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Comment on an alternative to the resonating group method
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This comment refers to a recent work by Raphael, Tandy, and Tobocman. The danger of incorporating
cluster approximation in many-body Lippmann-Schwinger equations is .emphasized. A certain type of
antisymmetrization of Lippmann-Schwinger equations may lead to continuum spurious spectra. In particular
it is pointed out that the cluster model equations introduced by these authors have highly suppressed

(unphysical) incoming and outgoing waves. Contrary to claims made by these authors, it is stressed that
Lippmann's identity is true.

NUCLEAR REACTIONS Many-body Lippmann-Schwinger equations; cluster
model of Raphael, Tandy, and Tobocman; spurious continuum spectra.

The success of the resonating group method'
(RGM) confirms the existence of cluster struc-
ture in nuclei. One may try to incorporate the
physical ideas of the cluster model in an exact
many-body formulation. It is shown that certain
types of many-body Lippmann-Schwinger equa-
tions are not suitable for this purpose. Such ap-
proximations may suppress mathematical mech-
anisms for the rearrangement processes. This
then leads to highly reduced wave functions and
weak effective inter cluster potentials. Secondly
we would like to exhibit a new type of continuous
spurious spectrum in addition to the more fa-
miliar discrete one which may arise in a cer-
tain unconnected version of antisymmetrized
many -body Lippmann-Schwinger equations. We
demonstrate these in connection with a recent
work by Raphael, Tandy, and Tobocman (RTT).'
RTT proposed an alternative to the RGM, which
looks attractive since the intercluster interactions
of RTT are energy independent in contrast to en-
ergy dependent effective interactions in the RGM.
Working with the scattering wave function, we
arrive at the final equation for the scattering am-
plitude of RTT. This alternative approach shows
in a transparent way the problems one encounters
incorporating cluster approximations in the formu-
lation of RTT.

We adopt the notation of BTT without further
explanation. We denote two-body fragmentation
channels by a and indistinguishable partitions in
a channel by n(j), j =1,2, . . . , N, . Let us con-
sider energetically the lowest two-body fragmen-
tation channel such as n —o. , o. —z in five or eight
nucleon systems, below the threshold for another

channel. The scattering states to an initial par-
tition o(j), defined by g„»=lim, ,i&G4, &,. &, obey
the basic set of the Lippmann-Schwinger equa-
tions'.

I&I'u&g))
-

I c'a&g)&a, a+&- &, ) v &a) I &a&()& ~

k =1,2, . . . , N, , (1)

where C, &» satisfies (F. -H
&, , ) C„»=0.

The fully antisymmetric state g"' defined by'

Ng

l
g"'& = P ( —1)' "'&,(j) l 4,& )&

-=&f &&&l4. &&&&

satisfies the set of N, Lippmann-Schwinger equa-
tions

l

4"'& =@.&g)
+6

&g& ~.&g) I

&"'&

j =1,2, . . . , N, . (3)

Because of Eq. (1), one obviously needs all
Lippmann-Schwinger equations (3) in order to
exclude the states g, &» which are not fully anti-
symmetrized. The set (3) can be the starting
point for various formulations. Firstly, one may
decom'pose g&" into Yakubovski components and
set up Yakubovski equations. ' Secondly, one may
keep the full g"', introducing dummy variables,
and arrive at a coupled set of equations, as dem-
onstrated by Sandhas' for distinguishable particles.
In both cases the other sets, corresponding to
different two-body fragmentations (even if ener-
getically closed), have to be included. Thereby,
the kernel gets highly complicated, containing
resolvent operators corresponding to various
subclusters. The coupling scheme will show up
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G (~)8=0 (6)

or

in specific distributions of particle variables, as
has been demonstrated explicitly for three par-
ticles. ' Clearly the number of coupled unknown
functions involved can be extremely large. In-
stead one may, similar to the procedure applied
by Tobocman' to the transition operators,
average the set (3) for the state &t)(n) over all par-
titions and arrive at one equation,

(, ) 1
fT ~-(»4'. (I) +fT &f (»&-.(I) 1'.(I) I&' &.

a a

(4)

