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Proton energy distributions and the differential cross section for the reaction *He(y,2p)n for incident
photon energies between 80 and 120 MeV have been calculated. In order to compare with available
experimental data, we consider the situation in which both protons emerge close to a direction
perpendicular to the incident photon beam. It is shown that in that case the dominant contribution is given
by the direct breakup of °He into a free neutron and an interacting singlet p-p pair. The nucleon
momentum distribution in *He used in the calculation is obtained from a phenomenological fit to
momentum distributions observed in quasifree (p,2p) scattering experiments on *He. If the Coulomb
interaction between protons is ignored, the calculated energy distribution agrees, at lower photon energies
(~ 50 MeV), with previous calculations in which the nuclear interaction was included fully in the final
state, but only the dipole electromagnetic operator was included. The Coulomb interaction changes the
shape of the proton energy distribution completely, bringing it and the differential cross section into

agreement with the experimental data.

NUCLEAR REACTIONS Three-nucleon photodisintegration of 3He; intermediate
"energy calculation; Coulomb effects.

I. INTRODUCTION

Proton-proton coincidence measurements in the
three-nucleon photodisintegration of *He have been
carried out by Peridier et al. In these experi-
ments the protons are detected emerging at angles
of 9,=92° and 0,=88° with the direction of the in-
cident photon, all three directions being coplanar.
Incident photon energies range from 80 to 160
MeV. The proton energy distribution d%/
dE dQ,d2, and differential cross section d%./
dQ,dS, have been obtained by these authors (with
E, = 9.5 MeV).

Proton energy distributions for the proton angles
of the experiment of Ref. 1 and for photon energies
up to 50 MeV have been calculated by Gibson and
Lehman.? In their calculation (1) the initial and
final states are exact eigenstates of the three-
nucleon Hamiltonian with Yamaguchi type nucleon-
nucleon potentials; (2) in the electromagnetic in-
teraction only electric dipole terms were included;
and (3) the Coulomb interaction between protons
was not included.

The authors of Ref. 1 have shown, however, that
the shape of their proton energy distribution is re-
produced very well by the Migdal formula® for p-p
final state interaction, which includes the effect of
both the nuclear and Coulomb interactions. On the
other hand, the authors of Ref. 2 have shown that
already for photon energies as low as 50 MeV the
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effect of the »~p interaction is small in the exper-
imental configuration of Ref. 1. (This point is il-
lustrated in Fig. 9 of Ref. 2.)

These points are taken into account in the calcu-
lation of cross sections presented in this note. In
the next section the reaction amplitude and the ap-
proximations utilized in its calculation are dis-
cussed. The nucleon momentum distributions in
the ground state of 3He that enter in the calculation
of the reaction amplitude can be calculated from
available theoretical *He ground state wave func-
tions, as in Ref. 2. However, since the main pur-
pose of the present note is the determination of the
dominant reaction mechanism in the experimental
configuration of Ref. 1, it was felt that more re-
liable conclusions can be obtained if the relevant
nucleon momentum distributions were taken direct-
ly from other experiments. This approach can be
carried out by utilizing the results of quasifree
scattering experiments on *He. Phenomenological
fits to these momentum distributions are derived
in Sec. IIL ‘

In Sec. IV the energy distribution and differential
cross section are calculated and compared with the
results of Ref. 1.

II. REACTION AMPLITUDE
The amplitude for the reaction

y+3He—p+p+n 1)
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is given by

Mmlmzm,,.sm3= ""Cy\llo;n:i) > (2)

where the initial and final states are, respectively,
the ground state of *He and the eigenstate of the
ppr Hamiltonian characterized asymptotically by
three free outgoing nucleons with momenta

D1, Doy D,- Thewm’s are the He and spin components
of the three nucleons, e the photon polarization.

¢, is the photon-proton electric interaction opera-
tor*
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w,l?are the photon energy and momentum, T;, D,
(=1, 2) the proton position and momentum opera-
tors, and M the nucleon mass.

