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Reaction He(y, 2p)n at intermediate photon energies
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Proton energy distributions and the diA'erential cross section for the reaction 'He(y, 2p)n for incident

photon energies between 80 and 120 MeV have been calculated. In order to compare with available

experimental data, we consider the situation in which both protons emerge close to a direction

perpendicular to the incident photon beam. It is shown that in that case the dominant contribution is given

by the direct breakup of 'He into a free neutron and an interacting singlet p-p pair. The nucleon

momentum distribution in 'He used in the calculation is obtained from a phenomenological fit to
momentum distributions observed in quasifree (p,2p) scattering experiments on 'He, If the Coulomb

interaction between protons is ignored, the calculated energy distribution agrees, at lower photon energies

( —50 MeV), with previous calculations in which the nuclear interaction was included fully in the final

state, but only the dipole electromagnetic operator was included. The Coulomb interaction changes the

shape of the proton energy distribution completely, bringing it and the differential cross section into

agreement with the experimental data.

1

NUCLEAR BEACTIONS Three-nucleon photodisintegration of 3He; intermediate
energy calculation; Coulomb effects.

I. INTRODUCTION

Proton-proton coincidence measurements in the
three-nucleon photodisintegration of 'He have been
carried out by Peridier et p$. ' In these experi-
ments the protons are detected emerging at angles
of 0, = 92' and 0, = 88 with the direction of the in-
cident photon, all three directions being coplanar.
Incident photon energies range from 80 to 160
MeV. The proton energy distribution d'g/
tfZ,dQ,dg, and differential cross section d'o:/

dQ,dQ, have been obtained by these authors (with

E~ ~ 9.5 MeV).
Proton energy distributions for the proton angles

of the experiment of Bef. 1 and for photon energies
up to 50 MeV have been calculated by Gibson and
Lehman. ' In their ca.lculation (l) the initial and
final states, are exact eigenstates of the three-
nucleon Hamiltonian with Yamaguchi type nucleon-
nucleon potentials; (2) in the electromagnetic in-
teraction only electric dipole terms were included;
and (3) the Coulomb interaction between protons
was not included.

The authors of Bef. 1 have shown, however, that
the shape of their proton energy distribution is re-
produced very well by the Migdal formula' for p-p
final state interaction, which includes the effect of
both the nuclear and Coulomb interactions. On the
other hand, the authors of Ref. 2 have shown that
already for photon energies as low as 50 MeV the

effect of the z-p interaction is small in the exper-
imental configuration of Ref. l. (This point is il-
lustrated in Fig. 9 of Ref. 2.)

These points are taken into account in the calcu-
lation of cross sections presented in this note. In

the next section the reaction amplitude and the ap-
proximations utilized in iis calculation are dis-
cussed. The nucleon momentum distributions in
the ground state of 'He that enter in the calculation
of the reaction amplitude can be calculated from
available theoretical 'He ground state wave func-
tions, as in Ref. 2. However, since the main pur-
pose of the present note is the determination of the
dominant reaction mechanism in the experimental
configuration of Ref. 1, it was felt that more re-
liable conclusions can be obtained if the relevant
nucleon momentum distributions were taken direct-
ly from other experiments. This approach can be
carr ied out by utilizing the results of quasifree
scattering experiments on 'He. Phenomenological
fits to these momentum distributions are derived
in Sec. III.

In Sec. IV the energy distribution and differential
cross section are calculated and compared with the
results of Ref. 1.

II. REACTION AMPLITUDE

The amplitude for the reaction

y+ He~ p+ p+ z
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is given by

where the initial and final states are, respectively,
the ground state of 'He and the eigenstate of the
ppn Hamiltonian characterized asymptotically by
three free outgoing nucleons with momenta

p„p„p„. The ~'s are the 'He and spin components
of the three nucleons, e the photon polarization.

is the photon-proton electric interaction opera-
tor4

2m '/'
f

*"'"(".p)+ *'"'"(&.p,)], (&)

&d, k are the photon energy and momentum, r, , 'P, .

