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Limits on model-independent descriptions of elastic alpha-particle scattering
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Nearly unconstrained parametrizations of local optical-model potentials are used to investigate potential

shapes which best reflect experimental data. The model dependence of optical-model analyses is investigated

by removing as much of the parametrization bias as is practical, so that the analyses are mostly dependent

on the sensitivity of the alpha-nucleus interaction and the precision of the experimental data. It is found

that real- versus imaginary-potential correlations are the dominant limitation on model-independent analyses

using local potentials; correlations decrease the effective sensitivity of the interaction to the interior of the

real potential and are responsible for ambiguous solutions to the problem.

NUCLEAR REACTIONS n-nucleus optical potentials; model-independent para-
metrization. Ti(e, n), E =140 MeV.

I. INTRODUCTION

Relative nuclear-matter radii have been ex-
tracted from phenomenological optical-model anal-
yses of elastic alpha-particle scattering for sev-
eral isotopic sequences. ' The results contain a
bias and an inadequate error analysis because of
the model dependence of the analysis procedures.
In the absence of detailed knowledge of the alpha-
nucleus interaction processes, we must consider
both the real and imaginary potentials to be un-
known, so that the use of any parametrization in-
serts a bias into the analysis of experimental data.
The intention here is to minimize the bias by using
nearly unconstrained parametrizations of local
optical-model potentials to allow the estimation of
realistic errors of extracted radii. Of primary
interest are data sets which do not allow discrete
ambiguities in analyses using Woods-Saxon form
factors because of their increased sensitivity to
the radial shape of the potentials.

The restriction of considering only local optical-
model potentials represents a practical delimita-
tion of the study. This restriction is in conflict
with what is expected to be a realistic optical po-
tential for alpha scattering at intermediate ener-
gies. The energy dependence of the real potential
has been shown to be describable in terms of an
energy-independent nonlocal potential. Iri addi-
tion, contributions from reaction channels can be
both large and nonlocal. For example, Wu et al. '
measured the cross section for alpha-particle
breakup to be greater than 30% of the total reac-
tion cross section (independent of nucleus) for an
incident alpha-particle energy of 160 MeV. The
contribution to the optical potential from alpha-
particle breakup is expected to be nonlocal, in
analogy with the calculation of Johnson and Soper'
for deuteron breakup. While a local potential may

not provide a solution sufficiently close to nature
to be useful for a detailed theoretical study of the
alpha-nucleus interaction, this is not considered a
dominant limitation on the extraction of ~elative
mass-distribution information from such analyses.

To minimize the bias due to a particular choice
of parametrization, the radial dependence of the
potentials is chosen sufficiently unconstrained so
that the analysis is dependent on the sensitivity of
the scattering interaction and the precision of the
experimental data. The sensitivity of the alpha-
nucleus interaction is limited by the presence of
both radial and real- versus imaginary-potential
correlations. Radial correlations (in either the
real or the imaginary potential) are the result of
the nonlinear and nonlocalized relationship be-
tween potential radius and scattering angle; real-
versus imaginary-potential correlations are the
result of the compensatory effects of varying the
magnitude of the scattering and absorbing poten-
tials simultaneously. The study of such correla-
tions aids the understanding of the difficulties as-
sociated with obtaining a model-independent anal-
ysis of experimental data.

The analysis procedures are described in Sec.
II. The results of computer calculations are given
in Sec. III. Section IV contains the conclusions and
suggestions for further study.

II. ANALYSIS PROCEDURES

Two calculational methods have been success-
fully used to remove constraints from the real po-
tential: (1) Put and Paans used cubic spline inter-
polation between radial points, whose magnitudes
were chosen and then varied to obtain the best fit;
(2) Friedman and Batty" added a Fourier-Bessel
expansion to a (fixed) best-fit Woods-Saxon bias
potential. Both spline and polynomial methods
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place constraints on the potentials due to the prac-
tical limit to the number of radial points or poly-
nomials which can be simultaneously varied. How-
ever, because their residual constraints are dif-
ferent, their comparison provides further infor-
mation on the model dependence of the analysis.

