## Comments

The Comments section is for short papers which comment on papers previously published in The Physical Review. Manuscripts intended for this section must be accompanied by a brief abstract for information retrieval purposes and a keyword abstract.

Comments on "Extension of the variable-moment-of-inertia model to high spins"

G. S. Anagnostatos

Tandem Accelerator Laboratory, Nuclear Research Center "Demokritos" Athens, Greece (Received 25 July 1979)

In the procedure of fitting of the rotational spectra in high spins of even-even nuclei the assumption that there is equal uncertainty in the energy levels, overall, leads to more reasonable results than the assumption that each energy level should be weighted by the square of its inverse.

NUCLEAR STRUCTURE Rotational spectra, VMI models, properties of <sup>158,160</sup>Dy, <sup>162,164</sup>Er, <sup>168</sup>Yb, <sup>172,174,176</sup>Hf.

The article by Das and Banerjee<sup>1</sup> on the extension of the VMI model to high spins describes a fourparameter description (VMI234 model) of rotational spectra in even-even nuclei using the phenomenological energy equation

$$E = C_{2}(\vartheta - \vartheta_{0})^{2} + C_{3}(\vartheta - \vartheta_{0})^{3} + C_{4}(\vartheta - \vartheta_{0})^{4} + \frac{I(I+1)}{2\vartheta}$$
(1)

and the equilibrium condition

$$\frac{\partial E}{\partial g} = 0 = 2C_2(g - g_0) + 3C_3(g - g_0)^2 + 4C_4(g - g_0)^3 - \frac{I(I+1)}{2g^2}, \qquad (2)$$

where  $C_2$ ,  $C_3$ ,  $C_4$ , and  $\boldsymbol{s}_0$  are the four parameters of the model.

Since the VMI234 model, as given by Eqs. (1) and (2), seems to be one of the most successful phenomenological models for even-even nuclei, we found it tempting to make some comments on the way the model is applied in Ref. 1, in order to greatly improve its generality and usefulness.

The way the model is applied, even to the sample of nuclei ( $^{158,160}$ Dy,  $^{162,164}$ Er,  $^{168}$ Yb, and  $^{172,174,176}$ Hf) used for its demonstration, leads to some undesirable results. Specifically, Ref. 1 predicts a backbending for the nuclei  $^{158,160}$ Dy, which is not justified by the experiments and also predicts that Eq. (2) has no physically meaningful solution for *s* beyond a certain *I* in the cases of all four nuclei  $^{164}$ Er and  $^{172,174,176}$ Hf, where  $C_4 < 0$ 

we found.1

We reexamined here all eight nuclei of Ref. 1 and the results are given in Table I and shown in Fig. 1, together with those of Ref. 1 for comparison. As is apparent, the mentioned undesirable results of Ref. 1 are not present here for the available data of the nuclei <sup>158,160</sup>Dy, <sup>164</sup>Er, and <sup>172,174,176</sup>Hf. Also, the accuracy of the fit for the remaining nuclei, <sup>162</sup>Er and <sup>168</sup>Yb, as for all nuclei, is overall improved, as can be seen by comparison of either the individual levels or the rms deviations<sup>3</sup> listed in the last column of Table I. The only difference<sup>4</sup> between this work and the work in Ref. 1 is that in the least-square fit for determining the parameters  $C_n$  and  $\mathfrak{s}_0$  from Eqs. (1) and (2) we assumed here equal uncertainty for all level energies, instead of weighting each level energy by the square of its inverse (i.e., minimizing the relative error), as in Ref. 1.

The argument considered in Ref. 1 that the lowlying levels are measured more accurately and thus should be weighted more compared to the higher levels is more reasonable when we have to fit a smaller number of levels (e.g., up to  $J^{\pi} \cong 10^{*}$ ). It seems, however, that in the cases where we have many levels, as in our case where the last to the first energies are in a ratio ~50:1, the minimization of relative error procedure seems to be a very severe requirement. The latter leads to a better fit for the first energy levels and a rather poor fit for the last levels, and, simultaneously, to bigger values of  $\mathfrak{g}$  for high spins, which may eventually show up as an unjus-

