq. 11), which includes the full target
Hamiltonian. Hence, for the practical treatment
we need an approximation for v and G. For the
direct amplitude T (Eq. 19) an optimal approxi-
mation has been derived in Hefs. 3 and 4. We
considered there each term T~"~ of expansion (19)
and we showed how best to choose the approxima-
tion for G and ~. This procedure defines the ap-
proximation T,", so that the first correction to
T" -T~" vanishes for the elastic scattering.

The approximate amplitudes T,"~ have been
found to be factorized into a multinucleon density
in momentum space and projectile target nucleons
rescattering amplitude with energy argument de-
pendent on momentum transfer. In particular,
for Pd scattering the (direct) single scattering
amplitude, written in the pd Breit frame, factors
into a deuteron body form factor and on-shell
PN amplitude for the kinematics of Fig. 2 (i.e.,
as if the struck nucleon takes all momentum of

73; = V3;+ V3;G73) ~
d — d

Next we write T'"=T~" +T„'",so that

TP" = V13+T GV13,

T„'"= V12+TdGV12.

When we substitute Eq. (19) into (21a) we find

P 31 32 31 31G732 G ~31

(20)

(21a)

(21b)

(22)

q/2

k'= K-q/2

q/2

k &K+q/f

q/2

¹p,n
K -q7f

q/2

x Sd(qiz)

K +q/2

where 731=—7» is

31 31 31 31 ' (23)

FIG. 2. The single scattering pd amplitude in opti-
mal approximation. k' and k are projectile momenta
in the pd Breit frame.
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2 1/2 2 1/2

E= m +K+— + mq+—
1/2 1/2

E' = m2+K2+ — + m'+
4 7

(25b)

(25c)

and K =
2 (k+ k'), q = k —k'.

the deuteron').

T~p„(E,k, k') = ttlq(E', k, k')

+t~„(E',k, k')]Sa(~q),

where the total energies (E, E"i) for relativistic
kinematics are

The first nonvanishing correction to the optimal
approximation (OA) appear to be of order
(bF[')/E[")o„c(:(p,/k~)' where p, and kg are, re-
spectively, nucleon rms and projectile momenta
and are thus much smaller than the correction
to the impulse approximation (AE[x)/E[')),

„

&x: V~„/E.
We derive now the optimal approximation for

the exchange amplitudes, where the procedure
used in Refs. 3 and 4 cannot be applied straight-
forwardly. (From this point we work in pd Breit
frame only. ) First we deal with the single scat-
tering term Eq. (23). We rewrite this equation
in terms of matrix elements

&xr', v'[v;;lxr; x& &xrv'I=v„lx,r, v&+ f&xv, v I~,', Ixr„v,&(xr„v,lalxr„x',&&xr„v,lv„lxr, v&

X d rp1 d +2 d P1d P2

Consider the Born amplitude of Eq. (26) for elastic Pd scattering. Using Eq. (14a) one obtains

(q„(r'Iv.,la. , ir) = f (a-v) irv( -v(r ) (x(q-vie)rx x' (27)

We expand the potential V» around an optimal point which minimizes first order corrections. This point
is P= —,'(k+k') =K. Indeed,

(a„ix'Iv„la„(r&=f r), ((&+~q)[v„(xr)+(&&v.)v„(x)I-.=x+ ]q, {q&
—q)rx'r), (28)

where P=K+Q., q=k-k'.
Using the definite parity of (t)a, which implies

e,(x,)e,(x.) = e,(-x,)e.(-X.) (29)

we find that the second term of expansion (28) is
zero after integration over d'Q and

&0, k'lva&1(t) k& = Vpp(K)~ (-'q) ~ (30)

=~[v*v(x)II, =» fQ'a (()+-,'q)(r, (Q--,'q)rr'r).

(31)

In the backward scattering region K=O. If the
pp potential V»(Q) is rather smooth for small Q,
this correction is a small one.

