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Self-consistent psendopotentials in the thermodynamic limit.
II. The state-dependent one-body field
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We explore the concept of the pseudopotential, introduced in a previous paper, within the context of the
exact boundary condition for a system of fermions interacting through a pair-wise, hard-core potential, in

the thermodynamic limit. We discuss several Ansatze for the Lagrange multipliers that allow the inclusion
of the boundary conditions into the variational principle. It is found that under a given Ansatz, a
dynamical, microscopic interpretation of the pseudopotential can be put forward. A comparison between

this situation and the coherent approximation induced by the use of the correlation function is also

presented,

NUCLEAR STRUCTURE Hard-core interactions, boundary condition, varia-
tional principle constrained Hartree-Pock problem; Ansatz, structure of the

pseudopotential, state dependence.

I. INTRODUCTION

The self-consistent treatment of correlations in-
duced by tw'o-body interactions characterized by
the presence of a hard core has recently been the
subject of detailed analysis. " The central idea,
suggested in an early paper of de Llano and Hami-
rez, ' is that of working with Slater determinants
of spatially localized, nonoverlapping, single-par-
ticle (s.p.) wave functions which, contrary to gen-
eral belief, make Hartree-Pock (HP) calculations
with hard cores possible, as shown in Ref. 1.

In a previous work, ' hereafter referred to as I,
we have tackled the problem of singular two-body
forces via the w'ell-known pseudopotential meth-
od' ' and tried to relate it to the variational prin-
ciple, in order to attempt a connection with the
HF theory. We showed that the effect of the hard
core in the two-body interaction can be included
as a constraint into the variational principle. We
derived the corresponding Euler-Lagr ange equa-
tions for a one-dimensional system and found that
they were of the HF type, but with a modified one-
body field, the pseudopotential. This extra term
was seen to provide complementary correlations
in momentum and coordinate space, allowing us
to suggest a tentative explanation for the origin of
density waves in nuclear matter whose existence,
conjectured by Overhauser, ' has motivated a great
amount of research lately (see for example Refs.
10-12).

In I the construction of the psuedopotential was
based on a particular representation of the geo-
metrical (boundary) condition imposed on the two-

fermion relative wave function. ' This must vanish
inside the hard-core radius and, in order to fulfill
this requirement, a restriction w'as introduced in-
to the variational principle in terms of the so-call-
ed correlation function for the interacting system. '~

Such an approach is obviously not the best one.
The boundary condition can be represented in
more adequate terms, with greater fidelity.

The purpose of this paper is twofold. On the
one hand, we shall examine in further detail the
consequences of the approach given in I. On the
other hand, we shall discuss several possibilities
that allow for the introduction of more detailed
microscopic information into the mean field. In
particular, attention w'ill be drawn to the fact that
the use of the correlation function implies signifi-
cant phase cancellations which result in a state-
independent pseudopotential. Better descriptions
of the boundary condition generate state-dependent
ones, w'hich admit an appealing microscopic inter-

pretationn.

In Sec. II we show how the "true" boundary con-
dition is described in our model and we present
the approximations whose features and conse-
quences are discussed in Sec. III. Conclusions
and perspectives are summarized in Sec. IV.

II. THE BOUNDARY CONDITION

For the sake of economy of notation, we shall
restrict our presentation to a one-dimensional
system of & fermions in a container of length L,.
Both& and I. are supposed to be very large, but
the average density p,=lim« „N/I, is a well-
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defined quantity (thermodynamic limit). The fer
mionic Hamiltonian is

80'- J dk t(k}ay ay

dk, dk, dksdk4

x
& k,k, l

p'l k,kg a, a, a, a„

where the continuous variable k labels a momen-
tum eigenstate created on the s.p. vacuum lQ) by
the opex'Rtox'Q~,

lk&- a~ IQ& (2)

and p' ~s a. regular pa~r-wzse interact~on. Al-
though we are assuming that our system interacts
through a singular, i.e., hard-core, two-body po-
tential, in the spirit of I we consider that 7 is the
analytical continuation of the regular portion of
the actual interaction inside the forbidden region.
%'e will take care of the singularity by means of
the boundary condition in a constrained variation-
Rl px'ocedux'e.

Let q„(x) be the wave function associated with
the orbital lk&

u, (k) = —=—.dn L
dk 277

For simplicity, in most of this paper we shall
represent ~ as a discrete label, bearing in mind
that in any actual calculation we should use the
identity

A &(x}.