The experiments under consideration here ex-
plore the final state situation in which the two pro-
tons emerge with momenta almost parallel to each
other, and perpendicular to the incident photon
direction. The neutron will then emerge in the
direction opposite to that of the protons. For the
range of photon energies in these experiments it
can then be expected that the effects of the inter-
action between the emerging neutron and the pro-
ton pair are not important. This point was checked
by Gibson and Lehman in their calculations and we
take that assumption to be proven by their results.
The final state in the calculation of the reaction
amplitude (2) can then be taken to be that of the

motion of a free neutron and an interacting proton
J

pair
¥, = i * T [y B) (T 7,/ 2)

x“(ﬁ?z(flz)X'(lz n. (4)

Dy, D2y B, are the nucleon momenta, T,,T,,T, posi-
tion vectors, and uq» (f,,) the two-proton wave
function [q12 s, - pz) the relative momentum and
T,,=T, -T, the relative position of the protons].
The spin eigenstate is ' (12,%), with total spin %,
and the proton spins coupled to singlet.

The Pauli principle requires that only the even

- (=) . :

[u(®,) =u(f,,)] part of ufrlz(flz) be considered in ¥;.
This is automatically taken into account when cal-
culating the reaction amplitude since the initial
state, the ground state of *He, has the form

To=p(12,n)x' (12,2) (5)

with the space part y(12,n) symmetric in the 1,2
variables.

For the evaluation of the reaction amphtude Eq.
(2) with the final state Eq. (4), it is convenient to
express the operator Eq. (3) in terms of c.m. co-
ordinates and their canonically conjugate momenta

§=-§1+-§2+—ﬁn ’
=3B, +B,), (6)
=3(B, - D) -

=3(F, +T,+T,),

> _ > 1 -> > _ 2
p=r, —E(fl+r2); P=3P,

L]

= =
=r, =T,

Then (the € * P term does not contribute to the re-
action amplitude)

3¢, =~ _<37L> ei?-E—ii-zlii{(eii-T/z+e-ii-?/2)[_%(g 3] +(eii-?/z_e—ti-}’/z)(g %)}

M\w

To the extent that terms of order (k-¥)? and higher
can be neglected [ (kK- ¥)?~0.03 at E,=150 MeV],

27 T

5@7—+M<w) e:i-ﬁ-ik%/a[g.ﬁ)_im.f)(g,q)]. )

The second term in Eq. (7) would produce E2 and
M1 transitions between pp pairs in the initial and
final state. These contributions will be neglected
for the present, since the p-p pair is predominant-
ly s wave in the ground state and in this experi-
ment we are restricted to relatively small ¢’s.

The contribution to the reaction amplitude (2) is

then given by
(2" )1/2 f a3p f a% e-:(p+k/3) 5 (")(-)*

(€ * D)y, (F, B)
X (%mly MZ) %mn ,%ms) ’

(8)

M,

lmzm",ems M

r
where §,(T,p) is the space part of the 3He ground
state [Eq. (5)] and the spin part of the amplitude is

<§m1’ %mzy ém'n lém:;): %mu émzl%%’ 00
X<[%1%2 Joos 3701 [313 2 )o» B3 5 10s)
= (o, 1450008, . ()
Since the plane wave exp[;(f+ 3k)- 5] is an eigen-

state of the n-(pp) relative momentum operator B,
the amplitude (8) is

M,

mymom, ,€mg

1/2 -
= ]l%(%) (g T))f dsp fds'r e—i(p+k/3)'p
(= >
xug (F)o(F, B)
X{Emy, 3ma, émn‘%”%) s

or, in a more concise notation,



22 REACTION 3He(y,2p)n AT INTERMEDIATE PHOTON... 9

e(2r\Y2 .
Mmlmzm".sm :.M<U> (€'P)

3
X(n, (pp)o; P+3K,§|°He) . (10)

That is, the reaction amplitude is proportional to
the component of #-(pp) relative momentum in the
polarization direction times the overlap of the
ground state of *He with the neutron in free rela-
tive motion with respect to the interacting proton
pair. This overlap is the probability amplitude for
n~(pp) in the ground state of *He and can be calcu-
lated given the ground state wave function of 3He.
The experimental configuration of Ref. 1 provides
then a probe of the neutron-singlet proton pair
relative momentum distribution in the ground state
of *He. However, before using that probe.as atest
of the theoretical He ground state wave function,
it is desirable to check the validity of the assump-
tions leading to.the expression (10) for the re-
action amplitude. This can be accomplished if in-
stead of calculating the amplitude {z(pp),|*He) from
theoretical wave functions, we use experimentally
measured amplitudes in Eq. (10).

