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We reanalyze the Baer-Kouri-Levin-Tobocman and Faddeev equations for the three-body problem with
pairwise interactions. The approach to the Baer-Kouri-Levin-Tobocman equations is more in the spirit of
the usual Faddeev equations. The detailed operators which appear as "effective interactions" are different
from those appearing in earlier forms of the Faddeev equations. It is shown that the same effective
interactions appear in both the Baer-Kouri-Levin-Tobocman and Faddeev-type equations. The resulting
form of the Baer-Kouri-Levin-Tobocman equations may be more suitable for the approximate treatment of
breakup effects than previous forms of these equations.
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I. INTRODUCTION

Recently there has been considerable progress
in the development of alternatives to the Faddeev
equations' for treating X-body scattering. ' " One
approach which has received attention is the chan-
nel coupling array method due to Baer and Kouri, "
Kouri and I,evin, '6 and Tobocman. The-Baer,
Kouri, Levin, and Tobocman (BELT) equations
emphasize the various arrangements and their
interactions so that the naturally occurring inter-
actions are the ordinary "channel potentials" and
in place of the totally free Green's function, one
encounters partially interacting Qreen's functions
which describe the various asymptotic arrange-
ments. While this may have advantages for cer-
tain considerations (e.g. , in the treatment of chem-
ical rearrangement processes where the interac-
tions are basically known and of electrostatic
origin), it has disadvantages for applications to
nuclear problems and to dissociative processes.
For such problems, it is more convenient to
utilize the totally free Green's function and in-
troduce, by appropriate summing of graphs, ef-
fective interactions which contain the pole struc-
ture arising from collisions of subgroups of par-
ticles. Such a structure has not been introduced
into the (BKLT) equations even for the simplest
three-body problem with pairwise interactions.
In the case of the Faddeev equations, this is in
fact the form of the equations which is most
commonly used and the corresponding effective in-
teractions are t operators describing the colli-
sion of two of the particles while the third acts
simply as a spectator (it can affect the two-body

collision only in the sense that it can possess part
of the energy and momentum present in the three-
body system). In this paper, we address the prob-
lem of deriving an analogous form of the BEET
equations. In the next section, we show that it is
possible to derive a similar form for these equa-
tions for the three-body problem but that the ef-
fective interactions which arise have a more com-
plex (and perhaps interesting) structure than those
appearing in the ordinary Faddeev equations.
Again, we find that the effective interactions have
a straightforward physical interpretation. We al-
so consider the connectivity of the resulting form
of the BELT equations. In addition, we show that
Faddeev-type equations can be derived which also
involve these new effective interactions in place of
the more usual "two-body t operators. " Finally,
in Sec. III, we briefly discuss our results.

II. DERIVATION OF ALTERNATE FORM OF THE
EQUATIONS

We follow the standard notation for the three-
body problem with pairwise interactions. Thus,
we label the arrangement channels-with the index
of the body which is free (the breakup amplitude
will be obtained in the standard fashion as a linear
combination of the partially bound transition am-
plitudes). Then the transition operator for going
from arrangement j (where particle j is free and
i and k are bound) to arrangement i, where parti-
cle i is free and j and 0 are bound, is taken to be

T,~= V, + V;G'V, ,

where G' is
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a'=Ii(E H+&,}, is well known to be" "
X = V2G~V3G3 V,G,'. (14)

H=H,.+ V,.=II~+ 7~= H~+ Vk. (3)

For example, II, is the Hamiltonian describing the
free motion of particle i and bound cluster (jk),
so that V,. is the inter'action of particle i with the
bound cluster. Since we assume pairwise interac-
tions, we have that

V, = V;~+ V,~, (4)

where the V, is the interaction between particles
l and m. To derive a channel permuting form of
the BKI T equations, we begin by noting that the
three-body Schrodinger equation can be written
as1, 2, s, 16

(E —H;}ttl, = V;„g,.„, i =1 to 3,

+ (v„v„+v„v„)(v„+v„), (15)

which is obviously connected. In order to write
Eqs. (11)-(13)in a form more analogous to the
Faddeev equations, we first examine V,G,'. We
note