An alternate approach is followed here. We gen-
erate a set of orthogonal polynomials capable of
representing the optical potential in a manageable
number of terms without the addition of a bias po-
tential. The polynomials have the orthogonality
requirement
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are the polynomials. The normalization constant
is determined by requiring Xp ——1; the C„& coeffi-
cients are calculated using the Gram-Schmidt
orthogonalization procedure. The choice of any
weighting function continuous over the integration
interval which allows the integral to exist will
guarantee the existence of the polynomials. The
set of polynomials are complete by Weierstrass's
approximation theorem. '

The potential is

&(r) =~(r) ZA. X.(r) .

All of the calculational convenience of working
with orthogonal polynomials is preserved. The
formulas are
(1) potential errors,

where D and P are the number of data points and
varied parameters, respectively, and the o

&

' are
the measured and calculated differential cross
sections and 4 o, are the cross-section errors.
The validity of the error analysis is dependent on
a y /df =-1. In the present calculations, the nu-
merical errors in the calculation of the volume
integral and low radi, al moments are one pari in
10.

The number of terms required is minimized by
choosing weighting functions equal to the form
factors of a best-fit potential. Woods-Saxon-type
form factors are used for convenience; in this
case the nuclear part of the optical potential is

N
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y -y,A'»'t
f(r rp ap) = 1 + exp

ap
(12)

~x'
2 ~A„~Am

is calculated during the minimization procedure
(2) volume integral of the potential,

2

J=4m zo y dy A;B;,
a

4v
~

w(r}dr y /df g B~B,cq,
4, j~p

where the B coefficients are defined by the relation
++2

B]X]y' (&)
4=0

p =1 for Woods-Saxon (WS) polynomials, and p=2
for Woods-Saxon-squared (WS ) polynomials. The
A„' are the varied parameters. Different initial-
value conditions are obtained by changing the
weighting functions and the number of terms in the
expansions and by selected variation of parame-
ters. The y is used as an estimate of quality of
fit. Calculations were carried out using a modifi-
cation of Percy's code J1B3.

III. COMPUTER CALCULATIONS

Data for 140-MeV alpha-particle scattering from
Ti (Ref. 1}is used as an illustrative. example.
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FIG. 1. Elastic scattering data for 140-MeV alpha
particles from Ti, plotted in ratio to Rutherford cross
section versus center-of-mass angle. The curves are
generated by the potentials shown in Fig. 2(a).

Figure 1 contains the data plotted in ratio to Ruth-
erford scattering versus center-of-mass angle.
The curves shown in Fig. 1 are generated by the
best-fit potentials shown in Fig. 2(a): a WS -poly-
nomial potential (with errors) and the WS potential
from Ref. 1 (shown only where it deviates from the
polynomial curves in both figures). Small changes
in both the real and imaginary potentials correct
for the greatest discrepancies between the data and
the WS -generated cross sections. The changes
are predominantly potential shape variations not
possible using WS or WS parametrizations.

The radial dependences of the potential errors
are in approximate agreement with radial sensi-
tivity [Fig. 2(b)j. Figure 2(b) was generated using
a notch test, '4 i.e. , plotting the factor increase in

caused by a Gaussian perturbation as a function
of radius for the real and imaginary potentials
separately. Radial errors are underestimated at
the very small and very large radii where the
sensitivity curve is essentially unity. The range
of validity for the potential plus errors is 1 to 9
fm (real potential) and 3 to 8 fm (imaginary poten-
tial).

The study of parameter correlations is facili-
tated by plotting the difference between computer-
generated curves and the experimental data. Dif-
ferences between the computed cross section of
the polynomial fit and the data or WS -generated
cross sections are given in Fig. 3(a). The same
curves for the notch test are plotted in Fig. 3(b).
There is an extended region of the real potential
which has a significant effect on the. large-angle
behavior; this illustrates radial correlations with-
in a potential part. Correlated changes between
the real and imaginary potentials can keep the be-
havior of the cross section essentially unchanged.
Both of these correlations increase errors beyond
what would be expected from the notch test.

