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Single nucleon knockout in heavy-ion collisions at high energy
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A distorted-wave impulse approximation formalism is developed for the knockout contribution in high

energy (& 100 MeV/A) heavy-ion collisions. Computed inclusive proton spectra based on this model, which

require only the nuclear densities, nucleon-nucleon scattering amplitude, and proton optical potential as

input quantities, agree well in magnitude and shape with the available measured spectra in the forward

directions.

NUCLEAR REACTIONS DWIA formalism for the single nucleon knockout in
high energy heavy-ion collisions.

I. INTRODUCTION

By now sufficient experimental data exist on
the inclusive proton and pion reactions induced
by high energy heavy-ion collisions. ' These
reactions are described by the double differential
cross section, with respect to energy and angle
of proton (pion), and summed over all other par-
ticles. Theoretically, these spectra are found
to be consistent with the fireball" description
of the heavy-ion collision. However, since this
model assumes the thermalization of the partici-
pating nucleons in a time interval of the order of.
10 sec for the fast moving ions, the literal in-
terpretation of the model is open to question.
Microscopic calculations are also done. Speci-
fically, the recent one by Hufner and Knoll4 is of
interest. Here, in the spirit of high energy ap-
proximation, the ion-ion collision is described
as a one-dimensional cascade of a row of nu-
cleons in one ion on a row of nucleons in the
other ion. This model reproduces the data very
well. The authors of this model also attempt to
answer the question regarding the extent of ther-
malization achieved in these reactions. General
findings seem to suggest that beyond 400 MeV/A
there is no thermalization, while around 250
MeV/A the answer is not clear cut. On the other

extreme of thermalization is the possibility of a
complete nonequilibrium process of single step
knockout of nucleons. This process, in fact, is
found to be dominant in proton-nucleus scattering
beyond 100 MeV (Ref. 5) and reasonable in ac-
counting for the inclusive proton and pion spectra
in the scattering of light ions (P, d, o, etc.) on
nuclei. 6 In the heavy-ion interactions the con-
tribution of the knockout process has been cal-
culated by Kooninv and is found to agree well with
the experiments. However, in this estimate,
either an undetermined parameter (N») is intro-
duced which is determined by normalizing the
calculated cross section to the measured one, or
a nuclear density with extraordinary rich high
momentum components is employed. This work
also assumes, implicitly, that the contribution
to knockout comes from the whole nuclear
volume. This seems a little unphysical as the
direct reactions are expected to be peripheral.
In the present paper we develop the distorted
wave impulse approximation (DWIA) formalism
for the proton inclusive spectra for heavy-ion
collisions. This formalism takes care of the
attenuation of the incoming and outgoing particles
and also predicts the absolute cross sections.
The formalism is presented in Sec. II and the re-
sults, in Sec. III.

II. FORMALSIM

Consider first that the proton is knocked out from the projectile. (See Fig. 1). The matrix element for
this in the distorted wave Born approximation (DWBA) may be written as

A

Tg;=&'" X=, &c ~'t r@', .X= rt &«r @'0' r C'0 c rt X'- R
lf]

where the notations P, 7, and C stand, respectively, for projectile, target, and core of (A~-1) nucleons,
and $ stands collectively for internal coordinates. The 4 are the intrinsic nuclear wave functions in the
state n and 0 denotes the ground state. X„is the relative wave function of the target and projectile in the
incident channel, y= that of target and the core nucleus in the exit channel, and X.„"that of outgoing proton
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with respect to the core. In the distorted wave approximation, these wave functions can be described by
the appropriate optical potential. Since in the inclusive proton spectra nothing but the momentum k~ of
the proton is observed, the inclusive cross section is obtained by summing the squared T matrix (1) over
ky, g, and y. Integration over k& gives

r
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dkr[vei[' df=dlc (@z(( )e,'(( )xz(ri) Zvp(")Pz'(( )Pz'((, ri)x'; (R)

Since we are interested in high energy collisions, we will use a high energy approximation for the dis-
torted waves y. Ignoring the corrections of order a (=I/Ap) and its powers, the k& integrated [T ~2 may
be written as
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where

Fe„(ke,Rc)= (@ ((rz)4 (( )X.„(ri)g vi &(r) Pz (( )ef((, r )ei'"i '&) .