Now we consider the second term of Eq. (26).
Similar to Refs. 3 and 4 we are looking for the
approximation G, =—G in the form

&p„P,IG. lp. , P.&

The first nonvanishing correction from the third
term of expansion (28) equals

&y„k(5[')V„(y„k&

I

where the quantity ~ is a function of the pro-
jectile momentum p, and external parameters K
and q and is independent of the total projectile-
nucleon momenta P, (P2).

The approximation for the direct scattering ma-
trix ta', = v3~, is defi—ned by Eq. (20) with G- G,'.

~31 V31 31 tt 31 & (33)

&y„k~t;, G.V.ly„k&=&y„,k [.;,GV„~k,qg

is zero. It can be written as

ta, , =&&Ixax k'~5, v~, G,V, +t„5,GV,

+t,~G valk xs&Pax& =0,

where 6,7'13, 6,G are the first order terms of ex-
pansion 713 and G in terms of t13 and G, . As we
found in3'4

where G,' is taken in the form (32) with c =&'. The
approximation V, —= V» is the zero order term of
expansion V» (P-p, —p) around some optimal
point P=K, . The quantities e, e, and Ko should
be found from the condition that the first order
correction to the approximation

5(p, -p,)5(P, —P,) (32)E —p, '/2m —(R —p,)'/4m —~ (p„R,q)
'

5],TQQ t],3 Ga(Ga G )Gating (34b)
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5,G =G, (G, ' —G ')G, .

For ~yVy3 one gets

(34c) With'

&p', P'I fl. l p, P& =&p'Ifl. I&»(P —P'), (3 5)

5„V„=(P —K,)v„V„(X)I-„-,, (34d)
and the diagonality of G in projectile momentum
space the first term of Eq. (34a) reads

&P', p. iG.'-'- G-'lp. , P&
&,— J e, IP'-K+

4 &k lf3), lp2& ( 2 g )2
'd &P2lf31lpl&

I
E — ' — ' -c'(p„K,q)2m 4m

Here

X 2Pl
2m

V(K —ft, —k)d (P-K ——)d'Pd'P' O'P, d'P
—~(pu K) (I)

(36a)

' '
I

—-"(p., K, 4) 5(P' —P)+I'&.(P'-P) (36b)

= IE —(P-K+q/4) /m](I)) (P —K+q/4), (37)

and with the definite parity of Q„IEq. (29)] we find
that ~', =O, if

(K —p.)'e'(p„K,q) =e, + (38)

This quantity defines the Green's function of Eq.
(33). From an analysis of Eq. (33) one can show"
that &p'It~»lp& is the half-off-shell (direct) PP scat-

and f» does not depend on P(P'). '
Using the Schrodinger equation (8) for elirnina-

tion of potential V~„in integral (36) we obtain

V,„(P'—P)p, (P' —K+ q/4)ff3P'
(K —k') 2

2m
'

2m
(39)

Applying similar algebra one can find the quantity
e (Eq. 32) from the vanishing of the second term
of Eq. (34a). It appears to be of the same form as

(Eq. 38) with p, - p, . The vanishing of the last
term of Eq. (35) gives the parameter K, = K.

We have found thus the optimal approximation
for the exchange amplitude t;,"—= T,'", of Eq. (26).
Using Eqs. (30), (32), (38), and (39) this ampli-
tude reads for the elastic Pd scattering

I

tering matrix t~~~ (E",K, k, p,) corresponding to
kinematics IK —k'] + lk']- fK —pJ+ lpj, where
K= (k+ k')/2 is total PP momentum and total energyE" equals

(d, )t;, (dk, k) = V»(K") t J tttt(K", K, k', P )
HAPP ~

~ ~ ~. qV (K-p, - k) S
Eeff Pl ( Plf 2

2m 2m

(40)

One can easily see that this expression equals
tf'f", (E"f,K, k, k')S, (q/2), where ting is on-shell ex-
change PP scattering matrix for Breit kinematics.

Combining Eq. (40) with Eq. (25a) for the direct
single scattering amplitude one finds that the in-
clusion of the Pauli principle results only in the
on-shell PP scattering matrix in Eq. (25a) being
replaced by an antisymmetrized one.