22

305

© 1980 The American Physical Society

| ve the cal-<br>neunits of                            | rms<br>deviations    |                   | 4.45<br>6.52            |                    |             |                                           |                    | 1.07                  | 2. 03                 |          |                  |                       | č                   | 4.04<br>6 30   | 00.00                |           |                    |                         |                     | 2.54               |                                    |                    | 0.54         | 0.81             |        |                    |                         |                     | 0.28                        |                      |
|------------------------------------------------------|----------------------|-------------------|-------------------------|--------------------|-------------|-------------------------------------------|--------------------|-----------------------|-----------------------|----------|------------------|-----------------------|---------------------|----------------|----------------------|-----------|--------------------|-------------------------|---------------------|--------------------|------------------------------------|--------------------|--------------|------------------|--------|--------------------|-------------------------|---------------------|-----------------------------|----------------------|
| h and fifth gi<br>peed $\omega_I^2$ . Th             | 22*                  | 5085.4            | <b>5080.4</b>           | 131.50             |             | 0.117                                     |                    | (4884.3)              | 141.58                |          | 0.101            |                       |                     | (9100°4)       | 135.65               |           | 0.110              |                         | ĺ                   | (4893.7)           | 0.091                              |                    | (5020.0)     | 198 99           | 1.01   | 0.123              |                         |                     |                             |                      |
| The fourt<br>ie angular s                            | 20+                  | 4407.3            | 4414.6<br>4399          | 126.61             | 137.36      | 0.105<br>0.089                            |                    | (4264.5) <sup>c</sup> | (4194)<br>135.60      | 157.76   | 0.091            | 0.067                 | 4462.8              | 4401.°1        | (±030)<br>131.81     | 145.86    | 0.097              | 0.079                   |                     | (4309.5)<br>145 52 | 0°049                              | 4336.8             | 4336.4       | (4322)<br>192 17 | 126.38 | 0.111              | 0.105                   |                     | (4556 <b>.9</b> )<br>132.29 | 0.096                |
| unree rows.<br>square of th                          | 18*                  | 3781.5            | 3'184.2<br>3796         | 120.53             | 122.20      | 0.094<br>0.092                            | 3672.1             | 3671.9                | 3071<br>126.97        | 136.04   | 0.085            | 0.074                 | 3846 <b>.</b> 5     | 3800.0<br>2841 | 126.96               | 137.54    | 0.085              | 0.072                   | 3766.8              | 3766.4<br>141 40   | 0.068                              | 3686.8             | 3687.9       | 3686             | 118.64 | 0.100              | 0.097                   | 3918.8              | 3918.8<br>114.66            | 0.104                |
| In the first<br>11234 model                          | 16+                  | 3190.5            | 3184.8<br>3193          | 112.59             | 110.34      | 0.086                                     | 3091.6             | 3092.4                | 3097<br>113.88        | 112.06   | 0.084            | 0.087                 | 3292.3              | 3289.1         | 119.77               | 120.72    | 0.076              | 0.075                   | 3261.3              | 3261.8<br>167.81   | 090.0                              | 3073.0             | 3072.4       | 3075             | 110.19 | 060.0              | 060.0                   | 3276.7              | 3276.8<br>103.89            | 0.101                |
| <i>t</i> are shown<br>ated and VM                    | 14+                  | 2612.5            | 2608 <b>.9</b><br>2604  | 102.38             | 100.42      | 0.080<br>0.083                            | 2514.9             | 2513.4                | 100.94                | 100.34   | 0.082            | 0.083                 | 2745.7              | 2741.4<br>9736 | 2 ( 30<br>103.81     | 99.66     | 0.078              | 0.085                   | 2700.8              | 2698.0             | 0.097                              | 2488.5             | 2487.9       | 2489<br>101 05   | 101.56 | 0.081              | 0.081                   | 2653.6              | 2653 <b>.</b> 6<br>95.30    | 0.092                |
