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Lauro Tomio and Sadhan K. Adhikari
Departamento de Fisica, Universidade Federal de Pernambuco, 50.000 Recife, Pe, Brazil

(Received 31 October 1979)

A recently proposed method for t matrix Lippmann-Schwinger-type equations is reexamined and is

investigated numerically. The method relies on the introduction of an auxiliary equation containing an

arbitrary function, whose kernel is free from the fixed point singularity of the original equation. In the

present work we rewrite the final result of the method in such a way that it has all the important features

of a related method by Kowalski and Noyes and is simple to use in practice. With special choices of the

arbitrary function the present method can be considered as an off-shell extension of methods of Bolsterli, of
Kowalski, and of Sasakawa. The method also readily gives a practical way of calculating K matrix

elements. Using the iterative solution of the auxiliary equation the method is tested numerically to compute
off-shell t matrix elements for three commonly used nucleon-nucleon potentials for various choices of the
arbitrary function.

NUC LEAH HEACTIONS Singular scattering equations, nonsingular auxiliary
equations, off-shell t matrix elements and phase shifts computed.

I. INTRODUCTION

Numerical solutions of Lippmann-Schwinger-type
equations are usually performed by approximating
the integral equation by a matrix equation of finite
dimension. Such approximation needs a special
prescription such as contour rotation or delicate
treatment of a principal value integral because of
the occurrence of a fixed point singularity in the
kernel of the equation. Moreover, it is well known
that the iterative solution of such equations di-
verges except for weak potentials or for very high
energies. Such divergence is associated with the
occurrence of an eigenvalue of the kernel (of the
equation) of magnitude greater than one' (both at-
tractive or repulsive).

A recently proposed method' for solving fully
off-shell Lippmann-Schwinger equations for the
t matrix is reexamined. The method relies on
solving an auxiliary equation whose kernel is free
from singularities and is also sufficiently weak to
have convergent iterative solutions for a wide class
of potentials. The'solution of the original equation
is then related to that of the auxiliary equation.
The auxiliary equation contains an arbitrary flex-
ible function and this makes the method sufficient-
ly general to include various other methods as
special cases.

Sasakawa' proposed an efficient method for com-
puting phase shifts using a wage function descrip-
tion of scattering. Kowalski has shown that the
Sasakawa approach can be refarmulated to yield a
practical method for computing half-on-shell t ma-
trix elements using the momentum space Lippmann-
Schwinger equations. The present method as has

been demonstrated in SA is a generalization of the
Kowalski-Sasakawa method4 to the case of fully
off-shell t matrix elements.

In the present work we rewrite the result of SA
in the form first presented independently by Kow-
alski and Noyes' (KN). Although the kernel of the
nonsingular equation of the present method is in
general different from that of KN, it has all the
essential features of that formulation and is sim-
ple to implement in practice. The present method
is more general than the usual version of the KN
method, because the arbitrary flexible function of
the present method can be conveniently chosen in
order to build in various desirable features in the
formulation.

Kowalski' showed that a recently proposed meth-
od by Bolsterli' for computing phase shifts belongs
to the Kowalski-Sasakawa class" and can be gen-
eralized to compute half-on-shell g matrix ele-
ments. For a particular choice of the arbitrary
function the present method is shown to be a gen-
eralization of the Bolsterli-Kowalski method''
for computing the fully off-shell t or K matrix ele-
ments.

The kernel of the auxiliary equation apart from
being nonsingular is also weaker in nature com-
pared to the original equation. Coester' studied
the convergence properties of iterative solutions
of the auxiliary equation analytically. In the pres-
ent work we study the convergence properties of
the iterative solution numerically for different
choices of the arbitrary function for the Yukawa,
the Malfliet-Tjon, and the Beid soft-core 'So po-
tential.

The plan of the paper is as follows. In Sec. II

22 1980 The American Physical Society



22 METHOD FOR SCATTERING EQUATIONS. II. ITERATIVE. ;. 29

For the sake of completeness we give a brief
resume of the method following SA. (For a com-
plete review including a discussion of multichan-
nel problems see SA.) The partial wave Lippmann-
Schwinger equation ('suppressing the partial wave
index and in units k =2m = 1) can be written as

( p I ~ (&)I+ (&pi v I ~&+ —„f q'qq& q I v I q&

x(k' —q'+ie) '(ql t(z) lr)
(1)

where k' =E and the integration limits in Eq. (1)
and throughout the rest of the paper are from 0
to ~. The on-shell t matrix element t(k) is re-
lated to the phase shift 6 by

t(k) =(kit(z) Ik&= k-'e" sino.