Correlations also cause multiple solutions of
comparable quality. Potential curves and parame-
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FIQ. 2, (a) Comparison of a WS2 polynomial fit to the
best-fit WS potential of Ref. l. (b) Sensitivity curves
generated by adding a notch perturbation (as sketched in
the inset) to the real and imaginary potential separately.

ters of two independent solutions are given in Fig.
4 and Table I, respectively. The predominant dif-
ference is a shift in both real and imaginary poten-
tial strengths in the 4-6 fm region, demonstrating
the effect of the real-imaginary potential correla-
tions. The two solutions are independent in the
sense that there is no straightforward extrapolation
between the minima in p' space. They are pre-
sented using the polynomials generated from the
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FIG. 3. Percent change in the center-of-mass cross
sections with respect to those generated by the WS2-

polynomial potential shown in Fig. 2{a). (a) Comparison
with the experimental data and with the cross sections
generated by the WS2 potential (Ref. 1); (b) effect on &e
cross sections of the notch perturbation for the potential
part and radius indicated.

best-fit WS' potential of Ref. 1 in order to easily
compare potential properties of both polynomial
and WS' potentials. A minor shift in weighting-
function values for the imaginary potential reduce
the X' values to 60 for "solution 1" and 52 for "so-
lution 2." Obviously, the p' minimum is too. strong
a function of the type of parametrization chosen to
rigorously apply statistical methods to choose
among the various solutions.

Optimally unbiased results are obtained by com-
paring results of various potential parametriza-
tions. We investigated the two solutions with the
spline technique, which is not as constrained to
smooth variations over extended radial regions.
In Fig. 5, a spline solution is compared to the two
polynomial fits already presented. This solution
depends on the choice of radial points, but is still
representative of the ambiguities resulting from
correlations. Tests of the independence of the
spline potentials investigated showed that (1) the
spline counterpart of the polynomial solution-1 po-
tential is independent of the spline solution shown
in Fig. 5, and (2} the spline curve of Fig. 5 can be
made to look similar to the polynomial solution-2
potential, but at a &( of 73 compared to 61 (spline

TABLE I. Comparison of potential parameters for
fits to alpha-particle scattering from 5 Ti. Weighting-
function values are &R=1.4363, ~R=1.1825, p =2, &q

=1.5884, and ai =0.6253.

Parameters WS~ polynomial WS2 polynomials
(in MeV) solution 1 solution 2 WS2

AR
0

A 1

A2

AR
3

AR
4

A5R

AR

AR
7

8

AR
9

A~0
R

0

1

AI

A 5

A

125.1 + 4.8
13.5 +5.1
-4.5 +4.7

3.5 + 5.3

11.2 +8.1
15.5 + 16

33.7 + 22

38.9 +28

45.2 +24

28.5 + 15

15.9 + 6.2

19.7 +3.4
1.6 +3.9

-1.3 + 3.2
1.7 + 3.3

-2.4 + 2.6

1.4 +3.4
-2.0 +2.5
-0.5 +2.1

117.9 + 1.6
14.5 +3.1

-12.3 + 2.5

4.7 +3.6
-1.4 + 8.7

-9.8 + 16

-8.3 + 27

-19.5 + 33

-25.8 + 31

-17.2 +19

-11.3 + 7.6

14.8 +1.6
5.2 +1.8

-2.1 +1.4
4.3 + 2.4

2.7 + 2.1

5.3 +4.1
4.1 +2.9
1.8 +2.7

136.0

20.9

gR/4A

(MeV fm3)

b)R
(fm)

(fm)

&r&&~

(fm)

306.6 + 5.9

4.33+ 0.05.

4.63+ 0.07

4.93+ 0.12

286.8 +8.6

4.23+ 0.06

4.48+ 0.09

4.70+ 0.16

301.2

4.242

4.513

4.754

8/4A

(r&, (fm&

(r'&I (fm&

97.5 +4.0
4.90 + 0.0 7

5.13+0.09

89.6 + 2.5
5.16+0.09

5.48 + 0.14

97.6

4.855

5.092

(mb)

x'/df

1562

2.4
1687

1.7 2.2

minimum} and 55 (solution-2 minimum). Because
different parametrizations are not expected to have
identical best-fit X 's for similar potentials, only
two independent solutions have been found.
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FIG. 4. Comparison of a second WS -polynomial po-
tential to the polynomial potential shown in Fig. 2(a).

FIG. 5. Comparison of a best-fit spline potential to
the WS2-polynomial potentials.