(i = 1, 2) the proton position and momentum opera-
tors, and M the nucleon mass.

The experiments under consideration here ex-
plore the final state situation in which the two pro-
tons emerge with momenta almost parallel to each
other, and perpendicular to the incident photon
direction. The neutron will then emerge in the
direction opposite to that of the protons. For the
range of photon energies in these experiments it
can then be expected that the effects of the inter-
action between the emerging neutron and the pro-
ton pair are not important. This point was checked
by Gibson and Lehman in their calculations and we
take that assumption to be proven by their-results.
The final state in the calculation of the reaction
amplitude (2) can then be taken to be that of the
motion of a free neutron and an interacting proton

R=;.'(r, +r,+r„), $=p, +pz+p„,

p=r„--,'(r, +r,), $=-', p„--,'(p, +pg,

rZr q=Z(p1 PZ).

(6)

Then (the i P term does not contribute to the re-
action amplitude)

i(p„~ r„) i f(p + p2) ~ (r&+ r )/2]f

xu' (r»)X'(12 n) . (4)

p„p„p„are the nucleon momenta, , r„r„r„posi-
tion vectors, and u~ (r») the two-proton wave
function [q„=—,'(p, —pg the relative momentum and

r» ——r, -TZ the relative position of the protons].
The spin eigenstate is g'(12, n), with total spin 2,
and the proton spins coupled to singlet.

The Pauli principle requires that only the even
[u(r21) = u(r12)l part o«~ (r1$ be considered in @/.

(-)
12

This is automatically taken into account when cal-
culating the reaction amplitude since the initial
state, the ground state of 'He, has the form

e,= y(12, n)x'(», n)

with the space part p(12, n) symmetric in the 1, 2
variables.

For the evaluation of the reaction amplitude Eq.
(2) with the final state Eq. (4), it is convenient to
express the operator Eq. (3) in terms of c.m. co-
ordinates and their canonically conjugate momenta

eik'R ik'rr/ {(&ik-~ r/2+&-ik r/2)[ 1(&,«p)]+(eik' r/2 &-ik' r/2)(&. «q)],
M co

To the extent that terms of order (R ~ r)' and higher
can be neglected [(k r)'= 0.03 at E&=150 MeV],

e rm '/' ----
&„=+~ — e'" " '""K p)-i% r)(e q)] (7)

The second term in Eq. (7) would produce E2 and~ transitions between pp pairs in the initial and
final state. These contributions will be.neglected
for the present, since the p-p pair is predominant-
ly s wave in the ground state and in this experi-
ment we are restricted to relatively small q's.
The contribution to the reaction amplitude (2) is
then given by

I/2I d3p ~ d3y e 't&+" 3~ u (r)2
mlm2 m2 ~ Zm3

x(e ~ p) go(r, P)
1/1 1 1 I 1

XyZZnrr ~zzr 22r [22n3) r

I

where po(r, p) is the space part of the 'He ground
state [Eq. (5)] and the spin part of the amplitude is

(~21r ~22r 22r I~23) (221n~ZrZI2 2 r oo&

x([2 2 ]OOr 22r I [212 2]O 2 ~2n22)

Since the plane wave exp[i(ti+ —3'%) p] is an eigen-
state of the n-(pp) relative momentum operator p,
the amplitude (8) is

M
yg g'ill 2 71k, ?PE 3

2'
(~ p) d'p d'3 e *'&""'

M oy

xu (r) go(r, p)
gl 1 1 )i

Xy'22nlr ZZnZr 22r 1~23) r

or, in a more concise notation,
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x(n, (pp)„p+ —,'Tr, ql'He) . (10)

That is, the reaction amplitude is proportional to
the component of n-(pp) relative momentum in the
polarization direction times the overlap of the
ground state of 'He with the neutron in free rela-
tive motion with respect to the interacting proton
pair. This overlap is the probability amplitude for
n-(Pp} in the ground state of 'He and can be calcu-
lated given the ground state wave function of 'He.
The experimental configuration of Ref. 1 provides
then a probe of the neutron-singlet proton pair
relative momentum distribution in the ground state
of 'He. However, before using that probe as atest
of the theoretical 'He ground state wave function,
it is desirable to check the validity of the assump-
tions leading to.the expression (10}for the re-
action amplitude. This can be accomplished if in-
stead of calculating the amplitude (n(pp)ol'He) from
theoretical wave functions, we use experimentally
measured amplitudes in Eq. (10).