III. NUCLEON MOMENTUM DISTRIBUTION IN 3He

At the present time no direct measurement of the
neutron momentum distribution in 3He, {(n(pp),|*He),
has been carried out. Instead, the momentum dis-
tributions (pd|*He) and (p(pn),|*He) have been ob-
served separately by Frascaria et al.,® in the
quasifree scattering of high energy protons on *He.

Charge independence plus the predominance
(92%) of the fully symmetric component® in the
ground state of *He yield the relation

<"(pp)o|3He> = -\/_Z_@(Pn)olsH@ . (11)

To the extent that charge independence and full
symmetry are valid in 3He, it is then possible to
use the data of Ref. 5 in the calculation of the re-
action amplitude. This is accomplished by means
of a phenomenological fit to the data of Frascaria
et al. The form chosen for the function used in
this fit is based on the following considerations.

The momentum distributions (p(pn),|*He) (s =0, 1)
have the general form

3 - 3 p? 7\

@(pn)sl He> - BPP"—*Z-A;--F]V hs(p7 q) H (12)
with P the relative momentum.of the proton-(pn)
pair, § the relative momentum of the nucleons in
the interacting pair, B,,,=7.72 MeV the three-nu-
cleon binding energy, and

hs(®,q) = pn)s | Vpy + V,,|*He) (13)

the He - p + (pn), vertex amplitude.
The fact, well established both experimentally’

and theoretically,® that the momentum distribution
(p(pn),|°He) is practically zero, compared with
{pd|*He) and (p(pn) | °He), leads us to assume for
the vertex amplitude (13) the form

g (0,0) = g, (D)W, ud) (14)

where u(;) is the continuum pn eigenstate of spin s
and 4 the deuteron eigenstate.

In the approximation provided by the phenomen-
ological form of Eq. (14) the *He ~p + (pn), ampli-
tude is identically zero, a consequence of the or-
thogonality of continuum and ground state two-nu-
cleon triplet states, (%, «y)=0. The function

g(p) is assumed to have the form

g(p)=g(0)1 +p?/B?) ™% (15)

In order to determine the constants g(0), 3, we in-
troduce the momentum distribution given by Egs.
(12), (14), and (15) into the expression for the
quasifree scattering cross section for the reaction®
p(He, 2p)d* and adjust those constants to fit the
experimental cross section. In Fig. 1 we show the
result obtained with the value g(0) =95 MeV fm®?2,
B=0.98 fm~!, The data are from Ref. 5. The same
constants give a good fit to recent quasifree ex-
periments on *He by the Georgetown University
group.®

The momentum distribution to be used in the cal-
culation of the reaction amplitude of Eq. (10) is
then obtained from that just described by use of
Eq. (11). In addition, Coulomb effects are intro-
duced naturally by the form of Eq. (14). Namely,
the overlap between deuteron and singlet nucleon
pair that appears in Eq. (14) will become, for the
(n(pp),/*He) momentum distribution, the overlap
between deuteron and singlet p-p pair wave func-
tions.

In the experimental situation of Ref. 1 the rela-
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FIG. 1. pd* momentum distribution. Data from Fras-
caria et al. (Ref. 5). Curve is phenomenological fit de-
scribed in text.
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tive p-p momentum is restricted to small values.
(Typically, for E,=100 MeV 0 03<g<0.15 fm™1)
The overlap functlonA(q) (u(;, M) can, therefore,
be obtained to sufficient accuracy by use of zero-
range wave functions: If the Coulomb interaction
is ignored, the singlet continuum zero-range func-
tion is given by (we use the incoming spherical
wave boundary condition, as is proper for created
particles)

0 ..a._r. 1 e-iqr

=t
ur=e'+ -
q aptiq 7

) (16)

and the deuteron zero-range (triplet bound state)
wave function by '