Now the essence of a constrained HF calculation
resides in the fact that one looks for the s.p. or-
bitals that minimize the expectation value of the
following Hamiltonian:

(10)

where E contains the constraint and a set of La-
grange multipliers 1o.), and the last term in the
right-hand side accounts for the proper normal-
ization of the s.p. orbitals. The expectation values
are taken with respect to a Slater determinant of
s.p. wave functions („. Variation of (11) with re-
spect to the Fourier transforms C~ (or their com-
plex conjugates} leads to a system of coupled in-
tegral equations

(3)

We assu'me that the Hamiltonian (1) can be approxi-
mately linearized via a unitary transformation that
yields a basis of self-consistent orbitajs ly&. The
corresponding creation operators are

J dkk(k, q)C, (k) — „=@C„(q), (12)

where h. is the well-known HF Hamiltonian. ' When-
ever we can express the variation of the constraint
in the form

(13)

In coordinate representation, this transformation
re ads

and fulfills the unitarity requirements

(6)

(4 z ~ C*, k C, k'=gk-k' .

Here the function n (X) is the density of states of
the self-con81stent basis,

5) (x) -dn/dA,

which at the moment is an unknown of the problem,
as well as the orbitals ly& themselves. It has been
explicitly displayed in Eq. (7} in order to recall
that, in principle, ~ is a continuous label. In this
sense„n (x) is the self-consistent equivalent of
the well-known density of states of the (unperturb-
ed} momentum eigenstates

the kernel l", plays the role of a self-consistent
one-body potential to be added to h.' It originates
in the constraint and is, in a way, a fictitious en-
tity. However, it contains the important correla-
tions induced in the system by the superimposed
condition I'in"I. In I we have given the name
pseudopotential to this quantity, preserving a con-
cept that has been used in pioneering works, ' '
since we have generated a given/ out of a con-
straint that simulates the boundary condition.

We should now remark that in the presence of
a hard-core interaction, the "true" boundary con-
dition demands exact cancellation of every rela-
tive wave function g~„ inside the region of strong
repulsion. This requirement can be formalized
RS

l(g. (~)l'=0 when l~l- «» ail ~ u

where we explicitly choose to represent the con-
dition in terms of the probability rather than the
amplitude. Moreover, we can summarize the in-
formation displayed in (14) into a compact con-
straint,
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pC

FJ(n)= ' dxn~, (x)|$~,(x))'=0,
~-c

(15)

where we have introduced the I agrange multiplier
matrix n„, (x). Equation (15) is the exact repre-
sentation of the "true" boundary condition. It be-
comes evident that it entails a set of unknown func-
tions whose determination in any practical calcula-
tion would be overwhelmingly hard, if not impos-
sible. It is then essential, if we decide to pursue
the subject, to introduce some simplifying A.nsatz
on n~, (x).

We quote here a few elementary choices that will
enable us to gain some insight with relation to the
correlations induced in our system by condition
(15). They will be examined more closely in the
next section, where we will discuss the following
four examples. In example (1), nz, (x)=n„„ in-
dependent of x for all X, p. . In this case the con-
straint reads

pression (19). If we write+~„ in the center-of-
mass system of the pair and integrate away the
center-of-mass coordinate X, we can select an
approximation to the "true" boundary condition in
the form of example (3),

F, (n)= ' Cxn(x}G(x)=0,
"-c

where

(21)

c( ) l~ dxg(x x} (22)

n (x)= n[5 (x+c)+ 5 (x —c)] (23)

which leads to

One obvious advantage of this choice is the fact
that the matrix n. ~„(x) is replaced by a single func-
tion. In addition, we could also try the sensate of
example (4),

F,((aB=-,' Q ~„„t wit(„„(~)l'=o. (16)

n~, (x)=ng„[5(x+c)+5(x -c)j.

Evidently,

In particular, ez, can be chosen to be a constant,
i.e., independent of z, p, ; for example (2),

F (n)=n[G(c)+G( c)J=0- (24)

This last case is the situation presented and dis-
cussed in I. An important point is to be remark-
ed: While the "true" boundary condition (15) im-
plies that the sum is to be taken after integrating
away the center-of-mass coordinate and taking
the square modulus, these procedures have been
reversed in order to build the correlation function.
Schematically,

F28n)}=l Z n~. [l&~.(c}l'+l&~.(-c)l'j=0 Ecf: '

dX+),~ x, X & dX4)„~ x, X ~G ~ 25

2
g(x„x,)=—, Q ~e „,(x„x,)~',

X,+4 F
(19)

where + ~„ is the antisymmetrized two-particle
wave function

ey, (x„x,)=~[4/(x )4„(x ) -4y(x )4, (x,)], (2o)

(18)

Before going into a detailed analysis of the con-
sequences of (1'I) and (18), we should quote, for
comparison, the approach presented in I. In that
work, the constraint was expressed in terms of
the correlation function g(x„x,) that represents
the average probability of finding a two-particle
configuration with coordinates g, and g„ in any
available pair state below the self-consistent
Fermi level. One has

in this sketch we can appreciate that F (and its
approximations F») contains all the interference

t

effects and phase correlations induced by the sum

of the amplitudes over the center-of-mass posi-
tion. These are lost in G; actually, the phase
correlations are canceled when we add probabil-
ities, the outcome being a coherent function. We

could say, with abuse of language, that Q is the
"random phase approximation" to F. This con-

cept will be kept in mind during the forthcoming
discuss&on.