Obviously Eq. (4), by its very construction,
excludes the nonantisymmetric states. However,
Eq. (4) now may have spurious solutions of a new

type, which we exhibit explicitly. The homo-
geneous problem corresponding to Eq. (4) can be
factorized in the following manner [we set
(-1)'n(1& =1 by a suitable choice of P (j) ]:

Ng
1 ~ 1' ——Z u. u u. u&~= Z u. u&)(E-u&.

g g"1 ) g

(5)

Thus spurious solutions will be defined by'

(G„-'--,'V &1&)8 '.„,=0. (12)

Introducing tile two-body f 111atl'1x t(2/3&, (iefllled by

(6 -I -'yn&J))-12@no&=& fnV&
Q 3 3 0 (2/3) t

Eq. (11) can be rewritten as

(13)

o & ~(g) ~8 o ()) 8
fM (~)

—~ Got (2') ~ 8
&x (j ) ~

jvg

Equation (14) is the Faddeev type equation and
defines spurious continuum states whenever
8 '

(&) exists. The function 8 '
(» is a plane wave

of relative motion of the two clusters which,
however, have a smaller binding energy due to the
reduced intracluster interaction 3V '~). Thus,
one gets continuous spurious solutions starting
at the spurious threshold above the physical one
defined by the reduced binding energies. In ad-
dition one has, of course, a discrete spectrum of
spurious solutions corresponding to the homogen-
eous problem.

Thus Eq. (4) has highly undesirable features
which are not unexpected since the full physical
information enforces "blowing up"' and not
shrinking. However, one may now introduce the
cluster approximation for G (»,

G. (, ) =I&.(,&)9.(, ) «.(1)l (15)

[which is the same as Eq. (19) of RTT], and one
gets

1+—QG„u)u'u~) & =u,
a

where 8 =G,B. We decompose as 8=Z,8 (»,
where the e&' s are defined by

1e.„,=- G.(„V(~)e.
a

(7)

(6)

(.) an(1) a&I&
a

+
fV

& (I)I4'. (I&) 9 &1)(4' &1&~ l'. &»~()
a

(16)

Equation (8) can be rewritten as

(1+ —G ())V (~' 8 ()) = ——G ())V (~) 8 (j).
a a

(9)

For the sake of simplicity we now consider a
three-body system; then Eq (9) becom. es

1 0. (g)(1+3Gn&1&~ ' ') 8n&1&
= 3an&1)~" ' Z 8n«&.

j+j
(10)

As with the derivation of the Faddeev equation, we
solve Eq. (10) for 8,» and get

8 8 o (G-I + I yn(g)) -Ijy n(j)
0 (g) a(g) 3

x e &j).
jvg

where e '(» satisfies

Here 9 (&) is the free propagator for the relative
motion of two clusters P(» .in round bra. ckets
describes the internal motion of two fragments.
Equation (16) shows that the kernel is now con. —

nected and g
"has the structure

'& =Q (, )~ P (, )x(1)). (17)

1
+

Tf
9n &I )(4.&I &I

l'n (I )an (I ) ~ 4n &. )X(1)&,
a

(16)

where X' is a plane wave of relative motion of the
two fragments. First of all we note that in Eq.

Here X(1) describes the relative motion of the
two clusters in the partition n(1) and depends on
the intercluster distance. Equations (16) and (17)
yield the following equation for X:

1
x(1) = —x '(1)

N



22 COMMENT ON AN ALTERNATIVE TO THE RESONATING. . .

(18) the spurious threshold ha, s disappeared and
it is free from continuous spuriosities. This is
welcome. However, the cluster approximation
also suppressed parts of the physical wave func-
tion. Equation (4) appears to contain an in-
coming wave C in the partition channel n(j) only
with strength 1/N, T.his, however, is not true.
It is well known' that the second term on the
right-hand side of Eq. (4) will contribute the
remaining strength (N, —1) /N, of the incoming
wave C ~». This is possible because of the con-
tinuous parts in the spectral representation of
the resolvent operators G (z&. After cluster
approximation, the continuous parts are ex-
cluded and the passage of rearrangement parts
n(I ) of the wave function through the resolvent
G &,

.
&, jck is forbidden. The kernel of Eq. (18)

allows only outgoing waves and the asymptotic
behavior of g

' ' is reduced from amplitudes of
strength 1 to amplitudes of strength 1/N, By.
continuity, this reduces $ "' or X also in the in-
terior region and thus leads to a much too small
T matrix and intercluster effective interactions.