Next we introduce a function y(k, q) such that

y(k, k) =1.

(2)

We also introduce three operators A, t/, and IIO

defined by

and

& plA(z) lq&=[& plvlq& —
& plvlk& ~(k, q)]

x(k' —q'+is) ',
& plvlq&=(plvlk),

(4)

(5)

we give a brief resume of the method, write it in
the KN form, ' discuss various choices of the arbi-
trary function and exhibit relation with other meth-
ods. In Sec. III we report numerical results for the
three above-mentioned potentials, and finally in
Sec. IV we give a discussion and some concluding
remarks.

II. THE METHOD

(pie, (Z) Iq&=5(p -q)(k'-q'+is) 'y(k, q). (8)

Then the original Lippmann-Schwinger equation
can be rewritten as

t(Z) =V+V(z)H, (z) t(E)+A(E) t(E). (q)

Next we introduce the auxiliary equations

r(z) = v+ A(z) r(z),
with nonsingular kernel A(z). Then t(z) is ex-
pressed in terms of the solutions I'(E) of nonsingu-
lar Eq. (8) as

& p I t (z) I r& =
& p I r(z) lr)+ ( p lr (E) Ik& I (k, r),

with

I(k, r)
2/~ f q'dq(k'-q'+i~) 'r(k, q)(qlr(z) Ir&

1 —2/m f q'dq(k' —q'+iE) p(k q)(qlI (E) lk)
(10)

Equations (4), (8), (9), and (10) are the fundamen-
tal results of SA. The kernel A(z) of Eq. (8) is
nonsingular. This method can be readily used for
K matrix elements also. The only modification we
need to make is to replace the t matrix t in Eq. (9)
by the K matrix K and the integrals in Eq. (10) by
their principal values.

Next we show that our final result given by Eq.
(9) can be written in a simpler form which was
originally presented independently by Kowalski
and Noyes. ' In order to achieve this we note from
Eq. (9) that for r =k the half-on-shell t matrix ele-
ments become'

& pit(z) lk»= "'"' '
t(k)

& k lr(z) lk&

wi.th

1
((q) = &q iv(&) Iq& ) ——f q'qq(q' —q'+(e)'y(qq)&qlv(z) iq&,

Similarly for p =k Eq. (9) becomes

&k I t(z) lr&= &k Ir(z) lr&+&k lr(z) Ik) I(k, r).
Using Eq. (13), Eq. (9) can be rewritten as

( pl t(z) Ir) = (p Ir(z) lr&+ [&k I t(z) Ir&- &k lr(z) lr&1 ~

&klr(z) Ik&

Using Eq. (11) and remembering that (pit(z) lk)=(kit(z) lp&, Eq. (14) becomes'

iqlv(q)lq), , &~ir(q)lq&', „q „&qlv(q)iq)iqlv(~)i~&
Ii.(klr(z) lk& (klI'(E) lk&, (klI'(z) lk)

(12)

(14)
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Equation (15) is the desired equation. The quanti-
ty in the square bracket is the KN approximation'
to the t matrix and because of Eq. (11) is exact
half-on-shell. The second term in the curly brack-
et of Eq. (15) is the fully off-shell residual term
and is zero half-on-shell. Equation (15) is sim-
pler to use than Eq. (9) and is more general
than the KN method. In Eq. (9) we need to cal-
culate the function I(k, r), whereas in Eq. (15) we
need to calculate t(k) given by Eq. (12). A glance
at Eqs. (9) a,nd (12) tells that the calculation of t(k)
is simpler than that of I(k, r) for arbitrary r
Moreover, if the iterative solution for I' is em-
ployed Eq. (15) yields a symmetric half-on-shell
t matrix whereas Eq. (9) does not. The original
version of the KN method can be considered as a
special case of the present method containing an
arbitrary function y. It is to be noted that the
kernel of the present nonsingular equation is in
general different from that of the KN method, but
they can be made equal for a special choice of y
as we shall see in the following. Next we consider
various choices of y and their consequences,

A. Sasakawa choice

The original description of Sasakawa theory
uses'

C. Blasczac-Fuda choice

Blasczac and Fuda" recommend using

q(q, q) = (-,')' (20)

for the Lth partial wave and claim following Coes-
ter' that such a choice for y will give a converging
iterative solution for I' for a wide class of poten-
tials.