= (%)1/2 c @
where

= (MB,,)"?, (18)
B,, being the deuteron binding energy, and

@,=g cotd,. (19)
We then find

PYA g ey (20)

q*+y? a,—iq
When the Coulomb interaction is included we
have

Aq) = GO, uD), (21)

C,q?

where Y is given in Eq. (17) and
#9,(r) =e ™ °(F 4 €085, + G, Sind ) (22)

is the s wave singlet continuum zero-range wave
function including the Coulomb interaction. Here
F, and G, are, respectively, the regular and ir-
regular Coulomb functions having the asymptotic
form

sin(gr + 0, = nln2gr)

Folr)~ ' (23a)
qr
Gyl ~ cos(gr + a(;; 11n2gy) L qreco. (23b)

8, is the nuclear phase shift and o, is the Coulomb
phase shift, given by g,=argI’'(1+in). Here 75 is
the Coulomb parameter

=(¢R)™* (24)

in terms of the proton-proton relative momentum
q, and the Coulomb radius R =7%2/Me?(= 28.9 fm).

The functions F, and G, are defined in terms of
confluent hypergeometric functions by'!

Fo=e” ™20 (L+in)|e'F(1 +in; 2; =2iqr)
:Q + Q*

25
Go=i(@ ~@%) (25)

with
= = ™2 1% Ty (1 4+ 4; 25 =2iq7) . (26)

(We follow the notation of Bateman'? in defining the
irregular solution ¥.)

After carrying out the integration over » in Eq.
(21) (see Appendix) we find

(8777)1/ 2 [Fm)]YHe2 o @+y[1+e@]

A= T /R —agry 20
with

a,(q)=F(n)q cotd,+h (n)/R (27a)
and

(n)=Re[y(1 +in)] - Inn, (27b)

F(n)=21n/(e*™=1) (27c)

is the Coulomb penetration factor and
1 1
el TR ez'”’[C + ln);{- sIn(l+¢2/y?) = 2ny+ nPy?
+£ny%+ terms which are negligible

for all values of q] (274d)

with y =tan*(g/y). (C = Euler’s constant= — (1)
=0.5772 ...). [ Details of the derivation of Eq. (27)
are given in the Appendix.] Note that if we let
e®~ 0 then the Coulomb radius R—-<«, p-0, and
A_(g) of Eq. (217) goes to A(g) of Eq. (20).

We also note that for ¢/y<<1 (in which case our
amplitudes are independent of the model for the
®He ground state) our expressions for A(g) and
A, (@ [Egs. (20) and (27)] are of the form

const
A(q)—ao_iq, (28)
const[F (n)]*/2
a.(@ =r(n)/R —iqgF ()’

which lead to cross sections of the form predicted
some time ago by Migdal.®

In the calculation of cross sections, the effective
range expansion®® w(g)=-1/a+3rF#+..., was
used for the functions a (q), o, (9.

Ac @=

(29)

IV. CROSS SECTIONS

The cross section for the reaction *He(y, 2p)n is
given by

%o /dE dQ,dQ,
= (2m)"° Z 2 ZI A— DMZ,
mlm

(30)

where D =|2p, - (K —D,)* p,| /M. With the reaction
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amplitude in the approximation given by Eq. (10)
and application of Egs. (11), (13), and (15), one
obtains, after performing sums and averages over
spins and polarization,

2
A% /E S04, = (21)™* ;—C
(p,5ing, + p,sing,)?
X 4 1 (k 2
w [1 *o\2 —plcosel—pzcos%)]
2
x|g (B +E DA @ 2L, (31)

D

A test of the approximations used in obtaining
Eq. (31) can be made by calculating the cross sec-
tion for the kinematical conditions used by Gibson
and Lehman? and comparing the cross section
given by Eq. (31) with their results. For this pur-
pose we use the form of A(g) given by Eq. (20) but
employ in it the x-n effective range parameters
used in Ref. 2, viz., q,,=-17.0 fm, »,=2.84 fm.
The results of Gibson and Lehman for E, =50 MeV
and the results obtained from Eq. (31) are shown
in Fig. 2. The difference between the magnitudes
of these results is a consequence of the different
amounts of higher momentum components in Tab-

T I

4| ———GIBSON & LEHMAN, REF. 2 -
—— PRESENT CALCULATION
(WITHOUT COULOMB)

E)’ =50 MeV

d%c/dE, dQ,dQ, (ub/MeV sr?)
N
T

OO 5 10 15

E,(MeV)

FIG. 2. dso/dEidQIsz as a function of proton energy
E{. Results using Gibson and Lehman (dashed line) and
using Eq. (20) in Eq. (31) of the present paper (solid
line) (6,=92°, 0,=88).