| t energies <i>t</i><br>e the calcul                  | 12+                  | 2049.2            | 2052 <b>.</b> 2<br>2042 | 91.74              | 91.72       | 0.074<br>0.074                            | 1951.4             | 1951.6                | 1949<br>91-71         | 91.92    | 0.074            | 0.074                 | 2165.1              | 2168.0         | 28 98<br>1.017       | 87.62     | 0.083              | 0.081                   | 2082.3              | 2085.9             | 0.088                              | 1935.9             | 1936.2       | 1935             | 93.62  | 0.071              | 0.071                   | 2064.3              | 2064 <b>.</b> 0<br>87.95    | 0.081                |
| t VMI mode<br>seventh giv                            | 10 *                 | 1519.9            | 1524.6<br>1518          | 82.84              | 83.96       | 0.064<br>0.062                            | 1428.59            | 1430.0                | 1429<br>84_85         | 85.30    | 0.061            | 0.061                 | 1602.9              | 1604.U         | 1004<br>77,74        | 79.04     | 0.073              | 0.070                   | 1517.8              | 1520.5<br>70.69    | 0.071                              | 1425.4             | 1425.8       | 1425<br>og 51    | 86.60  | 0.059              | 0.059                   | 1520.9              | 1520 <b>.9</b><br>81.48     | 0.066                |
| ulated, and<br>e sixth and<br>/ely.                  | \$¢                  | 1044.02           | 1045.1<br>1046          | 75.80              | 77.00       | 0.050<br>0.049                            | 966.71             | 967.4                 | 968,8<br>79,53        | 79.84    | 0.046            | 0.045                 | 1096.8              | 1101           | 71.45                | 72.30     | 0.056              | 0.055                   | 1024.3              | 1023.4             | 14.34<br>0.052                     | 970.05             | 970.2        | 970.0<br>00.27   | 80.56  | 0.045              | 0.044                   | 1037.2              | 1037.6                      | 0.050                |
| ental, calc<br>, while the<br>, respectiv            | 6+                   | 637.88            | 634.3<br>640.5          | 70.29              | 70.82       | 0.034                                     | 581.03             | 580 <b>.</b> 0        | 582.3<br>75.39        | 75.44    | 0.030            | 0.030                 | 666.76              | 662.6<br>670.0 | 010.0<br>66.75       | 66.86     | 0.038              | 0.038                   | 614.34              | 610.7              | 0.033                              | 585.30             | 585.0        | 585.6<br>75 49   | 75.54  | 0.030              | 0.029                   | 628.2               | 628.4                       | 0.033                |
| e experim<br>inertia 29,<br>ind (MeV) <sup>2</sup>   | 4+                   | 317.26            | 311.7 $318.1$           | 66.14              | 65.62       | 0.018<br>0.019                            | 283.79             | 282.1                 | 284.0                 | 72.04    | 0.015            | 0.015                 | 329.63              | 324.2          | 63.31                | 62.64     | 0.020              | 0.020                   | 299.47              | 295.9              | 0.017                              | 286.55             | 286.0        | 286.7<br>71 70   | 71.64  | 0.016              | 0.016                   | 309.2               | 308.8<br>66.81              | 0.018                |
| element th<br>moment of<br>(MeV) <sup>-1</sup> , s   | 2+                   | 98.94             | 95.6<br>98.49           | 63.41              | 61.82       | 0.006                                     | 86.79              | 85.8                  | 86.59<br>70.34        | 69.80    | 0.005            | 0.005                 | 102.08              | 99°0           | 61.08<br>61.08       | 59.78     | 0.006              | 0*001                   | 91.39               | 89.8<br>81.1       | 0.005                              | 87.73              | 87.3         | 87.68            | 69.02  | 0.005              | 0.005                   | 95.17               | 94.7<br>63.99               | 0.006                |
| . For each<br>[1234 model<br>o <sup>2</sup> are keV, | $E$ (keV) $^{I^{T}}$ | $E_{\exp}^{a}$    | $E_{cal}$               | - VMI234<br>29 cal | 29 VMI234 b | $\omega_{cal}^{2}$ $\omega_{VMI234}^{2b}$ | $E_{\mathrm{exp}}$ | $E_{\rm cal}$         | <i>Е</i> VMI234<br>94 | 28vm1234 | $\omega_{cal}^2$ | $\omega_{VMI234}^{2}$ | $E_{exp}$           | $E_{cal}$      | <sup>22</sup> VMI234 | 25 VM1234 | $\omega_{cal}^{2}$ | $\omega_{\rm VM1234}^2$ | $E_{\mathrm{exp}}$  | $E_{\rm cal}$      | $29$ cal $\omega$ cal <sup>2</sup> | $E_{\mathrm{exp}}$ | $E_{ m cal}$ | $E_{\rm VMI234}$ | 24 cal | <b>6</b> 0 001 234 | $\omega_{\rm VM1234^2}$ | $E_{\mathrm{exp}}$  | $E_{\rm cal}$               | <b>6</b> cal 2 cal 2 |
| TABLE I<br>culated VM<br>$E, g, and \alpha$          | Nucleus              | <sup>158</sup> Dy |                         |                    |             |                                           | <sup>160</sup> Dy  |                       |                       |          |                  |                       | $^{162}\mathrm{Er}$ |                |                      |           |                    |                         | $^{164}\mathrm{Er}$ |                    |                                    | $^{168}{ m Yb}$    |              |                  |        |                    |                         | $^{172}\mathrm{Hf}$ |                             |                      |