In writing Eqs. (2) and (3), considering the smallness of a, it is assumed that

X'- (R) =X-' (Inc+ a r&) =s""'"'X'- (Itc)
kf

I' ik»X'. (R ) =e' &' c exp[ — V(Rc)dz'),
k» I, 2E»

where V is the average optical potential. Using again the impulse approximation and the limit of large A,
the optical potential is written as

V(R}= -'e„„(iev)dvdr f d R'pv(R-R')p (R'),
f

where v is the ratio of the real to imaginary part of the nucleon-nucleon forward scattering amplitude.
T(b) is the thickness function defined as

+R(b

V(5)= dvdr de fdR'pv(R-R')p (R') .
wOO

The description of distorted waves by (4) assumes the dominance of forward scattering in N Ncollisi-on,
which should be reasonable at high energy. Now summing over P and y,

)AT 2

d&r"4 Xf ('~) ~ &~~(r) 4'0(&.)C'o(&. r()e"""~ (6)

This expression, as we see, includes the effect of v in first order only. Its effect in all orders can be
easily included by introducing proton-nucleon scattering matrix in place of v. In addition, using the linear
energy approximation, we get

Z ~+a,(k), Itc) ~'= &&rd&c X,=(rt) 4'(q')&(x(-H -r&)@0(fr)@0(4,r()s'"""
By

AT . '2T
~(»' —H —r~) ~0'(&.)~((&c ri)""~'i

Here t (q ) is the averaged proton-nucleon t ma-
trix, defined as

I

where

k (ri) =Oak~)'+[k'(riH')'"

2 1/2
k (r() = kp2+ 2 U(k, r)) (10)

A

q (r() =k„(r,)k, —k~k~, (9)

with (N, Z, A) as the neutron, proton, and mass
number of the target. t„„(q~)is the nucleon-nu-
cleon scattering amplitude at the momentum trans-
fer q~. This momentum transfer is approximated
as

Here k~(r&) is the average local momentum of the
proton in the projectile at the point r& and may be
written in terms of density. U is the real part of
the optical potential of outgoing proton at energy
E~ due to the core. In writing (9), we have modi-
fied only the magnitude of the momenta k» and kp
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that, in principle, this scattering matrix is off
shell. In any case, the choice of this energy need
not be critical due to little variation in nucleon-
nucleon cross section above 200 MeV. This en-
ergy may be taken as the incident energy itself.

To simplify Eq. ( f) further, we define the nu-
cleon density distribution (or one particle density
function) and the two particle density function in
the usual way:

FIG. 1. Vector diagram.
p(x) = —(0 g(x —x, ) 0),

Their directions are assumed to remain unchanged.
This might not be justified at the low energy end
of the proton spectrum. Regarding the energy at
which t» is to be evaluated, it may be mentioned

C(x)=x , '0 I It(x —;)il(x'—xt) 0) . (11)
, i&j

Then

2 Ixr, ( r 0 )I'=,f drtP, (rt+Rp)P (rt)X, (r, )X',-("t) lt
ay

+ 4„(t) —1)ff dr dr'c(rt+ R, r(+ Rp)c (rt, t)x.'(rt)x. '( t)x'- (rt)xr (rt)
p kp kp p

If we retain only the one body term,

Xe(dkg (r(-r()
~

t P(Z ~P)t P+(E ~P)
~

dr~»(r(+ It )p~(r~»-*(r~»i (r()
I
"(E.&'«() I' ~

By kp &p

This expression is quite compact and simple to evaluate numerically. Distorted waves X can be calculated
with the standard techniques of distorted wave theory. Alternatively, one can also use the approximation
Eq. (4) used for incident wave. With this approximation,

E lpr, (rr. L)(' d, f dr p, (r=, +R.)p, (r, )r "«"""'""~(r(R„d(r, )~',
ay

where T~(s) is the thickness function analogous to Eq. (5) for outgoing proton,

(14)

T~ (s) = (A~ —1) dz pc(s, z) .
wOO

Finally, then, in one body approximation,

Qfdxr(rr (' ad f d(T r" '="'""fdrr r" r"'""p'(r + )p t(rR)(i (R„,d )('.
ar

(16)