III. NUCLEON MOMENTUM DISTRIBUTION IN 38e

p2 @2
(( (pm). (~'He) = (B„+——+ —„h.,((,q), (12)

with f) the relative momentum of the proton-~)
pair, q the relative momentum of the nucleons in
the interacting pair, B»„=7.72 MeV the three-nu-
cleon binding energy, and

(13)I.(P q) =(P(~).IV„+V,.l'He)

the 'He- p+ Lpn), vertex amplitude.
The fact, well established both experimentally'

At the present time no direct measurement of the
neutron momentum distribution in'He, (pz(f)p) ol'He),
has been carried out. Instead, the momentum dis-
tributions (pdl'He) and (p(pg)ol'He) have been ob-
served separately by Frascaria et al. ,

' in the
quasifree scattering of high energy protons on He.

Charge independence plus the predominance
(92%) of the fully symmetric component' in the
ground state of 'He yield the relation

(~(pp)ol'He) = ~2y~ )I' He)

To the extent that charge independence and full
symmetry are valid in 'He, it is then possible to
use the data of Ref. 5 in the calculation of the re-
action amplitude. This is accomplished by means
of a phenomenological fit to the data of Frascaria
et g/. The form chosen for the function used in
this fit is based on the following considerations.

The momentum distributions (p(pg), l'He) (s =0, 1)
have the general form

and theoretically, ' that the momentum distribution
(pQn)~l'He) is practically zero, compared with
('p(fl'He) and (p(pn)ol 'He), leads us to assume for
the vertex amplitude (13) the form

h, (p, q) =g, (p)(u„-, u',"), (14)
(s) .where u~ is the continuum pn eigenstate of spin g

and u", the deuteron eigenstate.
In the approximation provided by the phenomen-

ological form of Eq. (14) the 'He-p+ (pn), ampli-
tude is identically zero, a consequence of the or-
thogonality of continuum and ground state two-nu-
cleon triplet states, (u &, uo") =0. The function

g(P) is assumed to have the form

g5) =g(0)(1+p'/P') ' (15)
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FIG. 1. Pd* momentum distribution. Data from Fras-
caria et al. (Bef. 5). Curve is phenomenological fit de-
scribed in text.

In order to determine the constants g(0},P, we in-
troduce the momentum distribution given by Eqs.
(12), (14), and (15) into the expression for the
quasifree scattering cross section for the reaction'
p('He, 2p)d* and adjust those constants to fit the
experimental cross section. In Fig. 1 we show the
result obtained with the value g(0) = 95 MeV fm'~',
P=0.98 fm '. The data are from Bef. 5. The same
constants give a good fit to recent quasifree ex-
periments on 'He by the Georgetown University
group.

The momentum distribution to be used in the cal-
culation of the reaction amplitude of Eq. (10) is
then obtained from that just described by use of
Eq. (11). In addition, Coulomb effects are intro-
duced naturally by the form of Eq. (14). Namely,
the overlap between deuteron and singlet nucleon
pa.ir that appears in Eq. (14) will become, for the
(n(pp), l'He) momentum distribution, the overlap
between deuteron and singlet p-p pair wave func-
tions.

In the experimental situation of Ref. 1 the rela-
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(0) g e-iqr
Mg =e +

Qp+ ZQ'
(18)

and the deuteron zero-range (triplet bound state)
wave function by

tive p-p momentum is restricted to small values.
(Typically, for E„=100MeV, 0.03 «q «0.15 fm '.)
The overlap function 4(q) = (u-, u~n) can, therefore,
be obtained to sufficient accuracy by use of zero-
range wave functions: If the Coulomb interaction
is ignored, the singlet continuum zero-range func-
tion is given by (we use the incoming spherical
wave boundary condition, as is proper for created
particles)

with

Q -=—e""~'e"oe""e(1+iq; 2; -2iqr) . (28)

(We follow the notation of Bateman" in defining the
irregular solution 4 .)