In order to demonstrate this explicitly we use
Eq. (18) to write the equation for the antisym-
metrized transition amplitude [Eq. (24) of RTT].
We define the T matrix by

clarity and simplicity we confine ourselves to
three particles and adopt the notation n(j) =—j,
thus p &»—= Q&, V &»—= Vz, etc. Equation (22)
of RTT for the antisymmetrized transition
amplitude is

T~ 3 V&8]G]Q &G] + 3 V]8]G] T& e (22)

with

x T(k', k ), (23)

z(k k.) =(y&kl-3v ~ G ~ G&
'

I y k.&.

Using the well established Lippmann identity

the driving term is given by

z(k, k, ) =-,'(y, kl v,e, ly, k, &=-,'v(k, k,).
Thus from Eq. (23) one arrives at

(24)

(25)

(26)

Again Eq. (22) is not connected and it may have
spuriosities too, as we have seen in the context of
Eq. (4), since it results also from an averaging
process. After cluster approximation one gets
from Eq (22. )

T(k, k.)=-(0
& klv. &

&~t
& &14& & &x(1)&, (19)

1
T

N
1

U+ —UQT, N, = 3
a

(27)

wherek, isthe initialmomentum. Using Eq. (19)
in Eq. (18), we get

T(k, k, ) = —U(k, %,)

+ dkU k&k 2 i2 ~ P 0 P

a 0

(20)

where we take h =2m =1, where m is the re-
duced mass between the fragments. The effec-
tive interaction U is defined by

U(k, k')=(y &, &klv„&,&8 &, &ly„&,&k'). (2 )

Equation (20) is the same as Eq. (62) of RTT.
Equation (20) has a. nice and attractive appearance
as the antisymmetrization is fully incorporated
and the potential energy is energy independent.
However, the potential is much too weak due to
the factor 1/N, This has b.een noted by RTT
in a numerical study of dineutron-dineutron
scattering where it gave much too small a cross
section. They, therefore, discarded that equa-
tion. In.stead, they proposed an equation where
the driving term was modified. We would like to
show now that in doing so RTT were in fact in-
consistent within their own formulation and Eq.
(20) should have resulted. For the sake of

which has also been given in RTT [Eq. (62)].
Equation (27), which is the correct consequence

of Eq. (22) and the cluster approximation, has
been discarded, however, by RTT due to the
smallness of the interaction. Instead they claim
that Eq. (25) is not valid. RTT calculate Z, in
the following different manner. Obviously one
may rewrite Z a.s [Eq. (27) of RTT]

z(k, k.) =(4 kl v, ~t&l y k. &

+ -', (&t,kl v,Q, G, [Q„v,]l Q,k, &.

First we note that ( e
I

=-(&»,kl V,8, is a square
integrable function where all the variables are
confined to a finite region of space. Then by ob-
vious cancellations and making use of

(28)

e, l@,k, &=ly,k, &+Iy,k, &+I@,k, &,

Using the resolvent identity, we have

GV

+«I fG v'G. f v'le»o&

we get

(elG, [e„v,]ly,k, &

=(e
I
G, v'I y,k, & -(e

I
G, v'I y,k, &

+(elG, v'Iy, k, &
—(elG, V'ly, k. &. (29)
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Two comments are now in order. With the clus-
ter approximation, the first term

(e
I G,v'I y,k, & =(e

I y,k, )

is absent, which allows the passage of
I

(t&ako &

through G, contained in G,. This is a necessary
requirement for the mathematica'l formulation
which should not be destroyed by any appr oxima-
tion whatsoever. Secondly, the curly brackets
indicate the order of integration in the manifold
integral, which should not be changed in general.
As is shown in Ref. 7 one can calculate the se-
cond term on the right-hand side of Eq. (30) as

(e
I (G, v'G, ] v'

I y,k, &

=&e IG, V'(G, v'fy, k, &]

+& ef «, -G.& v'Ie. k. &
—&eIG.v'I @.k. &

= (e
f
G, v'

f +,k, ) —( e
f
G,H,

f p,k, ) . (31)

Here Hp H p Hp where the arrows on the opera-
tor of kinetic energy Hp denote differentiation to
the right of left, respectively. Since 8 is square
integrable and does not allow the variables x in