The first exponential in this expression describes
the attenuation of the incoming ion and the second
exponential of the outgoing nucleon. 'Owing to
these absorption terms, the knockout reaction takes
place only on the peripheries of the two nuclei.
In Eq. (16) we also notice that the nucleon-nucleon
scattering amplitude which is responsible for the
knockout event appears inside the integral. It
can be factored out from the integral if we can
employ some kind of average over the nucleon

momenta. However, due to the peripheral nature
of the reaction, this average should be taken over
the momenta of only those nucleons which are on
the surface of nuclei. Due to this peripheral
nature, the averaged scattering matrix might not
even turn out very different from that obtained
by ignoring the Fermi momenta altogether, ex-
cept around the low energy end of the proton
spectrum. The factorized expression for the pro-
ton inclusive cross section from the projectile is
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(17)

The factor (Z/A), which represents charge to
mass ratio, is introduced in Eq. (17) to account

c
8 o' .Zp

o'p»(&» q )Ar&.~f
P

where

dR e '~~' &' P'b'~'
eff P c

drie '~~' ~ P~ PT rt+Rc PP r

for the fact that only protons are observed.
is the averaged proton-nucleon cross section in
their c.m. corresponding to momentum transfer
q and laboratory energy E„.N, « is interpreted
as the effective number of nucleons in the projec-
tile. The actual number of nucleons AP is re-
duced to N~«because of attenuation and incom-
plete overlap of target and projectile densities.

For the contribution to knockout from the tar-
get, we can write down expressions similar to
Eqs. (16) and (17),

T

dk&~T&&~ =A A f dR e' ' ' ' ' f dr&e 4 e' "
p (r&+R )p (r&)

k g7

x ~t'(&» q'(ri) ~',

dg ZT T To»(F»q )A» eff j

(19)

(20)

with expressions for TT and N,«similar to Eqs.
(15) and (18) with P replaced by T. The momen-
tum transfer q to be used may be approximated

(q'(r, ))=[0 (r,)+k (r)j'' (22)

The total contribution to knockout protons is ob-
tained by summing Eqs. (16) and (19), or (17) and

(20), for projectile and target contributions. In
the factorized approximation, for example, the
summed cross section will be

3do SP P P
&p»(E»~ q )Ar&.ff

P

q (r,)=k (r,) $~(r—,)k„ (21)

where Qr(rq) is the internal momentum of the nu-
cleon in the target. k~(r, ) is defined analogous
to Eq. (10) except that U refers to core of (Ar - 1)
nucleons. Since initially the knocked out nucleon
from the target has only the internal momentum of
the peripheral target nucleons, we may without
much error, use an angle averaged value of q
defined as

spectra at 30' emission on "U nucleus at 250 and
400.MeV/A. For the nuclear densities, we em-
ploy the three parameter Fermi distribution

p(r) =po(1+ zvr /Ao )/[1+ exp(r -Ro)/a].
The parameters for this distribution are taken
from an analysis of electron scattering, assuming
that the charge and mass distributions are pro-
portional. These parameters are listed in Table
I. For the nucleon-nucleon scattering amplitude
we have used the parametrized form

f»»(F- q) = ~»»(E)[o((@+fle "' .
Various parameters are taken from literature
which fit the nucleon-nucleon scattering data, '"
The optical potential required for protons at
various energies are taken from the parametriza-
tion of Brieve and Rook and others. ' With these
parameters supplied, Eqs. (16) and (19) or (23) do
not require any other parameter. The results
corresponding to the unfactorized forms in Eqs.
(16) and (19) are presented (solid lines) in Fig. 2.
The experimental data of Gosse.t et al. ' on He

+ ' ~,„(Z„,q')A, ~.'„. (23)

TABLE I. Nuclear density parameters.