The acceptable fits give a great variety of solu-
tions even within one type of solution. The varia-
tions in the real potential for many acceptable so-
lutions are shown in Fig. 6. The variations found
for the three solution-1 potentials make it difficult
to accurately quote a single potential with errors.
However, the best-fit spline, WS polynomial, and
%S polynomial soultion-1 potentials (X between
59 and 70) have variations in the volume integrals
and radial moments in good agreement with the
quoted errors of Table I. Unfortunately, the solu-
tion-1/solution-2 ambiguity makes any statement
of potential errors highly suspect. Similar am-
biguities exist in the analyses of the 6Ti and ' Ti
(Ref. 1) data as well.

The absolute values of the )t and y /df should be
interpreted carefully. The derivation of the X

function assumes uncorrelated errors, which is
not the case. For example, correlated errors
based on the uncertainty in the scattering angle
contributes a 15% uncertainty in the X for the ' Ti
data. In addition, the true number of degrees of
freedom is in doubt because of correlations be-
tween both data point errors and model parame-
ters. Nevertheless, the statistical probability of

obtaining a y /df of 1.7 +0.3 for 33 +5 degrees of
freedom (the "Ti best case) is less than 10/q. This
indicates that the present parametrizations are
statistically inadequate to represent the data, which
is not surprising because of the restriction to the
use of local potentials only.
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FIG. 6. The difference between the real part of several
polynomial and spline potentials and the WS2 potential of
Ref. 1. The sol. 1 or sol. 2 labeling represents their
approximate classification as described in the text. Po-
tentials shown earlier can be identified by a comparison
of y values.
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IV. CONCLUSIONS

We have shown that nearly unconstrained para-
metrizations of local optical-model potentials al-
low potential correlations to dominate the analysis
of th|. experimental data. These correlations make
it difficult to locate a well-defined X minimum.
The closest we can come to a model-independent
description is to state the properties of a collec-
tion of similar best-fit potentials for each inde-
pendent solution found. The unbiased estimate of
the error on the rms radius (for any one solution)
of the real potential, obtained by combining the
average "statistical" errors [given by Eq. (8)] with
the spread of the mean values for the best-fit po-
tentials, is approximately 0.1 fm. However, the
presence of additional, independent solutions
makes the statement of a simple model-indepen-
dent error impossible. Therefore, the extraction
of rms radii from these types of potentials is

. probably not useful for determinations of relative
rms radii of the mass distributions without addi-
tional isotopically unvarying assumptions. This
is dramatically illustrated in Fig. 6: Including all
possible best-fit potentials in the analysis allows
very little information to be obtained.

We have also shown that the dominant mechan-
ism allowing the existence of the many solutions
shown in Fig. 6 is the real- versus imaginary-
potential correlations. Thus, the true range of
possible potentials cannot be determined if an
overly constrained imaginary-potential paramet-
rization is used. In addition, a reasonable X fit
to the data does not necessarily guarantee that
useful mass-distribution information can be ob-
tained from the potential. If it is possible to de-
termine the dominant mechanism for the isotopic
(or other) dependence of the imaginary potentials,
then an isotopically unvarying contribution to the
imaginary potential could be used. The effect on
relative radii of such an (unconstrained) contribu-
tion may be small. This would be a weaker model-
dependent assumption than is currently used.

Freindl et al."have investigated the energy de-
pendence of real- versus imaginary-potential cor-
relations, and have found that the resulting ambi-
quities are much greater for lower incident ener-
gies [E,=40 and 59.1 MeV compared to E =99.5
and 118 MeV for Zr(n~n) Zr]. The low-energy
data were fitted by using low-constraint paramet-
rizations for either the real potential ox the im-
aginary potential. This contrasts with the higher-
energy data where (as shown here) both the real
and imaginary potential must have low-constraint
parametrizations to demonstrate a substantial am-
biguity. Therefore, the probability of an incorrect
imaginary potential causing an artificial bias of
real-potential properties is increased for analyses
of low-energy data.

Model-dependent folding parametrizations may
provide information on relative mass distributions
in spite of the strong correlations present in the
problem. In the 6-8 fm region, where the real
potential is unambiguously determined by the dif-
fraction scattering, effects due to an unknown im-
aginary potential may be sufficiently small to allow
relative mass distributions to be determined. The
model-dependent errors could be estimated.

The contribution to the errors due to. potential
correlations can be reduced by a better determin-
ation of the scattering cross sections at the larger
angles, particularly greater than -50 for the ' Ti
case. This would provide a more stringent test
for the phenomenological potentials, but may not
improve the reliability of the extraction of infor-
mation on relative mass distributions.
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