In the same way we derive the optimal approxi-
mation for the multiple scattering amplitudes
including proton exchange IEqs. (22) (24b)]. The
final expressions coincide with those derived in
Ref. 4 with the last PP t matrix in the corres-
ponding multiple scattering terms antisymme-
trized. The expressions for the first nonvanishing
correction terms are similar to those in Hefs.

I

3 and 4, but they also include the terms of type
Eq. (31).

Consider now the part of the Pd amplitude cor-
responding to neutron exchange, Eq. (21b). The

q/2 K+q/2

K- q/2 -q/P.

FIG. 3. Neutron exchange amplitude in Born approxi-
mation.
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q/2 k+ Q q/2

k' k'+ Q -q/2

~4a~W,
k' k'+ Q -q/2

FIG. 5. The same as Fig. 4 with rescattering on the
neutron.

FIG. 4. Schematic representation of neutron exchange
process with rescattering on proton, calculated in the
optimal approximation.

first term for the elastic scattering reads

(y„k')V„(g„k)= jt d'f'd'f" g„(P'-K+q/4)

x(p', k'IV»lp, k)p, (p -K -q/4),

(41)

where V» is defined by Eq. (14c). Using Eq. (3'I)
to eliminate potential V~„one easily obtains that
Eq. (41) gives the standard neutron pick-up ampli-

tude in Born approximation (Fig. 3):

!!,)!'I v„~l4, )!!= {&,—!)!'+q'/l)!) —
)

x Q, (K —q/4) p, (K+ q/4) . (42)

For the remaining rescattering terms of Eq.
(21b) we develop again an optimal approximation.
(The derivation may be found in the Appendix. )
It gives for the first rescattering term

T„'"'"(E,k, k') =(y„k'~~;,GV») k, y, )

the following result:

")=!4,k'~ „GtV~~kg ) = f 0 )K+!)/4+Q)t~ (E „T!',)!'+)))(„-q), —,
)))

—,

2m 2m

.(., " q/"Q)'-y, (K q/4. Q)dq,m

where the amplitude t» corresponds to kinematics [k'] + [k+ Q] - [k'+ Q] + [k] for the total energy argument

u" (k+Q)'
2m 2m (44)

Expression (43) can be represented schematically by Fig. 4, where the effective energy of the PP ampli-
tude and propagator are calculated as if the target proton were on mass shell (cf. Ref. 4).

In the same way one can show that the third term of Eqs. (19) and (21b), which corresponds to the re-
scattering on the neutron, can be represented in the optimal approximation by Fig. 5, which gives

$2

=e.!« ~/);. — ")f, ~. '~„'~,. ,~„~&.e.) -~/ 0) )). I4)
2m 2m 2m 2m

%e mention that there is no overcounting in the case of Fig. 5, since this is only a schematic represen-
tation for the approximation of amplitude 7»GV». The latter is clearly free of overcounting.

The evaluation of higher order terms of expansions (19) and (2lb) in the optimal approximation can be
shown to be reduced to the calculation of diagrams where the struck target nucleon is taken to be on-
shell (cf. Ref. 4). For example, consider the next two terms of expansion (19) and (21b) [Fig. 6(a), (b)].
We find that the amplitude corresponding to Fig. 6(a) equals
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(P„kIt„'G(„G. V„.IP, k)= f P, (K+4/4+Q)t„(K",,', k', k'+Q)

1

q

and the one corresponding to Fig. 6(b) is

(P, k'It„Gt,G P,, IP, k) = f 4 (K+4/4+Q)t~„(k,'„k',k'+Q)

2m 2m
2

K+ +
E 0

x , @), (~ ~ ), p, (K -q/4+ Q2)d'()), d2(I)2,
E(2) .2

2m 2m

(46)

(47)

where ZP~'(2) are total PN energies after the first
and second rescatterings:

(,) (k+ Q,) i'2

E = +

d2) P,)
i'2 (K+ Q.,)

2m

(1) (K+ Q.+ QQ)'

2m 2m '

E(2) @1) (K+ Q2)', (k+ Q2 —Q,)'
PP P

(48)

Our results may be extended to the relativistic
case if one uses the relativistic propagators and
reduces them to the form similar to the non-
relativistic one (cf. Ref. 7).