After carrying out the integration over y in Eq.
(21) (see Appendix) we find

A, (q) =, , "
. - (27)

(8wy)' ' [F(n)]' '(e'""o.„(q}+y [1+e(q}])
q'+ y' n, (q) -? (q)/R - iqZ(q)

with

a, (q) =Z(q)q cot5, +@(q)/R

where

(17) ? (q) = ae[y(1+ iq)] —in',

E(q) = 2vt7/(e""-1)

(27b)

(27c)

y = /fly„, )",
B„~ being the deuteron binding energy, and

no= q cotgo.

We then find

(18)

(19)

is the Coulomb penetration factor and

& (q) =—e'"' C + ln ———,
' ln(1+ q'/y') —2'+ q'y'

yR I yR

+ 9 ff $ + terms which are neg ligible

(8')'i' &o+ y
A. (q) =, , ~

9' +7 &0
(20)

When the Coulomb interaction is included we
have

A (q)=(u'e 14'")

where jnis given in Eq. (17) and

uP, (r) =e "o(F,cos5, +G, sins'

(21)

is the s wave singlet continuum zero-range wave
function including the Coulomb interaction. Here
P 0 and Qo are, respectively, the regular and ir-
regular Coulomb functions having the asymptotic
form

sin(qr+ o, —q ln2qr)E ro— ?qr

c

os�(qr

+ o, —q ln2qr)
G,(r- qr

(28b)

5, is the nuclear phase shift and a, is the Coulomb
phase shift, given by o, = argr(1+ iq). FIere q is
the Coulomb parameter

q = (2qR)-'

in terms of the proton-proton relative momentum

q, and the Coulomb radius R = 5'/Me'(= 28. 9 fm}.
The functions F, and G, are defined in terms of

confluent hypergeometric functions by

F0
= e ~~'] 1 (1+ iq) (

e""F(1+iq; 2; -2iqr )

=9+9*
G, =i(Q -Q*)

for all values of q (27d)

with y= tan '(q/y}. (C = Euler's constant= —y(l)
= 0.5772. . . ). [Details of the derivation of Eq. (27)
are given in the Appendix. ] Note that if we let
e'-0 then the Coulomb radius R-~, g-0, and

A, (q) of Eg. (27) goes to A(q) of Eq. (20).
We also note that for q/y «1 (in which case.our

amplitudes are independent of the model for the
'He ground state) our expressions for A(q) and

A, ,(q) [Eqs. (20) and .(27)] are of the form

( )
const

Dp —sq

const[F(q) P~'

u, (q) -n (7i)/R -iqF (q)
'

(28)

(29)

IV. CROSS SECTIONS

The cross section for the reaction 'He(y, 2p)pg is
given by

d'o/dE, dQ, dA,

=(»)-' p
?nlrb m E' ms

(30)

where D = ~2p, —(k —p, ) pJ/M. With the reaction

which lead to cross sections of the form predicted
some time ago by Migdal. '

In the calculation of cross sections, the effective
range expansion" o. (q) = —1/a+ —,'r g+. . . , wa. s
used for the functions o.,(q},o., (q).
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CP

C$
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al
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EFFECTIVE RANGE
—-- ZERO RANGE

where the proton-neutron interaction and the photo
breakup of virtual deuterons are included, we ob-
tain cross sections that are three to four orders
of magnitude below the results presented here.
From the present calculation we can then conclude
that the combination of high incident photon energy
and proton coincidence detector arrangement per-
mits the selection of that piece of the three-nucleon
final state in which a neutron is moving freely rel-
ative to an interacting proton pair. As Eq. (31)
shows, this type of experiment probes the momen-
tum distribution ~(n(pp), ~'He) ~'. On the other hand,
the same type of experiment, but rearranging the
proton detectors to be on opposite sides of the in-
cident photon beam, would probe essentially the
momentum distribution ~Q(pn) J'He) ~'. [As we
noted before, the overlap (p(~),~'He) is practically
zero. ] Experimental observation of the p(p~), dis-
tribution is of relevance in connection with the
question of the ('He, pd~) asymptotic normalization
paramete r. '
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APPENDIX