G. S. ANAGNOSTATOS

|                                               |                                                    |                          |                          |                          |                                     | TABLE I                           | . (Continue                      | ea.)                   |                       |     |     |     |                   |
|-----------------------------------------------|----------------------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------|-----------------------------------|----------------------------------|------------------------|-----------------------|-----|-----|-----|-------------------|
| Nucleus                                       | $E \; (\text{keV})^{I^{\pi}}$                      | 5+                       | ++                       | 6+                       | 8+                                  | 10+                               | 12 <sup>+</sup>                  | 14 <sup>+</sup>        | 16+                   | 18+ | 20+ | 22+ | rms<br>deviations |
| $1^{74}$ Hf                                   | E <sub>exp</sub><br>Ecal                           | 91.01<br>90.8            | 297.45<br>297.4          | 608.37<br>608.4          | 100 <b>9.</b> 42<br>100 <b>9.</b> 6 | 1485 <b>.9</b><br>1485 <b>.</b> 7 | 2020.6<br>2020.7                 | 2596.8<br>2596.8       |                       | -   |     |     | 0.14              |
|                                               | 2g <sub>cal</sub><br>w <sub>cal</sub> <sup>2</sup> | 66.63<br>0.005           | 68.95<br>0.017           | 72.46<br>0.032           | $77.10 \\ 0.048$                    | 82.85<br>0.064                    | 89.67<br>0.078                   | 97.29<br>0.089         |                       |     |     |     |                   |
| 176Hf                                         | $E_{ m exp} E_{ m cal}$                            | 88.35<br>88.3            | 290.17<br>290.1          | 596 <b>.</b> 95<br>597.0 | 997.94<br>998.0                     | 1481.27<br>1481.2                 | 2034 <b>.9</b><br>2034 <b>.9</b> | 2646.8<br>2646.8       | (3302.3)              |     |     |     | 0.05              |
|                                               | $2g_{cal}^{2}$ $\omega_{cal}^{2}$                  | 68.40<br>0.005           | 70.29<br>0.016           | 73.07<br>0.031           | 76.56<br>0.049                      | 80.70<br>0.068                    | 85.48<br>0.085                   | <b>91.1</b> 2<br>0.101 | <b>98.39</b><br>0.112 |     |     |     |                   |
| <sup>a</sup> All exp<br><sup>b</sup> All infc | erimental ent                                      | ergies con<br>the VMI234 | ae from Ré<br>4 model co | ef. 2.<br>me from F      | lef. 1.                             |                                   |                                  |                        |                       |     |     |     |                   |

<sup>c</sup> Numbers in parentheses stand for extrapolated values.



FIG. 1. Plots of  $2g/\hbar^2$  vs  $(\hbar\omega)^2$  for the nuclei <sup>158, 160</sup>Dy, <sup>162, 164</sup>Er, <sup>168</sup>Yb, and <sup>172, 174, 176</sup>Hf. In each block of the figure the calculations of the present work for one of the nuclei examined is shown with a solid line. Squares stand for the experimental points, while broken lines stand for the results of Ref. 1. For <sup>164</sup>Er and <sup>172, 174, 176</sup>Hf, Ref. 1 predicts complex g beyond a certain value of *I*. In each block the parameters of Eqs. (1) and (2) determined are also given in units:  $g_0 = 10^{-1} \text{ keV}^{-1}$ ;  $C_2$ :  $10^{-3} \text{ keV}^3$ ,  $C_3$ :  $10^{-5} \text{ keV}^4$ , and  $C_4$ :  $10^{-7} \text{ keV}^5$ .

tified backbending.