We finish this section quoting the actual expres-
sions for the relative wave function and the rela-
tive correlation function. These can be easily de-
duced from (5) and (20) and read

ie„„(x)~'=2 dk dk'C„(k) C„(-k)C,*(k') C„*(-k')

and N2/2 is the number of pairs. We shouM also
notice that the thermodynamic limit (10}requires
the self-consistent density of states g(X} to be of
order~ (or I,) thus ensuring the finiteness of ex-

& sin(kx) sin(k'x) (26)
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G(x) =-
2 Q Jr „dKdkdK dk'6(K K-')Cq(-,'K+k) Cg(,'K-'+k')C, (-,'K-k)

&& C„*(—.'K —k ) sinkx sink x.

The variables involved in these integrals are the
center-of-mass and relative momenta K and k,
respectively, for particles 1 and 2. Primes cor-
respond to variables associated with the complex
conjugate wave function.

III. VARIATIONAL PROCEDURE

(13). The identification of the pseudopotentials is
straightforward and can be further simplified if
we take advantage of time-reversal symmetry.
Since we are dealing with time-reversal invariant
interactions V the s.p. wave functions g), can be
chosen to be real and with definite parity. These
properties lead to the consequences

In this section we shall examine the pseudopo-
tentials generated by the constraints I'

y to Q4.

A. Constraint F&

We introduce Eq. (26) into Eq. (16), evaluate
the indicated integrals, and follow prescription

C, (k) =(-)'~ C„(k),

C,*(k)=C,(-k) = (-)'&C, (k),

where 7[),=0, 1 is the parity of the orbital ~z).
With the help of Eqs. (28) we find

(28a)

(28b)

r, (k, q, (n))= I'~(k, q, (~])= q — q P C,(k) C„"(q)[n„.-(-)"'"n.„].k+q k -q (29)

We observe that the pseudopotential is state dePendent. As a matter of fact, regardless of the matrix
~„„, its state dependence stems from the parity phase factors. Furthermore, the structure of F, indi-
cates that we must impose a~, =o», [cf. Eq. (16}]. If we take this property into account, we immediately
see from Eq. (29) that the parity of the orbitals contributing to the pseudopotential is opposite to that of
the one of interest, ~)I}. Thus, odd orbitals ~i)) build up the one-body field experienced by even states ~q)
and vice verNa; the restriction p. ~g under the summation symbol is now superfluous.

It is illustrative to study the coordinate space form of I',„. This can be achieved by means of the double-
Fourier transformation

r„(, ')= „' dkdq( ~k)(k)l [q)(q~ '&. (30)

The integrals can be evaluated through a simple contour integration. We obtain

I' (x, x')=-- Qn [1-(-)""~)

'

dk~C, (k) ('(e'"" "'[g(x+x'+ 2c) —g(x+x'- 2c) —g(-x -x' —2c)+g(-x -x'+2c)]
—e'""'"'[g(x -x'+2c}—g(x —x' —2c) —g(-x+x' —2e)+g(-x+x'+2c)]j, (31)

where g(x) is the usual step function.
The diagonal matrix element is specially interesting. The normalization condition (6) allows us to write

r„[x)=-2 I;a„„[)—(-)"" )Ieb+c) —g(x-c) —o(-x-c)+9(-x+c) —Jdalc()')I'+""I. (32)

We have used the fact that g(2e)=g(e}=1. It is easy to see that the sum of the step functions represents a
centered square well of range 2c and intensity proportional to the sum of ihe e's. The integral is the Four-
ier transform of the probability ~C„(k)~ and its effect is to distort the square well by superimposing a
wiggle and to make it vanish at &=0. This geometrical picture, although useful for future reference,
should not be misleading; I',„ is a nonlocal field, as given by Eq. (31), its actual spatial shape being much
more complicated. However, Eq. (31) suggests that its structure is, essentially, a superposition of
square wells with momentum-dependent weights and phases that depend on the amount of nonlocality.
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B. Constraint F2

Following the lines invoked in subsection A, we find in this case

1,„(k,q[n]) = —4 sinqc sinkc g n„,[1—(-)'~"~] C,*(q)C„(k},

We see that the parity selection rule of the preceding paragraph is preserved. In addition, Eg. (33) pro-
vides us with some interesting "edge information, " since this pseudopotential is entirely generated on the
hard-core walls. In order to display this more clearly, let us examine the coordinate representation of
Eq. (33). We transform according to (30) and easily find, with the help of Eg. (5),

I"2„(x,x ') = —v g n„„[I —(-)'~'"~][( (x+c)g*(x'+ c)+g„(x —c)(*(x' —c) —g„(x —c)g(x '+ c) —(„(x+ c)$*(x' —c)) .