In this appendix we derive the expression for
the overlap function including the Coulomb inter-
action A,(q), defined in Eq. (21), and given ex-
plicitly in Eq. (27). The regular and irregular
Coulomb functions, Eo and Go, which are needed
are defined in Eqs. (25) and (26) in terms of con-
fluent hypergeometric functions. We choose in-
stead to write them in terms of the closely re-
lated Whittaker functions, viz. ,

TABLE I. Calculated differential cross section.

MeV

No Coulomb
Zero Effective
range range

Zero range
M2

Coulomb
Effective range

iv( M2 M3

100
120
140

2.648
1.778
1.212

2.570
1.735
1.187

0.8262
0.6632
0.4859

0.8272
0.6640
0.4865

0.8277
0.6645
0.4869

0.7561
. 0.6169
0.4579

0.7571
0.6177
0.4585

0.7575
0.6181
0.4588

Effective range parameters from Bef. 2: a«=-17.0 fm, ra=2. 84 fm.
b Effective range parameters from Bef. 14: a&&=-7.80 fm, ra=2. 75 fm. Values given under

the headings M&, 2112, and 3@3 refer to expression (27d) in which we use, respectively, the
first four, five, and six terms in the square brackets there.
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." 'ir(1+ )i —22qr
Making the substitution of variable

;. (q, .„,(iiqr))

effri/2Im eicrp -fn. l/2&W . &-22qr&

qr

~. ~-~n, ir2 -»«
2qr

zq.. .~,(2iqr))
2qr

qr

(Al)

(A2)

we obtain

-2iq ' z'"dz
1'(1+i)l) . [(r-iq) (r+-iq)z]'

Writing

1
[(r- iq) (r+—iq)z 7

1 d 1
(r+iq)qz (r iq) —(—r+iq)z (r —iq))

1 z
(r-iq)qz fr-iq) —(r+iq)z)'

[Ref. 12, p. 264 (1)-(4)]. Thus, instead of con-
sidering the integrals over Fp and Gp separately,
obtained when Eq. (22) is substituted in Eq. (21),
we need consider only the one function

i(), qn/2 ~ in' /. (--2iq)y
qr

(A3)

and then take the real and imaginary parts of the
final result since up"' is real.

From the asymptotic form of the Whittaker func-
tion W„„[Ref.12, p. 264 (4) and p. 278 (1)], we
have

we integrate by parts, giving

1I=
1 (1+in)(r iq)-

~ ~ ~

1 z indz
x 1 —2'gq (y- iq) —(y+ iq)z

I

Making the further change of variable,

2q -2iz= . s=e
y+ iq

where

(A7)

qr~ 00
~

qr
(A4)

y= tan-'q,
y'

we have

(A8)

The asymptotic forms for Fp and Gp given in
(23a) and (23b), follow directly from (A4) on tak-
ing the real and imaginary parts of )t)o, as they
should.

From (A1)-(AS), (1V), and (22), we see that
the integral required in (21) is where

~ ~ ~

z'"dz 1
(y —iq) —(y+ iq)z (y+ iq)

o S dS
1 —s (A 9)

I= e '"8',„,&, -2iqr dr.
0

To transform this integral to a form suitable for
our calculations we use the integral representation
for the Whittaker function in (A5) [Ref. 12, p. 264
(4) and p. 256 (3)],

z =e'".0

Fcr the integral on the right hand side of (A9) we
separate the pole in the integrand at s = 1 from
the more complicated part of the integrand by
writing

-2jqr e'~"
W i)2( 2Lqy)=

(
. )'

q)og f g
e2iqq ttin(1+ t)-inst

0
(A6)

where 0&(t) &)T.