IV. ANALYSIS OF pd LARGE ANGLE
SCATTERING DATA

The two-body scattering amplitude +»» is
connected with the corresponding scattering ma-
trix T. . ., through the relation

I

where m, and m, are the scattering masses and
I' is normalized as

dc. m.
(50)

Consider the single scattering amplitude Eq.
(25a). At forward and therefore also backward
angles for sufficiently large energies [/'21,

"a 2.6
GeV/c in Eqs. (25a)-(25c), which correspond
to )'2~ 2 1.7 GeV/c, or TPa 1 GeV] the scalar part
of the PP amplitude is dominant, although at lower
energies the influence of spin dependent parts in
the amplitude is rather important. ' Assuming
also the dominance of the scalar part in the Pn
amplitude for backward scattering and using Eqs.
(25a), (49), and (50) one obtains the following
expression for the unpolarized pd cross section
(given by single scattering amplitude' )

ffCk,",'(k„q*) 4+ „pd(q4 4*)

)dq2 (1+ p 2)1/2 dq2

2+pP„dc,„(k;",q')
(1 p p 2)1/2 dq2 J

I" = -4w2 T
Plg+m2

(49) q q (51)

q/2

k

!PP

k+ Qi k'+0& -q/2

q/2 k

Y/y'

yP~,PP

k' k'+Q, k'+Q~ -q/2

(o ) (b)
FIG. 6(a), (b). The same as Fig. 4 with rescattering

on two nucleons.

where kl. , kl,
" are lab momenta corresponding

to total energies of Eqs. (25b) and (25c), pP„
=RefP~/Imf». S, =S, (,'q') and So=—S(2(Kq2—) are
scalar and quadrupole deuteron body form fac-
tors. One can easily check that Eq. (51) holds
when one uses relativistic normalization of amp-
litudes. ' From (25b) and (25c) one sees that ef-
fective energy E"increases with momentum
transfer q provided the maximum q for pd
ba,ckward scattering is equal to q

2 for pN back-
ward scattering. Since the PN on-shell amplitude
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10 IO
p

I I I PI I I I

IO

E
a.

IO—

10=

I—
b

IO—

IO=

10—

IO-

IO—

I

(b)
I

IO-

10—

10=

10 =

(b)

k~n2, 25 GeV/c

I I & I

I 2345
I.
)IAax +77Gev

102 ' ' ' ' ' ' ' 10
I 2 54567 254 56789
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FIG. 7. do&N(k&, q )/dq (solid line) and d(re(kl, q )/dq
(dashed line) for T&=1.5, 2.08, 2.5 GeV. Arrows indi-
cate point 8, =180 .

One thus obtains

do (k' '& doPN I p — pN eXp[ Px(q x q2)]
dq2 dq2 max

where

increases rapidly with q' towards 0, = 180,
we expect that in spite of the falling form factor
S~ the amplitude (25a) increases, thus giving the
important contribution to the backward scattering
cross section. In order to provide the informa-
tion required for application of Eq. (51) we have
used an interpolation procedure' of existing pN
data. "'" As an example we show on Fig. 7 the
differential cross sections do»(kP, q')/dq' (solid
line) compare to do»(k~, q')/dq' (dashed line) for
three different energies (T~=1.5, 2.08, 2.5 GeV).

The cross section do»(kzn, q') jdq' can be found
analytically using Gaussian parametrization for
pN amplitudes:

tot

f&N(k&, q') = ' '" (i+p»)exp(- .'P»'q') —(52)

Data" show that do~„/dq'le», n fall rapidly as
a function of energy and Ifo p„(kff,q')/dq' hardly
influences Eq. (51) for kz, R 1.7 GeV/c (kz,'fk 2.6
GeV/c).