G,(x, x') to go to infinity, the surface integral
at infinity which results after using the Gauss
theorem to evaluate H, (Ref. 7) will vanish. This
is because G, (x, x ') for x' at infinity will have
the asymptotic form of a breakup behavior, where-
as

I
(t&ako) has the form of a two-body fragmenta-

tion. ' Thus from Eqs. (28) to (31) we get

&efG, [a„v,
(32)

z(k, k, ) =(yk
I v, e,

I y,k, &

v, fa,

= -', (y,k
I
v,e,

I y,k, &=-.'U(k, k, ), (33)

which is in agreement with Eq. (26).
RTT, however, evaluated the second term

on the right-hand side of Eq. (28) using again
the cluster approximation [see Eq. (A9) of
Appendix of RTT] and could not therefore
find the correct result. Ironically, the re-
sulting Z got larger, and thus the cross section,
which led them to "conclude" that Eq. (25), is not
valid.

According to the arguments presented and the
numerical results of RTT, we conclude that the
cluster approximation applied to Eq. (4) for the
wave function or to Eq. (22) for the antisym-
metrized transition operator is not adequate.
Though it eliminates continuous spuriosities, it
also suppresses the main part (N, can be large)
of the wave function or the effective intercluster

(,'„)4 (123)+G(V g(as() + ( (I+a) . (34)

This equation defines the fully antisymmetric
state uniquely and is free from spuriosity. This
can be proved immediately by operating with
(1 —G,V') from the left, which yields

as& =GoV 4((as) +GoV g (as() +GoV gIga) . (35)

By cyclic permutation we conclude that

(36)

which shows that Eq. (34) in fact defines the anti-
symmetric solution of the Schrodinger equation.
Clearly, this coupling scheme corresponds to the
Faddeev-Lovelace choice and the proof of uni-
queness is just the one given by Sandhas. ' Eq-
uation (34) therefore appears to be a better
starting point than the averaged Eq. (4), which is
not connected and, in addition, is spurious.
However, with respect to cluster approximation,
it is as bad as Eq. (4). After that approxima-
tion, the kernel no longer allows the occurrence
of channel states 4(231) and 4(312) and only in-
going and outgoing waves of the channel state
4(123) are present. Thus two asymptotic par-
titions are eliminated completely and one sur-
vives with the strength 1 for one partition, where-
as the cluster approximation in Eq. (4) reduces
all three asymptotic partitions to strengths —,'.

Moreover, the cluster approximation to Eq.

potential and thus leads to a "not acceptable"
poor approximation of the cross section.

Another defect of all these equations in the
single cluster approximation —Eq. (20) or (27)
[Eq. (62) or Eq. (24) of RTT] and Eq. (20) of
RTT—is that the kernels of all these equations
are too weak because of the presence of the factors
(N, ) ' in them. This is also related to the wrong
asymptotic behavior of Eq. (18). The kernel of
ROM [Eq. (16) of RTT] does not have this un-
desirable feature. So in any practical calcula-
tion, when N, is large, the full solution of the
equations proposed in RTT will be nearly equal
to their Born approximations. RTT did not
notice this defect in their numerical calcula-
tion because the full solution of their problem
was nearly equal to their Born approximation
and hence their result agreed approximately with
that of ROM. This is clear from a comparison
of Figs. 1 and 3 of RTT.

This undesirable feature also shows up if one
distributes particle variables in the Lippmann-
Schwinger equation. We exemplify that for the
simplest case of three particles, where the in-
formation of the set (3) of Ã, =3 equations can
be summarized as4
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(34) has been studied in a bound state problem
in comparison with the solution to the full pro-
blem. ' lt turned out that again the continuum
part of the resolvent operator 6, was very im-
portant and the restriction to the bound state
part gave only a poor approximation.

Finally we note that the cluster approximation
does not cause these undesirable features if
applied for the Faddeev components for 3 par-
ticles, where each component carries only one

type of asymptotic partition. Thereby at least
the strength of the asymptotic amplitude is not

reduced.
%'e conclude that the many-body I,ippmann-

Schwinger equations studies are not suitable for
cluster approximations and the Lippmann identity,
which has been questioned by RTT, is correct.
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