T T T

T

T
Ey =100 Mev
3He(y, 2p)n 4

0.5

N-N INTERACTION
ONLY 7
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CcouLOMB —
INTERACTIONS

d30/dE, dQ,dQ, (ub/MeV sr2)
T

0.0 1 1 ]
] 10 20 30

E, (MeV)

FIG. 3. d%/dE;d,;dQ, as a function of proton energy
E,. Results with and without Coulomb effects (6;=92°,
0,=88°).

akin’s ground state (used in Ref. 2) and in the fit
used here. Otherwise, both results are quite
similar.

Consideration of Coulomb effects in Eq. (31)
changes the shape of the energy distribution dras-
tically, as illustrated in Fig. 3, where the cross
section at £,=100 MeV obtained without Coulomb
effects [A(g) given by Eq. (20)] and with Coulomb
effects [A, () given by Eq. (27)] are exhibited. It
should be noted that the result obtained here re-
produces the shape given by application of Migdal’s
theory.® This was noted by Peridier et al. That
theory, however, considered the final state dis-
tribution for a general reaction; it specified the
shape of the distribution, but not the overall norm-
alization. In the present calculation the absolute
value of the cross section is determined.

In Fig. 4 we show the result obtained for the
differential cross section

4% /d,d9 ;= f dE,d% /dE d2,d2, . (32)
(Ep29.5 MeV)

The data are from Peridier et al. As shown in Fig.
4, the result obtained for the differential cross
section [Eq. (32)], based on the nucleon momentum
distribution in *He as measured by Frascaria et
al.,® agrees reasonably well with the observed
cross section. As is to be expected, given that
the experimental conditions restrict us to small
values of g, there is little difference between the
cross section values obtained in effective range
and zero-range theory. The calculated values of
the differential cross section are also given'in
Table I. The results obtained when Coulomb ef-
fects are ignored are also shown in Table I. In
that case, in the range of photon energies consid-
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T T T T T T T T
—— EFFECTIVE RANGE a
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FIG. 4. d%/d9dQ, as a function of E,. Experimental
results from Peridier etal. (Ref.1). Curvesare calculated
from momentum distribution shownin Fig. 1. Full curve in-
cludes effective range. Dashed curve is in zero range
(6,=92°, 6,=288°). If the Coulomb interaction is neglect-
ed, the theoretical values for the cross section are
larger by a factor of 3, well outside the experimental
measurements (see Table I).

ered here, the calculated cross section is about
three times the experimental value.

It should be noted that when we calculate the
cross section using, in the final state, the terms

where the proton-neutron interaction and the photo
breakup of virtual deuterons are included, we ob-
tain cross sections that are three to four orders
of magnitude below the results presented here.
From the present calculation we can then conclude
that the combination of high incident photon energy
and proton coincidence detector arrangement per-
mits the selection of that piece of the three~nucleon
final state in which a neutron is moving freely rel-
ative to an interacting proton pair. As Eq. (31)
shows, this type of experiment probes the momen-
tum distribution [(n(pp),|*He)|?. On the other hand,
the same type of experiment, but rearranging the
proton detectors to be on opposite sides of the in-
cident photon beam, would probe essentially the
momentum distribution |{p(pn),|°He)|2. [As we
noted before, the overlap (p(pn),|*He) is practically
zero.] Experimental observation of the p(pn), dis-
tribution is of relevance in connection with the
question of the (°He, pd*) asymptotic normalization
parameter.”
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APPENDIX

In this appendix we derive the expression for
the overlap function including the Coulomb inter-
action A (q), defined in Eq. (21), and given ex-
plicitly in Eq. (27). The regular and irregular
Coulomb functions, F, and G,, which are needed
are defined in Egs. (25) and (26) in terms of con-
fluent hypergeometric functions. We choose in-
stead to write them in terms of the closely re-
lated Whittaker functions, viz.,

TABLE I. Calculated differential cross section.