Given that the main utility of the phenomenological energy expressions from the experimentalist's point of view is to provide guidance about the extension of the known domains by extrapolation,<sup>5</sup> the better fit of the higher spin levels provided by the method followed in this paper is more desirable since it leads to more reliable extrapolation<sup>6</sup> results. The rather poor power of extrapolations of the VMI234 model becomes apparent by comparing its predictions (levels in parentheses in Table I) with the experimental values. Also from the theorist's point of view, any physical meaning of the parameters involved is very questionable under the present explanations of the backbending phenomenon,<sup>7-10</sup> which consider that high spin state behavior involves physical phenomena which are not present in the very low-lying rotational levels.

As one can see from Fig. 1 the parameter  $C_4$ is negative here only for the case of <sup>176</sup>Hf (and not for <sup>164</sup>Er and <sup>172+174</sup>Hf, as in Ref. 1). No physically meaningful solutions for  $\mathcal{I}$ , however, start from  $I^{\pi} = 18^{+}$ , i.e., beyond the available experimental data. We also remark that even for the cases of <sup>172,174</sup>Hf, where here  $C_4 > 0$ , we have no physically meaningful solutions for  $\mathcal{I}$  beyond the available experimental data (i.e., from  $I^{\pi} = 22^{+}$  and 16<sup>+</sup>, respectively). Thus the fact that there are no physically meaningful solutions  $\mathcal{I}$  beyond a certain I does not necessarily coincide with  $C_4 < 0$  as reported in Ref. 1. Finally, we remark that here for <sup>164</sup>Er no such levels appear up to  $I^{\pi} = 22^{+}$ .

Finally, we may say that in the procedure of the fitting of the spectra with high spins for even-even

- <sup>1</sup>T. K. Das and B. Banerjee, Phys. Rev. C <u>6</u>, 2590 (1973).
- <sup>2</sup>R. O. Sayer, J. S. Smith III, and W. T. Milner, At. Data Nucl. Data Tables 15, 85 (1975).
- <sup>3</sup>Also, in Ref. 5 rms deviations from the experimental values were used for the comparison of two models for yrast band level energies in even-even nuclei.
- <sup>4</sup>In Ref. 6 a very interesting discussion on the estimates of uncertainties in the parameters of an angular velocity expansion of nuclear rotational energies was given. In this discussion the influence of the number of levels considered in the fit (degrees of freedom), and the uncertainties in the experimentally measured energies were estimated. No discussion of fittings, as here, assuming equal uncertainty in the energy levels, or minimizing the relative error, was made. This dis-

nuclei, the assumption that there is equal uncertainty in the energy levels, overall, leads to more reasonable results than the assumption that each energy level should be weighted by the square of its inverse. Specifically, the procedure applied here is superior to that of the VMI234 model in three ways: the region of applicability (<sup>164</sup>Er, <sup>172, 174, 176</sup>Hf nuclei cannot even be considered in the VMI234 model), the quantitative fit to the experimental energies (see rms deviations in Table I), and the high spin behavior (see Fig. 1).

I would like to express my appreciation to Mrs. K. Demakou for her valuable work with the computer programming.

cussion becomes meaningful when the fitting involves high spin states and particularly the backbending region, while Ref. 6 is limited to the region of moderate spin and clearly below the backbending region.

- <sup>5</sup>P. C. Sood and A. K. Jain, Phys. Rev. C <u>12</u>, 1064 (1975).
- <sup>6</sup>O. Saethre, S. A. Hjorth, A. Johnson, S. Jägare, H. Ryde, and Z. Szymanski, Nucl. Phys. <u>A207</u>, 486 (1973).
- <sup>7</sup>A. Johnson, H. Ryde, and J. Sztarkier, Phys. Lett. <u>34B</u>, 605 (1971).
- <sup>8</sup>B. M. Mottelson and J. G. Valatin, Phys. Rev. Lett. <u>5</u>, 511 (1960).
- <sup>9</sup>P. Thieberger, Phys. Lett. <u>45B</u>, 417 (1973).
- <sup>10</sup>F. S. Stephens, Rev. Mod. Phys. 47, 43 (1975).