V21-2 = (V»+ V23}(E-H0 —V»+ 2~ } ~

consider the factor V»(E —H, —V»+i&) '. We
write

v„(E H, v„+2&)-'

(16}

The connectivity is determined solely by the struc-
ture of the product V, V, V, since G,', i=1,2, 3 is
always disconnected. Explicitly, one has

V1V2V3 = (V12 + V12V23)(V13+ V23)

V,.„g,.„=V,g, , for i =3. (5)
=[V„+V„(E H, V„+2,)- V„](E H, +2,)-',

These equations sum up to yield the Schrodinger
equation (in differential form), and their formal
solution is

and then we identify 7'213 by

7„,= V„+V„(E—H0 —V„+i&) 'V„. (18)
@,+ G+2UBKLT y

Here we use an obvious matrix notation and we
note that 4 has zeros in every row except for that
corresponding to the initial arrangement. The
matrix Go is diagonal in arrangement channel
space with elements 5,-&G,-, and

G';= I/(E —H) +it) .
Then the matrix of arrangement channel transi-
tion operators is defined by

We note that by Eqs. (IV)-(18), we also have that

V12(E- H0 —V, +i3&} '= T2»(E —H0+ig) '. (19}

Our notation is designed to indicate that for ~„„
the inhomogeneity will be V,.&

and the final inter-
action will be V». Thus, in general,

W )2= V .+ r )2(E —H0+2q) 'V)2

If we consider the portion of Eq. (16) given by
V23(E —H, —V»+i&) ', we see analogously that

or

~BKL T y (8) V„(E—H —V„+iq) '=7'„,(E —H, +iq) ', (2l)

where

T =u s""T(1+O' T) 231 V23 231( 0 2~ } V13 ' (22)

with

(0 'v, 0)
~BKLT p p V

(v, o o)

In general, we will require V,.G,. in order to write
our Eqs. (11)-(13)in terms of the effective inter-
actions ~,.» and the totally free Green's function
(E —H, +i&) '. We note by Eqs. (3)-(8) and (16)-
(2O}, that

Clearly, taking the initial arrangement to be
labeled one, we have for one column of T the
equations

V G& = V~gG ~+ V~~G»

and therefore

V,G', = 7', ,qGO+ 7,q)GO, (24)

731 1 1 1 ll '

(11)

(12)

(13)

The structure of the iterated kernel becomes con-
nected after two iterations and the iterated kernel

ll ( 213 231} 0 21 o

21 ( 312 321) 0 T31 0

(25)

(26)

where i,j,k take on values 1, 2, or 3 (but i ooj,
i ook, j ook}. Then the BELT equations become
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T31 (~12 13) ( 123 132) 0 11 '

Now we consider the Faddeev-type equations. They
can be derived in several forms and we shall con-
sider two possible ones. The Lovelace form is
gj.ven by'"

It is also of interest to note that Eqs. (31)-(33)can
be used to derive Faddeev-type equations. To do
so, we note that

Gov= got
where

and

Tll ~13GO T21 t12GO T31 &

21 23 ~23 0 ll t12 0 31 &

T31 V23 ~23G0 11 t13 0 21 '

(28}

(28)
g,' = (E —H + iq) ' 1,

1=010
0 D 1J

(44)

(46)

However, we can obtain an alternate form in a
fashion similar to that used in obtaining Eqs. (11)-
(13). The ordinary three-body Schrodinger equa-
tion can be written as

(31)

(32)

(33)

and

f23 ~23

~„o)
Then Eq. (35) can be written as

(46)

It is again readily verified that these equations
sum up to yield the ordinary Schrodinger equation.
The formal solution of Eqs. (31)-(33) is

g=g+g0tg, (4 I)

and we define the full three-body T matrices by
the relation

0 V(l) V(l)

y+ G+ y(2) 0 y(2&

V(3) V (3) P

-=I+Go'Ut~

(34)

tp=TQ.