Substituting (A6) in (A5) and interchanging orders
of integration we have, after integration over r,

q—22 t dt
r(1+i'), 1+t [y-iq(1+at)]'

's'"-1
~ — dS ~

1 —s (A10)

Of the three integrals here, the first may be eval-
uated directly:

ds = —ln(l —z, ) l
arg(1 —z,)

I
& )T ~

p 1 —S



F. PRATS, K. P. HARPER, AND L. C. MAXIMON 22

Furthermore,

1 —z0= 1 —e'"= —2i e'"sing

-2i e'"—
~2" 1/2 &

1+
'Yi

from (AS}. Thus
~+ 2

=——jy —ln —+ —,ln 1+— (A 11)

s 1 s 1 6 1 s 1 6

r (I+ i71)I'(~)
I'(1+ irl+ q)

The second integral in (A10) is most simply ob-
tained as a limit:

s e2

and obtain

J
[|sso 1 y(I e-2nt )el~

dS= . dP o

1 —s 0 sing,

The integral on the right hand side of this equa-
tion has the great advantage that real and imag-
inary parts may be separated straightforwardly,
and the imaginary part evaluated in closed form:

(A13)

y(I e-2nt )egu.
cfjL

sing.

=i 1 —e '"" dp+ 1 —e '"' cotpdp,
0 0

using 1'Hopital's rule and noting that p(z) = I"(z)/
I'(z). In the last integral in (A10) we note that both
limits of integration are on the unit circle. We
therefore make the change of variable

= lim

I'(I+ i7i) I'(I+ q)
I'(1+ i71 + e)

(A14)
=—(2qy —1+ e '"')+ (1 —e'"')cotpdp .

2g 0

6-+0

= 0(I) —0(I +in) (A12)
From (A5), (AV), and (A9)-(A14) we then have,
after observing that a number of terms cancel,

e '"W,„»,(-2iqr)dr = . » iy+2qq e'"' ——+—+ $(i+i@)—g(1)+ln ———,ln 1+J f 2q 1 q
r(1+ iq)(y'+ q') 1 2 2q y - y

(1 —e '"')coty, dp,
0

(A 15)

Anticipating the desired separation of real and imaginary parts, we note that [Ref. 15, p. 259 (6.3.13)]
1 m coshmg

Imp(1+ i') = ——+-
2q 2 sinhmg

'

Thus, collecting the imaginary terms in the square brackets in (A15) we have

(A 16)
~ II+ i 2m?+—+ i Imp(I+ ig) =—

2 2n 2g e"" 1

The factor appearing here, 2rg/(e""- I), defined as F(q) in (2'7c), also arises in the overall normaliza-
tion: From (A3) and (A5) we have

(A1V)

and here we have

I I'(I+i71) I
e""-1 [F(q)]' ' '

From (A5) and (A15)-(AI8) we thus have.

(A18)

r 9'(n)l" '
or'dr=i

( 2 2)

+[ ( )],i. . . i

—+2ne~' » —--.» 1+ — +Re[I(I+in)- r(I)]
1 (y ~, 2q, q

'
+n ' 'r'+q'

~q

(1 —e '" )coty.dp,
0 j (A19)
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'The separation into real and imaginary parts is
now complete. As a check we note that the imag-
inary term on the right hand side of (A19) is indeed
the known integral over the regular Coulomb func-
tion [Ref. 12, p. 2VO (6) and p. 271 (13)].

Of significance in the expression on the right
hand side of (A19) is the appearance of the factor
(y'+q') ' common to both the regular and irregular
parts of the integral. 'This factor, familiar from
the amplitudes without Coulomb interaction, is
thus not changed by the presence of the Coulomb
interaction. In the amplitudes given in Bef. 3 this
factor is simply replaced by 1/y', since effective
range theory is supposed to be good for small q.
However, this theory is in fact valid for q up to 10
or 20 MeV, in which case q/y is not small. Thus
we actually do not want to restrict ourselves to an
expansion in q/y. Although we use an effective
range formalism, we could in principle use the
phase shift calculation of q cot50. With this per-
spective, we retain the factor (y'+q') ' and leave
y =tan '(q/y} as is, in the evaluation of the integral
on the right hand side of (A19).