4(~) -Il(~, k)
1 -B(k, k)

(21)

with (t&(k) = 1 (in the If' matrix formulation of the
present method), where

q(q q)=)' —f q(q)q'qq(q'-q'+qq) '(qlvlq) .

(22)

Iq in Eq. (22) denotes the principal value prescrip-
tion for the integral. This choice of y has certain
advantages in using Eqs. (9) and (15). In the imple-
mentation of Eq. (9) or (15) we need to evaluate in-
tegrals of the type we encounter in Eq. (10). Prin-
cipal values of such integrals are written as

D. Bolsterli-Kowalski choice

Kowalski' demonst. "ated that the method proposed
by Bolsterli' corresponds to taking

r(k, 4) =— (16) q(q) = p —f q'qq(q' q'+(q) 'y (q, q)

for L, =0. Sasakawa demonstrates that this choice
gives rapid convergence of iterative solution of I'
for Yukawa, square-well, and some other poten-
tials.

x&qli'(z) lr) . (23)

The explicit momentum space matrix element of
(8) can be written as

If we take

8. Kowalski-Noyes choice &4 li (E)I.&= «I vl. &

+ p — p'dp q V p k' —p'+ ie

&klvlq&
&klvlk&'

(17)

the kernel A becomes the kernel of the KN method.
It is obvious from Eqs. (4) and (8) that with this
choice of y

&k li (E) lr&= &k I vlr&, (18)

and hence Eq. (15) becomes

p I « I
=

'& p IP(&) Ik& t „&rIP(&) Ik&

&klvlk& &klvlk&

+I(ql)'(~)l. &-(q(q(q&lq)
' ' "

&kl vlk&

(19)

t(k) of Eq. (19) is defined by Eq. (12) with y given
by Eq. (17).

(25)

&(r) =II(r, k). (26)

Hence I(k, r) given by Eq. (10) in the t matrix for
mulation takes the simple form

a(r, k) tk&k lr(Z) Ir&
1 a(k, k)+tk&kll'(E) lk)

t(k) of Eq. (12) also takes the simple form

x& p II'(E) lr& &(I I vlk& v'(r

(24)

With the help of Eqs. (21), (22), and (24), Eq. (23)
becomes
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t(k}= &k II'(E) Ik& [1-8(k,k) +@&kII'(E) lk&]
'

(28}

Hence once 9 and y are calculated we do not need
to evaluate any integrals to calculate the fully off-
shell t matrix elements. We may use Eqs. (9) and
(15) with Eqs. (27) and (28). The original version
of the Bolsterli-Kowalski method" was for half-
on-shell K matrix elements. Here we have gen-
eralized the method to the case of fully off-shell
K or t matrix elements. In the case of the. K ma-
trix elements the imaginary quantities in Eqs. (27)
and (28) should be set equal to zero.

E. Coester choice

Coestera suggested that the choice
&klan(E)l~&

&klan(z)lk&

(29)

has certain advantages. We show that this choice
makes the half-on-shell t matrix elements
(k I t„(E)Ir) given by Eq. (13) exact for each order
of the iterative solution of Eq. (8), where the suf-
fix N here and in the following denotes the order of
iteration. From Eq. (13) we have

&k I t.(E) lr&= &k li.(E) lr&

+ &k lr„(Z) Ik& I„(k,r), (30)

potential, the Malfliet-Tjon potential, and the Reid
soft-core 'Sp potential. Of these the last two are
particularly important because they have highly
repulsive core at short distances, and hence the
sign of the phase-shift changes at high energies
as in the realistic nucleon-nucleon potential. We
calculate numerical results using the iterative
solution of Eq. (8) for I'. Already there exist nu-
merical results" employing an iterative solution
for 1" in the case of half-on-shell t matrix ele-
ments for the Reid soft-core 'S, potential for
y(k, q) =1. The present numerical calculation is
more general than that of Ref. 10 in that here we
use various choices of y and calculate fully off-
shell t matrix elements using both Eqs. (9) and
(15). Of course, if the exact solution of 1" is em-
ployed both these forms will lead to the same re-
sult. But if an approximate iterative solution of
I' is used one may lead to better convergence prop-
erties than the other. It is intuitively expected
that the manifestly more symmetric form (15},
which is symmetric for half-on-shell. t matrix
elements if an iterative solution for I' is used,
mill lead to better convergence properties. Here
we present results for the S wave case only be-
cause the convergence for higher partial waves is
expected to be more rapid than that for the S wave.