(34)

It becomes apparent that I"~„(x,x') presents the structure of an s.p. propagator, "where the "weight" of the
line labeled p, is given by the sum of Lagrange multipliers and pha. se factors. The first and second terms
in the sum can be interpreted as describing a virtual process in which an s.p. path starts at position x'~ c
and ends at g+ c. The third term describes the "propagation" of a particle from one hard-core radius to
the right of point x', to one hard-core radius to the left of x. The fourth term corresponds to exchanging
x and x' in the preceding one. This dynamical picture sheds some light on the meaning of the pseudopoten-
tial, since we can see now that its fictitious nature, emphasized in I, is reflected in a spatial structure
that consists of,a superposition of virtual displacements that keep intact the hard-core exclusion distance.

C. Constraints based on the correlation function

In I we have shown that the correlation function can be written as the expectation value of the pseudopo-
tential, which in turn is the average of the correlation field X . It means that we can write

~, ( )= T (I p)= T ([Tr(yp)] p} (35

where the one-body density p has the matrix elements'

p(k, q)= g C+(q)C, (k).
A «» p

(36)

If we introduce (36) into the expression for G given by (2V), the quantities I', and li can be written down by
simple inspection. Since the case of the constraint I'4 has been discussed in I, we refer the reader to that
paper. Here we will quote the corresponding results for the constraint I",. %'e just get

te
C

I', (k, q)= —
2 dk'dq'5(k -q+k' q') p(q', k-') dx n(x) sin(q -q') —sin(k —k')-,2' (SV}

~C

X(k, q, k'~q')=- 26(k -q+k'-q') ' dxn(x) sin(q -q')- sin(k-k'}—,
'F pp 2 2 ' (38)

The density factor pp arises from the thermodynamic limit, in which we must assume the density of states
& (X) [Eq. (8)] to be of order ~ or I,.

Although the function n(x) is an unknown, it will be illustrative to study at least one particular Ansatz
(other thm the one in I) The simplest is, evidently, n=constmt. In this case we immediately find

4n
&(k k, ,}

sin(k —k -q+q)c/2 sin(k —k +q -q)c/2'
~po' (k —k'-q+q')/2 (k —k'+q —q')/2 (39)

V = —8n/p, '. (4o)

which is precisely the antisymmetrized two-body
matrix element, taken with respect to momentum
eigenstates, of a square-well potential of width c
and depth

It is clear that ~=-~ is an exact solution that cor-
responds to an infinite barrier, i.e., to the orig-
inal hard core. A finite value of o., if a solution
of the constrained HF problem, would provide an
upper limit to the total energy of the system. The
question of the existence of such solutions remains
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unanswered at the moment. However, we persist
in this example, since it should be confronted with
the results of subsection A. A comparison of the
pseudopotentials associated with the correlation
fieM (39) with the one in Eq. (32) allows us to
draw some conclusions on the consequences of the
random-phase-approximation to the "true" bound-
ary condition IEq. (15)]. We realize that the de-
struction of the intrinsic phase correlations
present in Eq. (15) leads us to a simple geometri-
cal picture for the correlation field and the pseudo-
potential. The s.p. contributions to both of them
add'coherently to a unique square well, or barrier,
that reproduces the input, i.e., the hard core, in
an exact fashion. By contrast, we can see in (32)
that the infinite strength of the hard core acting
on a particular orbital q becomes smoothed away
in a series of individual wells, each of them ad-
mitting a finite intensity. In. fact, the full repul-
sive strength can be regarded with the sum over
the orbitals p, , even though the individual contri-
butions are finite. Of course, an actual calcula-
tion of (32) entails the unknown matrix o, z„which
is a continuous function of the s.p. labels in the
thermodynamic limit. This is the price we must
pay if we intend to save the microscopic phase
correlations that are present in the pair probabil-
ity ~% &,~(x„x2)~'. The numerical problem, namely
the discussion of the existence and convergence of

the solutions under these different constraints is
currently being explored and lies beyond the scope
of the present paper.

IV. SUMMARY

We have examined the constrained variational
principle that takes into account the geometrical
restrictions induced by the presence of a hard-
core interaction. %'e have expressed the "true"
boundary condition and shown that its effect on the
HF equations can be represented by means of a
state-dependent pseudopotential. This one-body
fieM can be analyzed under simplifying Ansatze
for the Lagrange multiplier function o~„( )x, and

its microscopic structure in terms of elementary
scattering or displacement events becomes appar-
ent. It is shown that, by contrast, the coherence
carried by the correlation function, when chosen
as a representation for the boundary condition,
gives rise to a macroscopic one-body field that
reproduces the exact initial problem if the corre-
sponding Lagrange multiplier becomes infinite.
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