Now consider the multiple scattering terms of
amplitude T' [Eq. (24b)]. We mentioned above
that the optimal approximation (including Pauli
principle) leads to the same expressions, which
have been derived in Ref. 4. From analysis of
these expressions one finds that the eikonal ap-
proximation" can be applied for calculation of
these terms (in the same way as has been done
for fixed scatterers case" "). It results in that
only the second and the third order multiple scat-
tering amplitudes (with eikonalized propagators)
are important in the pd large angle cross sec-
tions, '4 Fig. 8.

Our eikonalized expressions for these ampli-
tudes are similar to those of the fixed scatterers
case. However, they contain on-shell pp, pn
amplitudes f~N (E",p„p,) which correspond to
the kinematics'

yg+ P2 PI. yg~ PI-P2
2 . 2 (54)

and the last pp amplitude in Figs. 8(a), 8(d), and
8(f) is antisymmetrized. k' (k) is the proton's
initial (final) momentum in pd Breit frame. Since
pp, pn amplitudes are strongly peaked in the for-
ward (backward) direction and since the backward
Pn amplitude is small (for sufficiently high ener-
gies), the large angle pd scattering occurs es-
sentially when the proton scatters backward on the
target proton and forward on the neutron. Since
only the antisymmetrized pp amplitude is large
for backward scattering, the process shown in
Fig. 8(a) contributes mainly in the cross section.

Thus using Eqs. (49) and (52)-(64) and the ex-
pression of Ref. 4 for the double scattering term
one obtains in the eikonal approximation

keffk(P&) g tot~ tot

k~„(4m)

q '- '=qlm2'+ q
lmax

k 4 )

x lac'+m'+ —'
4 | 4

(53b)

and q= q corresponds to 0, = 180 . The back-
ward pp cross section equals

2 2
e =180 «e =0CJll, . CJB.

k k+~l

~n Qp

k
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k' k'+ Oi

4p)
'@+OS
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k
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(55)

~pp(1+ P.p*)

16m
FIG. 8. Schematic representation of second and third

order scattering processes for pd backward scattering.
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2

(56a)

where

u)
+I(O Jef [f (+eff q2) +f (Jeff q2)]

x Sa (q /4) — So (q'/4)
1

(56b)

and &" ' equals the same expression with
(- 1/v 2 So -&2So).

Consider the neutron exchange amplitude Eq.
(21b). The Born term has been calculated with
the same normalization factors as in Ref. 16.
We evaluated rescattering terms again in the
eikonal approximation. In that case only single
and double scattering amplitudes (Figs. 4-6)

where &~~2+ is the double scattering amplitude
calculated with the scalar or quadrupole com-
ponent of the deuteron body form factor. This
expression also holds if one takes the relativistic
normalization of PN amplitude and uses the re-
duced relativistic propagator (as in Ref. f).

The Pd cross section given by single and double
scattering terms reads

2

contribute effectively. The calculations have been
done using parametrization (M) for pN amplitude.
We obtained that the rescatterings reduce the
Born exchange amplitude approximately by the
same factor as has been found earlier in the
fixed scatterers case."

The results of our calculations are shown in
Figs. 9-11. The dashed line corresponds to the
contribution from the single scattering [Eq. (51)].
The dashed-dotted line shows the contribution
from the single and double scattering [Eq. (56)]
and the solid one corresponds to full result when
the neutron exchange is added. The data are
taken from Refs. 18-24.

For the calculation of the single scattering
cross section we need information about S&2+S'
for high momentum transfer. Up to q'~ 4 GeV/c'
we may extract this quantity from ed elastic scat-
tering measurements, "taking the neutron electric
form factor to be zero and the proton electric
form factor from Ref. 26. For larger values of
q we postulate a form of S& +S in order to fit
the data. The square of the deuteron body form
factors Sa2+S' is presented in Fig. 12 (solid line),

I I
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FIG. 9. pd large angle scattering data and our pre-
diction for T&=0.316, 0.364, 0.47, 0.59 GeV scattering.
Data $ {Ref. 184 $ {Ref. 20)& I for Tp 0.59 Gevs $——

for T& =0.47 GeV, g for T&=0.364 GeV, T for T&=0.316
GeV (Ref. 19). Legends: (—-) single scattering
(Eq. 51); (-.— -) single + double scattering (Eq. 56);
( ) single + double + n exchange with rescattering
corrections.