The Yukawa potential we use is defined by" .

where by Eqs. (10) and (29) we have V(r) =-V, r 'e "", (33)

where

&k I~~(E) Ir)
t(k)-&kl~„(z)lk& '

where Vp 65 246 MeVfm and p 0 6329 fm ',
which has a single bound state at an energy
E =-2.240 MeV. We also use the two term soft-
core potential of Malfliet and Tjon, defined by"

Z „(S)=t(E) G,(E)l"„(E),
with

&elG.(E) IP&=5(p -e)(k'-P'+~e) '.
In order to prove our claim we make use of the
following identity

&k I f (E) lr& = &k Ir„(E)lr&+ &k l~„(Z) lr& . (32)

A proof of this identity is given in the Appendix.
Using Eqs. (30), (31), and (32) it is trivial to
check that (k I f ~(E) I r) = (k I t (Z) I r& for any N.
But this proof does not assume a convergent iter-
ative solution for I'. In other words, Eq. (29) for
y does not 'necessarily guarantee a convergent
iterative solution for I'. But even with such di-
vergent 1"„the half-on-shell t matrix given by Eq.
(30) will be exact for each order of iteration.

III. NUMERICAL CALCULATIONS

To see how the method works in practice we car-
ried out numerical calculations with the Yukawa

V(r) = V„r 'e»"
V+~ re»",

where V„=181.5422m MeV fm, Vz =457.8828m
MeVfm, p, „=1.55 fm ', p. „.

=3.11 fm ', which has
a single bound state at an energy E = -0.35 MeV,
and finally the Reid soft-core 'S, potential, de-
fined by"

V(r) =[V,e ~" +V e ~" +V e ~"](P r) ' (35)

where P, =0.7 fm ', P, =4P, , P, =7P, , V, =-10.463
MeV, V, = -1650.6 MeV, and V, = 6484.2 MeV.

As in Ref. 10 first we convert the integrals from
0 to ~ to integrals from -1 to 1 and use Gauss
quadratures to change the integral equation for F
to a matrix equation. The number of Gauss quad-
ratures used for this purpose was typically of the
order of 32 except in the case of the Reid soft-
core 'Sp potential where we needed more points in
general in order to achieve the same numerical
accuracy. Finally, the resultant matrix equation
for I" is solved by the method of iteration in double
precision in an IBM computer.

It was easiest to achieve convergence in the case
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- I. 2

.8

Bet(p, .29 E c.m. ~

E = I2MeV

I I I

.5 I 2

¹2

5 IO .2 .5 I 2
p(fm )

-0.6

-l, 2

not present a similar table for the Reid soft-core
potential which has already appeared in Ref. 10.
(We repeated the calculations in this case and
agree with the results of Ref. 10.)

The final results in Figs. 1-3 and Tables I and
II show that both the off-shell t matrix elements
and the on-shell elastic scattering phase shifts
converge rapidly and uniformly, except in the case
of the Beid soft-core potential where the conver-
gence is slower because of the strong repulsive
core this particular potential possesses. For
other choices of y where the method does not con-
verge at all energies it converges as the energy is
increased. Usually in such cases the iterative
solution converges at a much lower energy com-
pared to the original Lippmann-Schwinger equation.

4
IV. SUMMARY AND DISCUSSION

-0,6

4

—.8

—1, 2

—l.2

.2 .5 I 2
f I I

5 IO . 2 .5 I 2

p(frn ')

'- I.8
I

5 IO

FIG. 3. The real and the imaginary parts of the off-
shell t matrix elements for the Malfliet- Tjon potential
calculated using Eq. {15)for {a) y=1, and for {b) the
Kowalski-Bolsterli choice.

the real and imaginary parts of off-shell t matrix
elements t(p, q) for q =0.29 fm ' and E„=12 MeV
for y=1 and for the Bolsterli-Kowalski choice
(21) of p with Q(p) =1, respectively. The approxi-
mate t matrix elements are practically symmetric
in the case of the Malfliet-Tjon potential, and
hence we do not show the transposed t matrix ele-
ments t(p, q) in this case. The convergence is
much better in this case than in the case of the
Reid soft-core potential. Of the two y's considered
y =1 gave better convergence properties in this
case.