No Coulomb ? Coulomb?
E, Zero Effective Zero range Effective range
MeV range range My M,y M3 My My M;
100 2.648 2.570 0.8262 0.8272 0.8277 0.7561 0.7571 0.7575
120 1.778 1.735 0.6632 0.6640 -~ 0.6645 0.6169 0.6177 0.6181
140 1.212 1.187 0.4859 0.4865 0.4869 0.4579 0.4585 0.4588

? Effective range parameters from Ref. 2: a,,=—17.0 fm, 7(=2.84 fm.

b Effective range parameters from Ref. 14: a,,=-7.80 fm, r;=2.75 fm. Values given under
the headings My, M,, and M3 refer to expression (27d) in which we use, respectively, the
first four, five, and six terms in the square brackets there.
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Fy= e/ |T(1 41| M_, '12!2;;21(”)

= l e/ 2 (e iog W-g’nyl L 2(-2iq7)
i 2q7
_ omitg Wina 2(2iq1’))
2qr
=e™/2Im (e""o Weinaa\=2197) q2£—21q7)> s (A1)

G.=e™/2 <ei°0 W—;’y,l [2(_2iq”)
° 2qv

+ g-ioo Wina 42(21‘«17))
2qr

= ewn/ZRe <ei°0 W-iy,l [2(—2iq7’)> (AZ)
qr
[Ref. 12, p. 264 (1)-(4)]. Thus, instead of con-
sidering the integrals over F, and G, separately,
obtained when Eq. (22) is substituted in Eq. (21),
we need consider only the one function

; w_, (-2ig7)
- 1 T s
Zpo_eaoe n/2 tnlqlz’r q (A3)
and then take the real and imaginary parts of the
final result since !’ is real.

From the asymptotic form of the Whittaker func-
tion W, , [Ref. 12, p. 264 (4) and p. 278 (1)], we
have

ei(qrmo-nanqr)
¢o~—(]7__’ qy—= . v(A4)
The asymptotic forms for F, and G,, given in
(23a) and (23b), follow directly from (A4) on tak-
ing the real and imaginary parts of i,, as they
should.

From (A1)-(A3), (17), and (22), we see that

the integral required in (21) is

I= f eW_;, 1, =2iqv)dr . (A5)
(¢]

To transform this integral to a form suitable for
our calculations we use the integral representation
for the Whittaker function in (A5) [Ref. 12, p. 264
(4) and p. 256 (3)],

~2igy e

W—in,uz(—Ziqf’):m
w0ei®
x{ e?iartpin(q 4 f)Tingy (A6)
where 0< ¢ <.

Substituting (A6) in (A5) and interchanging orders
of integration we have, after integration over 7,

o_2iq e“’( ¢ )”’ dt
T(1+in) 1+t) [y-iq(1+2H)F°

Making the substitution of variable

g=t_
1+¢

we obtain

B _2lq 1 ziﬂdz
I= r(1+in) -[ [(v=iq) = (v+iq)zF"
Writing
1
[(v-iq) - (v+iq)zF

1 d( 1 1 )
(v+ig)dz \(v—iq) - (v+ig)z” (v =iq)

1 d( z
“(y-iq)dz (y—z’q)-(’V"'mE),

we integrate by parts, giving

e 1
T(1+in)(y—iq)
1 zi"dz
x (1-2an(; m) (47

Making the further change of variable,

- s
z=(y .q>s=e2“’s,
y+iq

where
y:tan'l%, : (A8)

we have

fl z‘.ndz 1 2 ny
3 T = —< €
b (y=iq) = (v+iq)z (v+iq)
2, in,
% j‘os ds (A9)
(V]

1-s’

where
zo= 2",

Fcr the integral on the right hand side of (A9) we
separate the pole in the integrand at s=1 from
the more complicated part of the integrand by
writing

% gin % ds f‘os""—l
f,, 1_sds‘fo i_st) T-s%

= zo_d.s_.+ 1sir'_-lds
h 1-=s J, 1-=s

1 oin_
—j:s 1ds.
o l1-s

Of the three integrals here, the first may be eval-
uated directly:

% ds
_[ 1_S=—1n(1—zo),

(A10)

larg(l - z,) | <7.
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Furthermore, using 1’Hépital’s rule and noting that ¥(z) = T’(z)/
T'(z). In the last integral in (A10) we note that both
limits of integration are on the unit circle. We

—9% i g) therefore make the change of variable
= q 271 3 s=e*t .
[1 +<;) ] and obtain

1-2z,=1-¢€*"=_2{e'"siny

A8). Th tgin_ (1 = e2m™)ei*
from (A8). Thus s-1 4o f (1-e™™)e du. (A13)
o ds _im 29\ . 1 g\ o 1= 0 sty
b 1-— S=—2-—zy - 1n<7>+51n [1+(;>] : (A11) The integral on the right hand side of this equa-

tion has the great advantage that real and imag-
inary parts may be separated straightforwardly,
and the imaginary part evaluated in closed form:

lgin_1q . fl sinds j-l ds ) - .
=1 - ¥ — T2y ,ik
fo 1-s ds i’nol( b (l_s 1=e o (1 _s)l'e f _(}__e____z.e_du
0

sinu

The second integral in (A10) is most simply ob-
tained as a limit:

- lim (r(l +inT(e 1 ) y ,
o\ I'(1+in+e) € =if (1=-e2™)du+ f (1 -e2™)cotudu
0 (1]
. , (A14)
T(1+imT(1+¢) i - Y
R e =—(2 _1+e2ny+f 1- 2 N tudu .
i | _Er 0] 217( ny ) O (1-e*™)cotudu
ot N From (A5), (A7), and (A9)-(A14) we then have,
=P(1) = Pp(1+14in) (A12) after observing that a number of terms cancel,
]
f”e'"W (=2ig)dr == (y+2mg 2™ L y(144m) ¢(1)+1n(3’l> inf1+(2Y
b sin1/2 4 TA+m P+ V<M T2 2 M= 7 Y
y
- f (1—e'2”“)cotudu}). (A15)
0

Anticipating the desired separation of real and imaginary parts, we note that [Ref. 15, p. 259 (6.3.13)]

1 wcoshm

Imy(1+4n)=- 373 S

Thus, collecting the imaginary terms in the square brackets in (A15) we have
—-im i . & 2m
3 +2n+zImzp(1+m)—2n (62”_1>. ‘ (A16)

The factor appearing here, 2m/(e?""—1), defined as F(n) in (27c), also arises in the overall normaliza-
tion: From (A3) and (A5) we have

© _myr s Tn/2
f - ¢o1’2d7=—1— e%e™/2] = L(1+dn) ¢ (A17)
0

¥ q q DI
and here we have

efrrl/2 B 27"] -1/2_ 1
|F(1+in)|"(em_1> T[F() P2 (A18)

From (A5) and (A15)-(A18) we thus have

“err 2 .[F(TI)]UZ 2,y
J(; " Yo¥2dr =1 2 +q9) e

FT (s +2’7€2"”{1n(-2§) ~tm1 +(2) ]+ relitvin) - s

- .L'y(l—e""”“)cotudu}). (A19)
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The separation into real and imaginary parts is
now complete. As a check we note that the imag-
inary term on the right hand side of (A19)is indeed
the known integral over the regular Coulomb func-
tion [ Ref. 12, p. 270 (6) and p. 271 (13)].

Of significance in the expression on the right
hand side of (A19) is the appearance of the factor.
(»®*+4¢%)* common to both the regular and irregular
parts of the integral. This factor, familiar from
the amplitudes without Coulomb interaction, is
thus not changed by the presence of the Coulomb
interaction. In the amplitudes given in Ref. 3 this
factor is simply replaced by 1/y2, since effective
range theory is supposed to be good for small q.
However, this theory is in fact valid for ¢ up to 10
or 20 MeV, in which case ¢/y is not small. Thus
we actually do not want to restrict ourselves to an
expansion in ¢/y. Although we use an effective
range formalism, we could in principle use the
phase shift calculation of g cotd,. With this per-
spective, we retain the factor (y?+¢?)™ and leave
y =tan"(g/y) as is, in the evaluation of the integral
on the right hand side of (A19).