I, I I

4 5
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FIGe 1Oe do~/dOc. m. r Tp = 0.794, 1, l. 015, 1.3,
1.5 GeV. Data /{Ref. 21); {Ref. 22); Ofor T& 1GeV, ——

g for T&=1.3 GeV {Ref. 23); for T& 1.015 GeV, ]for-—
T=1.5 GeV (Ref. 24). Legends: as in Fig. 9.
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I

8

Data g
Legends:

where we show also, for the comparison, the re-
sult of formal calculation of S~'+8~' using
Humberston-Wallace deuteron wave functions"
(dashed line). In order to calculate the contribu-
tion of the double scattering amplitude in Pd cross
section [Eqs. (55), (56)], we need information on

S& and S~ separately. We show in Fig. 13 one
possible extrapolation of these form factors (solid

10 I

I I I I I I I I I

10-2

10

c Ja
CU Q

(A
+ 104

a-/W

CU R
CO

10 5

10-6 I I I I I I I I I

I 2 5 4 5 6 7 8 9

q (Geq/c )

FIG. 12. Square pf deuteron body form factors S&+S@.
Solid curve corresponds to the measurement [up to q
~~ 4 (GeV/c) ] and tp. our predictipns fpr q & 4 (GeV/c') .
Dashed curves give the calculation with Humberston-
Wallace wave functions.

line) in agreement with Sz'+So' of Fig. 12. The
dashed line shows the calculations with Humbers-
ton-Wallace wave functions. We examined the
other possible extrapolations and found that the
calculated Pd cross section is rather stable.

The parameters of the PN amplitudes [Eq. (52)]
used in the calculations were taken from Ref. 10.
The magnitude of the Pd cross section is insensi-
tive to the uncertainties in these parameters.

Consider first the results shown in Fig. 9. The
magnitude of the cross section for T~= 470, 590
MeV seems not to be reproduced by the calcula-
tions. However, new accurate measurements of
Bonner et al."of nd scattering at 180 for neu-
tron energies from 200 to 800 MeV show a smaller
magnitude of the backward cross section than the
measurements of Adler et al."and Boschitz et al. '-'

Therefore the latter should probably be reduced
by an overall normalization factor (0.6-0.7) and
then our calculations of angular distribution will
reproduce the data.

Concerning the calculation for T~=316, 364MeV
one should be aware that for backward scattering
the effective energy in PN amplitudes T~" —= 500
MeV. For this energy region the application of
eikonal approximation can be hardly justified. In
addition the backward scattering amplitudes f~„
and f» are of the same magnitude for T~" = 500
MeV. Thus all the processes in Fig. 8 should be
taken into account (which will decrease the cal-
culated Pd cross section). Therefore, our results
for T~= 316, 364 MeV should be considered only as
an estimate.

The results shown in Fig. 10 demonstrate agree-
ment with the data. However, the evaluation of
the neutron exchange requires information of the
deuteron wave function for large relative momenta
Q (even for T~a 1 GeV, Q&400 MeV/c). Un-

fortunately, the standard deuteron wave functions
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(Hamada- Johnson, Reid, etc.) do not reproduce
the deuteron form factor for q'& 2 (GeV/c)'. "
Since it is the high momentum part of the wave
function which matters in that q' region, our
evaluation of the neutron pick-up amplitude with
the Humberston-Wallace" wave function should be
considered only as an estimate for T~& 1 GeV.
For T~=2.08, 2.5 GeV the neutron exchange has
not been included at all, since we have no reliable
information for its estimate.