Finally we consider the Yukawa potential. In"

this case we find that the iterative solution for I'
eonverges at all energies for all the choices of the
y's mentioned in Sec. II except for the Bolsterli-
Kowalski choice. The convergence is the fastest
in this case because the potential has no soft core.

We show in Table I the elastic scattering phase
shifts for the Yukawa potential for various choices
of y; compare with the exact results and study the
convergence properties. Table II gives the same
quantities for the MalQiet- Tjon potential. We do

Here we critically analyze a recently proposed
method for Lippmann-Schwinger equations both
analytically and numerically. The method uses
the solution of an auxiliary nonsingular equation
whose kernel is free from the fixed point singu-
larity of the original equation. We mrite the final
solution in a form which enjoys all the advantages
of the method proposed independently by Kowalski
and Noyes which is simple to implement in
practice. We test the accuracy of the method nu-
merically by employing an iterative solution for
the auxiliary nonsingular equation, and find that
the method gives good convergence. When the
iterative solution of the auxiliary equation does
not converge, of course, we have to use some ex-
act method for solving this equation. The method
manifestly satisfies constraints of on-shell uni-
tarity and hence yields real phase shifts corre-
sponding to each order of iteration and can be used
to make unitary approximations to the t matrix.
Similar ideas can be used to make unitary approx-
imations to the three-body t matrix.

There is, of course, an arbitrariness in the
choice of the function y in the present method.
However, this arbitrariness can be turned to good
advantage, as has been done in this paper, by
varying the function so as to obtain the best con-
vergence. With appropriate choice for y the pres-
ent method mill be an efficient method for solving
Lippmann-8chwinger equations.

Both the authors thank the CNPq of Brazil for
research fellowships. The work was also partially
supported by the FINEP of Brazil. This work is
based on parts of a thesis to be presented by L.T.
to the Universidade Federal de Pernambuco for
partial fulfillment of the requirements of a Doc-
tor's degree.
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TABLE I. The on-shell phase shifts for the Yukawa potential for differentN and the exact
phase shifts at different energies. The exact results are taken from Ref. 11.

@C.D1.

(MeV) Exact 1Q 12

12 1.5053 Choice A 0.9736 1.3264 1.5003 1.5087 1.5060 1.5054 1.5053
Choice B 1.1313 1.3710 1.4820 1.5011 1.5046 1.5052 1.5053
Choice C 2.0527 1.2186 1.5110 1.5054 1.5053 1.5053 1.5053

1.2818 Choice A 0.9037
Choice B O.S92S
Choice C 1.7864

1.0803 Choice & 0.8200
Choice B 0.8689
Choice C 1.5054

1.2069
1.1975
0.8860

1.0694
1.0345
0.9714

1.2929
1.2704
1.2881

1.0880
1.0755
1.0851

1.2833
1.2803
1.2819

1.0803
1.0798
1.0804

1.2819
1.2817
1.2819

1.0803
1.0803
1.0803

1.2819
1.2819
1.2819

1.0803
1.0 803
1.0803

1.2819
1.2819
1.2819

1.0803
1.0803
1.0803

0.9725 Choice A. 0.7675
Choice B 0.8014
Choice C 1.3413

0.9S22 0.9768 0.9723
0.9426 0.9698 0.9723
0.9227 0.9761 0.9725

0.9725
0.9725
0.9725

0.9725
0.9725
0.9725

0.9725
0.9725
0.9725

104 0.8810

152 0.7928

Choice A
Choice B
Choice C

Choice &
Choice B
Choice C

0.7185
0.7426
1.1969

0.6670
0.6837
1.0557

0.9007
0.8616
0.8588

0.8163
0.7808
0.7854

0.8832
0.8795
0.8836

0.7936
0.7920
0.7945

0.8809
0.8809
Q.8810

0.7927
0.7928
0.7928

0.8810
O.S810
0.8810

0.7928
0.7928
0.7928

0.8810
0.8810
0.8810

0.7928
0.7928
0.7928

0.8810
0.8810
0.8810

0.7928
0.7928
0.7928

176 0.7604 Choice A
Choice B
Choice C

0.6469
0 ~ 6614
1.0038

0.7842
0.7506
0.7565

0.7609 0.7604 0.7604
0.7598 0.7604 0.7604
0.7618 0.7604 0.7604

0.7604
0.7604
0.7604

0.7604
0.7604
0.7604

APPENDIX

Here we present a, proof of Eq. (32). Using the iterative so1ution for I', the right-hand side (RHS) of Eq.
(32) can be written as

HHs=&ul[1+f(z)G, (z)][v+a(z) v+x'(z) v+" +a"(z}v]i~&
= &~ It (z) l~&+ &~ l[~(z)+ t (z) G.(z)~(z)]1. ,1.&. (A1)

TABLE II. Same as in Table I but for the Malfliet-Tjon potential. The exact results are taken from Ref. 11.