Next, in the real part of the expression on the
right hand side of (A19) we have the term
Re[((1+i') —g(1)]. This term has been noted in
connection with other problems involving Coulomb
wave functions. " In the notation of Ref. 3 we have

Re[y(1+i') —y(1)] =[R y(-iq) —inq]

+ in' -g(1)

+ 0.0083'' —0.002@'+ ~ . (A24)

This series was used previously in Ref. 16. For
q»1 (q-0) we have the following asymptotic ex-
pression [Ref. 15, p. 259 (6.3.19)):

Re[((1+iq) —t! (1)]- in' —y(1)+
1

12'

Thus, from (A20),

h(q)- 0 for q -0.

1
12Oq'

(A25)

(A26)

Finally, we consider the integral on the right
hand side of (A19):

g(r!,y)=- (1 e~') —coty, dp,
0

is the Riemann zeta. function. The series (A22}
converges for Iq ~

&2, as may be seen from (A23),
from which we have, for large s,

g(s) -1-1/2 .
Thus for large j, the terms in the sum in (A22)
are approximately -', (-1)'"(q/2)". The numerical
values of t(n) are given with great accuracy in
Ref. 15, Table 23.2, p. 811. The first few terms
of the expansion are

2

Re[/(1+i') —~!t(1)]=,+ 0.202 06q' —0.0369r/4

=h(r!)+in'- g(1). (A20)
-1

=y (1 —e '"~) cot(ys)ds.
0

A number of expansions for this term may be
found in the literature (Ref. 15, Sec. 6.3, pp. 258-
259;Ref. 12, Sec. 1.17; and Ref. 16). Of these, the
series

Expanding both the exponential and the cotangent
in power series, using [Ref. 15, p. V5 (4.3.70)]

22nB s2n 1-
cote =Q (-1)"

Re[((1+i7!)—((l)] =q'Q 1

„g s +|7 (A21)
1 z z' 2z' z'
z 3 45 945 4725

is indeed convergent for all g, but because of the
slowness of the convergence it is not very satis-
factory for numerical evaluation. A series which
is more useful for this purpose may be derived
from it (Ref. 12, p. 45) by expanding the summand
in a power series in q and interchanging the order
of the summation; giving[Ref. 15, p. 259
(6.3.17)]

Re[((1 iri)+—((1)]

,+Q (-1)"[g(2j+1)—1]7!", (A22)
1 + g J 1

where

t'(s) =Q —,, Res &11

n-1 +

(in which the B,„are the Bernoulli numbers, given
in Bef. 12, Sec. 1.13 and Bef. 15, Chap. 23; B0=1,
B,=z, B,=-~, B,=~, . . '. ), we have, after integra-
tion,

r" (-2')' " (-1)" '2" Bp'" 1
a(n, y}= Z, -

p! „~ (2n)! P + 2n

=(2m)(1 - vy'- ~y'-
—2(2') (z —~y —~�-
y+(2') (-, —~y' —~y' — )

+ ~ ~ ~

It should be noted that in fact very few terms of
this expansion are needed, since
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w0&y(—2'

0(2' ~ —=0.15.I
r~

(A28)

where

c(q) = —e~" -$(1)+ln—1 1
yA yR

Substituting (1V) and (22) in (21) we have, from
(A19) and (A20) [and noting from (24) that
2qq = 1/R],

A (q) = cP'w'"d'~
C Cyg

(q cot5, Im g, +q Ref, )ui,'ly'dr
~q eot6, —iq)

(y'+q') [E()7)]'~ (qcot5, —iq)

xe ' )"('U)qcotll, + +y[1+e(g)]I, (A2())h(n)
la

g('0, y) =2') —rl y' —v2 ify'+terms which

a,re negligible for all q. (A31)

Substituting (A30) and (A31) in (A29) we then
have the result given in (2V)-(27d).

—-,')n (+ — -g(g, ) )I. (A30)
y

The expression for g(ri, y) is given in (A27). How-
ever, in view of (A28) we may write
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