Figure 11 shows the large angle data for kL,
= 2.87, 3.3 GeV/c and predictions. The backward
scattering region is reproduced, but for smaller
q' we disagree with experiment. It may be the in-
fluence of the neutron excha, nge, which has not
been included. It may indicate also that an ad-
ditional mechanism which is outside of our de-
scription, plays an important role in this energy
region.

One sees from Figs. 9-11 that one form factor
reproduces the different sets of data with the
same qa but different energies. That means that
the agreement of our calculation with experiment
is not trivial. Since large angle pd scattering is
governed in general by the single scattering
mechanism, one obtains from Eqs. (53a) and
(53b) that the ratio of Pd cross sections for the
same q' but for different energies is independent
of the deuteron form factor and equals

exp[ 2P2(~2+ q2/4)1/2(E(1) E(2))]

where E~ is the proton energy in the pd Breit

frame. The measurements of backward Pd scat-
tering for T~&2.5 GeV will be very interesting in
verifying this prediction. If confirmed one can
extract the deuteron body form factors at
q' & 9(GeV/c)' using proton beams.

In Fig. 14 we show the data for thePd cross
section at (), . = 180' for different T~ (Refs. 18,
21, 22, 24, 28, 29) plotted as a function of q'.
Comparing this data with the deuteron form fac-
tor in Fig. 12, one sees that the shoulder

input

data from 1 (GeV/c)' & q' & 2 (GeV/c)' corres-
ponds to the shoulder in S~2+S@2 at the same q
region. It is naturally explained in our approach,
since the pd cross section given by single scat-
tering do~~'„~/dB~e, »,. is proportional to
Ss'+Se' [Eq. (51)]. We have already mentioned
that in the region q' & 1.2 (GeV/c)' (T~ & 360 MeV)
the rescattering terms are underestimated. Thus
the evaluated cross section in this region should
probably be reduced. The results of our partial
analysis of analyzing power data can be found in
Ref. 6.

V. CONCLUSION

In spite of many years of extensive study of
hadron-nucleus scattering, the processes with
large momentum transfer still challenge the
theory. In particular, the observed pd backward
scattering peak stimulated the appearance of
various models for its explanation. Since the neu-
tron exchange could not reproduce the data, these
models introduced explicitly an additional degree
of freedom in the deuteron wave function, such
as the exchange of N*." The other explanation
invoked pion exchange effects." All these models
were outside of the usual multiple scattering de-
scription. The latter has not been investigated
seriously since the binding effects were always
neglected.

In this paper we have studied the multiple scat-
tering mechanism in Pd backward scattering. The
binding effects have 5een included in a consistent
way using the method derived in Refs. 3 and 4.
Owing to compensation of Fermi motion and bind-
ing effects, the multiple scattering amplitudes
were found to be dependent on the on-shell PN
amplitudes and deuteron form factors. The im-
portant step in that development was the inclusion
of the Pauli principle. It led to the PP amplitude
being antisymmetrical (i.e., physical). Since the
PP amplitude is strongly peaked in backward di-
rection the pp multiple scattering amplitudes are
also peaked towards 8, = 180 . Therefore the
dominant mechanisms of Pd high energy scattering
are: (a) the backward on-shell PP (single) scat-
tering, and (b) the double scattering term con-



sisting of backward PP scattering followed by for-
ward Pn rescattering.

The second process which contributes in the Pd
backward scattering is the neutron pick-up dis-
torted by the proton's rescattering. In the cal-
culation of the distortion the binding effects have
been taken into account in the same way as in
Refs. 3 and 4. Finally, the distortion has been
found to be essentially due to forward rescattering
of the proton from target nucleons.