Exact 10 12

12

104

1.0997 Choice C 0.1719
Choice D 0.1840

0.8370 Choice C 0.1376
Choice D 0.1570

0.5501 Choice C 0.0593
Choice D 0.0712

0.3730 Choice C -0.0034
Choice D -0.0042

0.2083 Choice C -0.0673
Choice D -0.0834

0.6055
0 -6507

0.4682
0 ~ 5830

Q.2794
0.4086

0.1526
0.2648

0.0319
0.1153

1.0921
O.SVSS

0.8286
0.7997

0.5359
0.5334

0.3577
0.3605

0.1928
0.2009

1.1005
1.0600

0.8371
0.8335

0.5500
0.5538

0.3 730
0.3784

0.2082
0.2140

1.0998
1.0851

0.8370
0.8367

0.5501
.0.5504

0.3730
0.3729

0.2083
0.2076

1.0997
1.0941

0.8370
0.8369

0.5501
0.5499

0.3730
0.3728

0.2083
0.2081

1.0997
1.0976

0.8370
0.8370

0.5501
0.5501

0.3730
0 ~ 3731

0.2083
0.2Q84

152 0.0358 Choice C -0.1366 -0.0949
Choice D -0.1703 -0.0504

-0.0311 Choice C -0.1635 -0.1438
Choice D -0.2041 -0.1157

0.0211
O.Q363

-0.0452
-Q.0272

0.0356
0.0403

-0.0313
-0.0275

0.0358
0.0347

-0.0311
-0.0323

0.0358
0.0358

-0.0311
-0.0310

0.0358
0.0358

-0.0311
-0.0311



METHOD FOR SCATTERING EQUATIONS. II. ITERATIVE. . .

Next we show that with choice (29) for y

(a)[&(z)+t(z)G,(z)w(z)]l q&=0, (A2)

and the second term on the right-hand side of (Al) vanishes, and hence the right-hand side of Eq. (32) be-
comes equal to its left-hand side. In order to prove Eq. (A2) it is easy to see using Eqs. (I) and (4) that
its left-hand side can be vrritten as

&all'le&-(al~la& (a'-e'+t~) '+C&alt(z)l~&-&all"le&}
&a) t(z) Ia&

- C(a) t(z) la&-(a)via&} (a'-q'+t~) '=0. (As)
&a I t (z) I a&

This completes the proof of Eq. (32).

S. Weinberg, Phys. Rev. 131, 440 (1963).
2S. K. Adhikari, Phys. Rev. C 19, 1729 (1979); referred

to as SA in the text.
3T. Sasakawa, Prog. Theor. Phys. Suppl. 27, 1 (1963).
K. L. Kowalski, Nucl. Phys. A190, 645 (1972).

5K. L. Kowalski, Phys. Rev. Lett. 15, 798 (1965); H. P.
Noyes, ibid. 15, 538 (1965), referred to as KN in. the
text.

K. L. Kowalski, Phys. Rev. C 10, 366 (1974).
VM. Bolsterli, Phys. Rev. Lett. 32, 436 (1974).

F. Coester, Phys. Rev. C 3, 525 (1971).
A preliminary account of the derivation of Eq. (15) has
appeared in S. K. Adhikari and L. Tomio (unpublished).
D. Blasczak and M. 6. Fuda, Phys. Rev. C 8, 1665
(1973).
I. R. Afnan and J. M. Bead, Aust. J. Phys. 26, 449
(1973); S. K. Adhikari and I. Sloan, Phys. Rev. C ll,
1133 (1975); H. A. Malfliet and J. A. Tjon, Nucl. Phys.
A127, 161 (1969).

' R. V. Reid, Jr. , Ann. Phys. (N. Y.) 50, 411 (1968).