III. RESULTS AND DISCUSSION
Nucleus a (fm) Ro (fm) rms radius (fm)

Since the derivation of expressions for the
knockout cross section in Sec. II incorporates the
multiple scattering effects through forward scat-
tering approximation, it is expected that the results
will be more reliable for the emission of protons
in the forward directions. We have, therefore,
calculated the He, "Ne, Ar induced proton

'He
20Ne

Na
4'Ar

208pb
238U

0.445
0
0
0
0.32
0

0,327
0.571
0.587
0.61
0.54
0.605

1.01
2.80
3.13
3.39
6.40
6.80

1.71
3.03
3.22
3.47
6.49
5.73
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+ '3 U and Ne+ '3 U at 250 and 400 MeV, and that
of Poskanzer on Ar+ U at 400 MeV/A are also
shown- in Fig. 2. It is remarkable that the theo-
retical results reproduce the experimental data
in both magnitude and shape. This suggests that
the proton inclusive spectra in high energy heavy-
ion collisions in the forward hemisphere are
mainly due to single nucleon knockout.

In Fig. 2 we have also shown results for Ne+ U

for the factorized form, Eq. (23). In computing
this we have neglected the Fermi momenta and
computed the o» corresponding to asymptotic
momenta. These results are shown by broken
lines. The shape of these curves are similar to
those of the unfactorized curves, magnitudes are
of course more by about 20%. This means that
the effect of the Fermi momentum of nucleons is
not very significant. This is expected as the
reaction is very much localized on the surface of
two nuclei. To demonstrate this we have plotted
in Fig. 3 the attenuation factor exp[--,'o~r„T(b)]for
Ne+ U at 250 MeV. Similar curves result for
other combinations of target and projectile. In

Ar + U 400 MeV/A

O. l I I I I I

20 60 100 140 1BO 220

Ep( MeV )

FIG. 2. Inclusive proton specb a for various reactions
at 250 and 400 MeV//A. The solid line corresponds to the
unfactorized expression and the broken line to the fac-
torized expression. Experimental points are from Ref.
1.

this figure we have also indicated the points cor-
responding to a summed half value and r,m.s.
radii. This shows that the contribution to the
cross section comes only from densities beyond
the half value radii.

Incidentally, if we neglect the multiple scatter-
ing effects (introduced through the distortion of
the incoming and outgoing particle in the present
forma. liam) completely, we will get the genuine
single scattering approximation. Naively, in
this approximation

~a

P ZT T

dZ dn
= a T J

(24)

Comparison of this expression with Eq. (23) sug-
gests that the multiple scattering essentially in-
troduces two modifications to the "single scatter-
ing approximation" of Eq. (24) ~

(i) The number of nucleons in the projectile or
target are changed to an effective number of nu-

lce osn. N«. This number (N, «) depends upon the
incident energy and the energy of the outgoing
proton. Since the nucleon-nucleon total cross
section decreases with energy becoming approxi-
mately constant beyond around 200 MeV, A,«,
apart from renormalizing the cross section, also
influences the shape of the energy spectrum by
lowering it at lower energies.

(ii) The proton-nucleon cross section o» has
to be averaged only over the momenta of peri-
pheral nucleons, as against the averaging over the
whole nuclear volume in Eq. (24). This effec-
tively reduces the modification due to the Fermi
momentum of nucleons and the Pauli blocking.

In order to get an idea about the value of N,«
and its variation with the incident energy, we
have listed them in Table II for Ne projectile on' Na, ' Pb, and ' U targets at 250, 400, and 800
MeV/4 incident energies. Since N,« is a func-
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TABLE II. Effective number of nucleons.

Reaction E„(MeV/A)
250 400

N*
800

20Ne+ 23Na

20Ne+ 208P

20Ne+ 238U

0.65
0.08
0.08

0.75
0.85
0.94

0.75
0.09
0.09

0.86
0.97
1.07

0.71
0.08
0.08

0.82
0.87
0.96

tion of E~, the listed numbers correspond to the
high energy (-200 MeV) end of the proton spec-
trum. The smallness of these numbers is again
the reflection of strong attenuation.

In conclusion we may state that the contribution
to single nucleon knockout in high energy heavy-
ion collisions comes from the periphery of the
nuclei, more precisely, beyond the half value
radii. Calculated results in DWIA, agree well

with the experiments in forward direction. It
would be interesting to know how many scatterings
(double, triple, etc.) would suffice to fit the data
at all angles. If the findings of this paper are
any indication, not many scatterings should be
required. The work of Hufner and Knoll, for
example, takes care of all scatterings but it does
not tell the contributions of single, double, etc.,
scatterings individually.
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