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Exact solution of the Faddeev equations for the harmonic oscillator ground state
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The Faddeev equations in N space dimensions for three identical spinless particles in their ground state
interacting via harmonic oscillator, two-body potentials is solved analytically. Unlike the well-known

Schrodinger solution, the individual Faddeev amplitudes may be negative and contain a long-range
component of arbitrary strength. Upon symmetrizing to obtain the full wave function, this component
vanishes and the Schrodinger solution results. Three-dimensional plots of the various wave functions are
presented.
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The use of Faddeev techniques to calculate the
bound state wave functions of three-body systems
has become increasingly common. Most attempts
involve the use of momentum space techniques and
partial-wave projected forces. Several attempts
to solve the coordinate space version' of the
Faddeev equations have also been made recently
for the case of local. potentials. '~ Because there
is no simple physical interpretation of the indivi-
dual Faddeev amplitudes, as opposed to the com-
plete, fully symmetrized (Schrodinger) wave
function, it is difficult to develop an intuitive feel. —

ing for the structure of these solutions. In order
to facilitate this and to illustrate the difference be-
tween the two functions, we develop here an exact
analytic solution for the probl. em of three identical
spinless particles in their ground state interacting
via identical harmonic oscillator, two-body poten-
tials in N space dimensions. The complete force
in all partial waves will be used. This means that,
in principle, a partial differential equation in
three variables must be solved. For our problem,
symmetry requirements reduce this to an ordinary
differential equation in one variable.

The Schrodinger solution of the harmonic oscil-
lator problem is well known. We define our coor-
dinates so that the vector displacement of two
specially chosen particles (2 and 3) is x, while
y'= v 3/2y is the vector displacement of the third
particle from the center of mass of the other two.
The Schrodinger equation and its solution g in the
bound state rest frame is then given by' '

E=N(d = 2p/&/
(1c)

with P =v'Mk/2, &u, =(k/M)'/', and, in general,
E= (A —1)J&t&d,/2 for A particles of mass M. The
potential between particles 2 and 3 is kx'/6, the
factors having been chosen so that the potential is
krI2/2 for each particle, expressed in terms of its
separation from the center of mass, r, This
leads to the usual (/I-I) independent oscillators.

The Faddeev equations (actually, three identical
equations) are a specific decomposition of Eq.
(la), in terms of amplitudes p(x, y), which singles
out the interaction between particles 2 and 3:
2P'x'/3M. The Faddeev decomposition assump-
tion,

(I+P)p = g, (2a)

with P the sum of cyclic (P") and anticyclic
(P' ') permutation operators, leads one to three
identical equations for y, one of which is

V„+V„2P
It is easy to demonstrate that (2b) upon symmetri-
zation produces Eq. (1).

We can either solve the symmetrized version of
Eq. (2b) [i.e., Eq. (la)] or assume that we know
the solution g. This gives

(2p~+ / 2+ / 2)y —2P2x2e-8&
X

It is easy to demonstrate that p will be a function
of Px' and Py' only. Furthermore, we can replace
these two quantities by z =P(x2+ y') and p(x' —y2).
The quantity z is invariant under the operatorsP" and P' ', while P(x' —y') is not. One finds, in

284



22

fact,

"E F"»«V E R 'FHE.EQUA'flPNS F p

(5c)P(&(p 2 y 3

xone

U one writes y
.

function t
In terms o

7

& and an aux l.
& 1ary

P = e-~&""~'&g2'+ $,

one finds that

(2PN+ V„'+ V„')g(x '2 x 2
y 2) p2(x2 y 2)e8 + 2

(4)

(5a)

(5b)

results in the restr- t.

P/2 (x —y2)t.[p (p
Pa~t'Lal dit'fez"'"lai equation (5b) then 1

+44'+N =,- i.
which must be s le solved in order
Ch

' i bl toC ia es to r'=z and writing
z produces

I/
h (r)+rI'(r)+[2Nr' —(N+ 1)]h(r) = 2r""e-"'~'

(5d)

w y ( +P)$=-0, which
'

where obviousl '1+ =-, w ich '
( + =-, w ich is consistent

wer series sol tu i)on for ( and im
ing an approx'

an imposing Eq. (2b)
h

erential e
en ary

I

, pi, ,p(+-y')
+ 2r"+' XJ„+,($2Nr)+ w Y (v'2N¹'dtt "e I'JN e J„„(v'2Nt)

—mJ„„(&2Nr) dt t""e "~'e ' Y„„(42Nt)

where r'= p(x'++y') and x is an arb'arbitrary constant.
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FIG. 3. Complete Faddeev amplitude, $, without a
spur ious component.

solution has any features which would be typical of
a more realistic force model. In particular, is the
spurious component to be expected in such a calcu-
lation? While we cannot answer this question en-
tirely, we note that the spurious (Bessel) compo-
nent ar is es as a solution of the homogeneous par t
of Eq. (5), and satisfies the boundary conditions
only because the harmonic oscillator has positive
energies for all bound states. For negative ener-
gies, which apply to physical bound state prob-
lems, no such solution exists. The oscillatory na-
ture of the former amplitude is also quite likely an
artifact of the model we have solved. 'The Faddeev
amplitude can nevertheless be negative in physical
cases, even when the Schrodinger wave function is
positive definite. '

Several previous attempts have been made to
solve analytically the Faddeev coordinate space
equations. " These efforts use two-body forces
which have been truncated to exist only in s waves,
unlike our force. Nevertheless, an interesting
peculiarity of the harmonic oscillator ground state
is tha, t the total wa.ve function g does not depend on
the angles of x and y, but only on the magnitudes
x and y. Therefore, if we assume only s-wave
forces, the s-wave projection operation on P re-
turns g intact. Furthermore, the s-wave kinetic
energy operator is the same as Eq. (2b) with V„'
replaced by x' "9/9xx" '9/9x, etc. Thus, our so-
lution for the complete harmonic oscillator force
is also the solution for the s-wave force problem.
This condition will not necessarily hold for other
states of the harmonic oscillator, or for other
force models.

In summary, we have developed a solution for
the Faddeev equations for three identical spinless
particles in their ground state interacting via
harmonic oscillator two-body forces in N space
dimensions. The solution has a spurious compo-
nent of arbitrary magnitude and an oscillatory na-
ture which dominates for large x. Unlike the
Schrodinger wave function, the Faddeev amplitudes
are not positive definite.
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