These results have been applied for the analy-
sis of the existing Pd large angle scattering data.
Since the multiple scattering amplitudes were
found in factorized form we needed only the in-
formation on the deuteron body form factor at
large q'. We have shown that all Pd large angle
data for 0.3 GeV~ T~~ 1.3 GeV could be repro-
duced with a deuteron form factor taken from
di~ect measurements in ed scatten'ng. " These
measurements provided the information only up
to q'~ 4 (GeV/c)'. For the analysis of Pd large
angle data for T~~ 1.3 GeV we needed information
on the deuteron form factor for q'&4 (GeV/c)'.
We have shown that these Pd data can be fitted

with one extrapolation of the deuteron form factor
up to q2~ 9 (GeV/c)'. Therefore, usingourap-
proach, the large angle Pddata could be used as a
source of information on the deuteron form factor at
large q'. It is interesting to compare the ex-
tracted form factor with the prediction of the
dimensional-scaling quark model. " One sees
from Fig. 12 that our squared form factor de-
creases more slowly [from q'=3 (GeV/c)' up to
q'=9 (GeV/c)'] than one predicted by this model
[S32+So2 at q'= 9 (GeV/c)2 is an order of magni-
tude larger than the predictions].

Finally we note that the analysis of Pd large
angle scattering using well-defined multiple scat-
tering theory should be considered as a necessary
step which should be performed before consider-
ing exotic models. Only a disagreement of the
prediction with experimental data may be a reason
for inclusion of different effects which are ex-
ternal to the multiple scattering description.

The author is grateful to Dr. Y. Alexander for
helpful discussions and critical reading of the
manusc ript.

APPENDIX

We derive the optimal approximation for the rescattering terms of neutron exchange amplitude, Eq.
(19b). As an example we consider the first rescattering term

v.""(z,i 1') =(0„k'I~,',Gv„lk,&', &
= f((v' -K+q/, 4)&ie, v'1@Iv„v&&v„v1 a( v„v&v,„(v—p)

x 6 (p, + k —P) Q, (P —K —q/4) o'P, d'P, d'P d'P' O3p, . (Al)

(A2)

where 5,7,'3 and 5,G are defined by Eqs. (34a), (34b),
Consider the first term of Eq. (A2):

We choose the approximations G, =—G and t33, =—r34, in the forms (32), (33), but with the quantities c, e' dif-
ferent from those of Eq. (38). e and c' should be determined from the vanishing of the first order cor-
rection to the approximation t3 G Vy2= 73yGVyp which reads

1 (~ (( k
I 1~13G~ 12 13 1G 12~ ~ ()(

P, p G, G

2m 4m

x 5 (P —p, —k) Q, (P —K q/4)d'P d'P' —d'P" dp, O3p2.

Using Eqs. (36a), (37) one performs the d'Pd'P' integration to obtain

(A3)

„P"—K+q 4 k' t » p, G," » e' P"- K+p, 2 —+ c P" K+ q 4 '—

x(p, lt3', Ip, )G.(P„~)V,„(P"-p, -k)&t&, (p, +q/4)d'p, d'p, d'p . (A4)

Neglecting the terms &x: (P" -p, —k)V2„(P"-p, —k) in the integrand (A4) [since in the coordinate space they
are proportional to a/S re„(3')]one can perform the integration over d'P" to eliminate the potential V2„
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in Eq. (A4). Then we find that 6,'= 0 if

K+q-p2~ 1 ( 3q 1e'= p + '~ —+e —Ip +—
2 & m ' '~' 4 m

Substituting Eq. (As) into (32) and Eq. (32) into (33) we obtain after some algebra that the equation for
& k'It,', lpi) reads

(&'i(l, lp, ) =('»(&'-i, )+ f ('„(&'-i,) ~,.
2m 2m 2m 2m

(As)

(A6)

One can see easily from Eq. (A6) that (k'~t,',~p, )
is a (direct) PP scattering matrix corresponding
to kinematics [k'] + [p, + qI —[p,] + [k+p, - pg for
the total energy argument

k" (p, +q)'
PP (A7)

The vanishing of the second term of Eq. (A2) de-
fines the quantity c, which determines the approxi-
mate Green's function G,(p„e)= G of Eq. (Al).

(K+q+p )' 3q 1
4, + 60 — p~+ (A8)

Kith these now defined t „andG, one obtains Eq.
(43) for T'„')'". The optional approximation for
second and higher order rescattering terms of
expansions (19), (21b) is derived in the same
'way.
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