Next, in the real part of the expression on the
right hand side of (A19) we have the term
Re[¢(1 +in) = ¥(1)]. This term has been noted in
connection with other problems involving Coulomb
wave functions.!® In the notation of Ref. 3 we have

Re[y(1 +n) = y(1)] =[Rey(~in) ~ Inn]
+1nm —y(1)
=h(n) +1nn - P(1). (A20)

A ﬁumber of expansions for this term may be
found in the literature (Ref. 15, Sec. 6.3, pp. 258~
259;Ref. 12, Sec. 1.17; and Ref.16). Of these, the
series
< 1
Ref{ ¥(1 1) = 2
[9(1 +in) = p(1)] =72 D B (A21)

is indeed convergent for all 1, but because of the
slowness of the convergence it is not very satis-
factory for numerical evaluation. A series which
is more useful for this purpose may be derived
from it (Ref. 12, p. 45) by expanding the summand
in a power series in 77 and interchanging the order
of the summation; giving [Ref. 15, p. 259

(6.3.17)]

Re[ (1 +in) = p(1)]

2 0
=42 (e +1) -1, (A22)
+1° 53
where
c(s)=z:;1;, Res>1 (A23)
n=1

is the Riemann zeta function. The series (A22)
converges for |n|<2, as may be seen from (A23),
from which we have, for large s,

s)=1~1/2%.
Thus for large j, the terms in the sum in (A22)
are approximately 3(-1)"*!(n/2)¥. The numerical
values of ¢(n) are given with great accuracy in
Ref. 15, Table 23.2, p. 811. The first few terms
of the expansion are

Re[9(1 +in) = (1)) = To7% *0:202 067° - 0.03697"

+0.00831° - 0,0027% +. . . . (A24)

This series was used previously in Ref. 16. For
1>>1 (g~ 0) we have the following asymptotic ex-
pression [Ref. 15, p. 259 (6.3.19)]:

Re[y(1 +in) — % (1)] ~ Inn - VO + 5

) .
+W + (A25)
Thus, from (A20),

r(m)~0 forg-0, (A26)

Finally, we consider the integral on the right
hand side of (A19):

'y
gln,y)= f (1 —e™®) cotpdpu
0

-1
=y f (1 -e2m%) cot(ys)ds.
0

Expanding both the exponential and the cotangent
in power series, using [Ref. 15, p. 75 (4.3.70)]

2n
cotz_Z( 1) n27By ™ ?2 ')Z'

23 228 27

z
37457945 " 4725

(lz]<m)

(in which the B,, are the Bernoulli numbers, given
in Ref. 12, Sec. 1.13 and Ref. 15, Chap. 23; B,=1,
B,=%, B,=—%, Bs=4,...), we have, after integra-
tion,

g, 9)=- Z(‘ZW 2;('1)"22"13&&_ 1

p! (2n)! p+2n
=@my)(1 = § 2= g y*—- )
-202m)*G - By = dyi-- )
+5@M)°G - fy® = o yi- )
Foeee, (A27)

It should be noted that in fact very few terms of
this expansion are needed, since
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T
0 sy <§',
(A28)

1
0<2ny <=5 =0.15.

Substituting (17) and (22) in (21) we have, from
(A19) and (A20) [and noting from (24) that
277([ = I/R] N .

Alg)= f LS a%y

4 o
:ml—l;a-)- f (q Cotéo Im Z,[)o +q Rell)o)u(ol)rzdr
o= (4
@my)t/2 1 1

T 0%+¢?) [F]'? (g cotd, - iq)

x{ez‘” [F('n)q cotd, +Zl7(§~)] +1+€ (4)]} , (A29)

where

e(q) =71R_ e"””’{—w(l) +1n(;1§)

~iIn [1 +(%)2]—g(n,y)}. (A30)

‘The expression for g(n,y) is given in (A27). How-

ever, in view of (A28) we may write
g(n,y)=2ny - %2~ 2 m®+terms which
are negligible for all q. (A31)

Substituting (A30) and (A31) in (A29) we then
have the result given in (27)-(27d).
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