Use of Eqs. (47) and (48) then leads to

TP = t P+ t g0' TP,
or

(48)

(48)

where P and G; are the same as in Eq. (6). Then
T is again defined by

T (f&='0$, (36)

so that

T ='U+'UG0T. (36)

Then the resulting coupled equations for the T,,
are

and

T, = V'"G'T, + V" G'T

T21 V13+ V G] Tll + V G3

T31 V12 + V Gl Tll + V G2 T21 '

(37)

(38)

(38)

However, by our previous analysis, these can be
written in terms of the ~,.»G0' as

and

ll 231 0 21 321 0 31 &

21 13 132 0 ll 321 0 31 &

(40)

(41)

T31 V12 123GO ll 213 0 21 '

These equations may then be compared with the
BELT equations written in the form Eqs. (25)-(27).

T=t+t g0T, (60)

which is an alternate form of the Faddeev equations
(see e.g. , the discussion in Ref. 20). The T ma-
trices in Eqs. (50) and (40)-(42) are essentially
related in a similar fashion as are the "post" and
"prior" definitions of rearrangement T opera-
tors. Thus, as is well known, there is an infinity
of definitions of rearrangement T operators, all of
which agree only in their physical (on-shell) ma-
trix elements. One may also apply a similar
analysis to the BELT version of Fq. (34). In that
case, however, not only does one encounter the t, ,
[which constitute the elements of the t matrix in
Eq. (46) j but also the w,.» still appear. This is then
an interesting distinction between the Faddeev-type
sequence of arrangement channel coupling and that
used by BELT. The Faddeev sequence of coupling
is such that one either encounters equations in-
volving Only the g, , or the w, ,~ as the effective in-
teractions. The BKLT sequence leads either to
equations involving only the T,-» effective interac-
tions or a mixture of the ~,.» and t,.&

effective in-
teractions. The two types of BELT equations have
been discussed previously" but only in the form
which involves ordinary potentials V,.&. In that
case, the potential matrix occurring in one form
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The kernel of this equation is

213+ 231}G0( 312 321}G0( 123 132}GO

(V12 V23 213 231) 0(V13+ V23 312 $21)

(53)

(54)0 ( V12 13 123 132} 0 I

where f,.» is the three-body portion of v',.». Now

any product containing at least one of the v, » will
be connected since multiplying by additional inter-
actions cannot disconnect something which is con-
nected. Therefore, the connectivity of Eq. (34} is
determined solely by the factors(V»+ V»)(V»+V»)
x (V»+ V»), and comparison with Eqs. (14)-(15}
shows that this is also connected. Therefore,
summing the graphs in writing V,.G',. in terms of
the ~,» does not alter the connectivity structure
of the BELT equations. It is, further, quite in-
teresting that the effective interactions v,.» satisfy
equations which themselves possess only connected
graphs after iteration. The equation satisfied by
the r,», Eq. (20), is very similar to that satisfied
by the effective interactions in the Faddeev equa-
tions written in the form of Eqs. (28)-(30). There,
one encounters

is the transpose of that occurring in the other. %'e

now turn to a brief consideration of connectivity.
In order to do so, it is convenient to examine the
structure of the effective interactions ~,.». By
Eq. (20); upon iteration,

7', ,= V,,+ V„G,'V, + V, ,G;V„G,'V„+ ~ ~ ~, (51)

and it is obvious that, except for the leading term
V,.&, &,» has the structure of an effective three-
body interaction. Therefore, it follows from Eq.
(20) that &,,2(E —H0+iq) 'Vq3= 7, ,3 —'V;~ is an ef-
fective three body -interaction. Now, if we back
substitute Eqs. (26)-(27) into Eq. (25), we obtain
for Tyy the equation

11 ( 213 231}GO( $12 321}G0

I.( 12 13} ( 123 132}G0T111

= V,q+ V, q(E —.H0 —Vq2+ie) 'Vq3. (57)

Then using the fact that

(E —H0 —V)„+iq) 'Vq3= (E—H0+ig) 't)„, (55)

the form of Eqs. (40)-(42). It is seen that in both
sets of equations, the partially interacting Green's
functions are replaced by the totally free Green's
function 60. From the standpoint of applications to
nuclear rearrangements, this is an advantage be-
cause the breakup arrangement is then more easily
taken into account. Furthermore, both the BELT
equations and the. Faddeev-type equations involve
the new effective potentials 7,.». These operators
can be interpreted as describing the scattering of
particle i by particle j bound to (or interacting
with) particle h. Similarly, r,.„~ describes the
particle i colliding with h which is bound to (or
dissociated from but interacting with) particle j.
However, particle i interacts only indirectly with
k in 7 „,and with j in ~,.». Our notation has been
chosen to reflect this property of the &,.». The
first two indices i, j indicate that the free particle
i interacts with j which has first interacted with
particle k. Similarly then, 7,.„.reflects the inter-
action of i with k after k has interacted with j. The
fact that particle j in 7',.» also feels the presence
of k in addition to i results in &,»- V,, being ef-
fectively a three-body "interaction. " As a result,
7,.»- V,.

&
involves only connected graphs when

iterated. Unlike the T,,, which satisfy connected
kernel equations only by virtue of the cyclic coup-
ling of the various arrangement channels, ""the
~,.» satisfy uncoupled connected equations which
are amenable to calculations using, e.g. , the
homogeneous integral solution method developed
by Sams and Kouri. 22 It would be of interest to
carry out calculations of 7,.» in order to see how
it behaves. However, we can gain additional in-
sight by rewriting Eq. (20) as

'r1y2= V y(1 —GoV&2)
'

t,.)= V,.)+t,q(E —H0+iq) 'V,.q, (55)
we obtain

where i, j range over the particles and i tj. Of
course, in this case, particle k is purely a spec-
tator except for the fact that it takes part of the
energy and momentum, but cannot transfer any
to particles i and j. Thus, t, &

is a disconnected
operator even after subtracting out V,.&. By con-
trast, as noted above, ~,,~ becomes an effective
three-body operator and is therefore completely
connected after V,~

is subtracted out. %e shall
discuss this in more detail in the next section.

III. DISCUSSION

The resulting equations (25)-(27) are quite simi-
lar to those of Faddeev when the latter are taken in

&]»- V g+ Vgjao~gn ~ (59)

Equations (57) and (59) are formal solutions rather
than integral equations for the ~,.» operator. The
latter is particularly revealing and shows that
&,.» describes the collision of j and k via the
standard effective two-body interaction (with i as
a pure spectator) followed by free propagation and
finally a simple impulsive interaction between
particles i and j. In the forms Eqs. (57) and (59)
it is again quite clear that V gcotyy 7» V

g
is

connected and is a sort of effective three-body in-
teraction.

It is also worth noting that the computational ef-
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Tss (V,s+ Vss}Go Tsi ~

T„—(V„+V„)+(U„+V„)GoT„.
(61)

(62)

This is compared to the Born approximation to
Faddeev's equations [in the form Eqs. (40)-(42)],

11 23 0 21 23 0 31 & (63)

fort involved in calculating the v, ,, will be greater
than that required to calculate the t». Indeed, Eq.
(59) shows that the r,.» contain the t» as effective
interactions. Therefore, the effort involved in
using Eqs. (25)-(27) will be greater than that for
the Faddeev-Lovelace equations, Eqs. (28)-(30).
The main point is that if one has reason to feel
that the arrangement channel coupling sequence
of the BELT equations is more appropriate than
that of Eqs. (28}-(30), and the process involves
breakup, one should use the form Eqs. (25)-(27)
rather than Eqs. (11)-(13).

Now we remark that using the Born approxima-
tion to the r, ,, in Eqs. (25)-(27) leads to

Tii = (Vis+ Vss}Go Tsi (60)

21 13 13 0 11 13 0 31 y (64)

31 12 12 0 11 12 0 21 ' (65)
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These expressions ought to apply at sufficiently
high energies. It will be interesting to compare
these alternate approximate equations.

Finally, we remark that whether one writes
BELT equations in the form of Eqs. (13)-(15}or
(25)-(27) has no effect so far as the occurrence of
spurious solutions. Such spurious solutions will
occur in general for the BKLT equations as has
been discussed in detail by Vanzani, "Chandler, '4

Adhikari and Glockle, "and Kowalski. "
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