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Equations-of-motion method and pairing correlations in odd-A nuclei
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An equations-of-motion method is presented for treating pairing correlations in odd-3 nuclei. This method is the
natural extension of a previous study of the pairing problem in doubly even nuclei, which provides the input data for
the present work. It is shown that the spurious states arising from the use of an overcomplete set of basis vectors can
be removed through a procedure analogous to that developed for the doubly even case. The energies, spectroscopic
factors, and occupation probabilities of seniority-one states in the Ni isotopes are calculated in the first-order theory.
By comparison with exact results, the accuracy of the method is seen to be very good.

[NUCLEAR STRUCTURE Equations-of-motion method in pairing-force theory. ]

I. INTRODUCTION

The problem of treating pairing correlations
both in even and odd nuclei by means of the equa-
tions-of-motion method has been investigated by
various authors. In this context, the full treatment
of the equations of motion for single-fermion
operators has led to methods' ' involving itera-
tion across even and odd nuclei simultaneously.
As a consequence, this kind of approach is quite
involved in application. By contrast, it has been
shown' ' that the use of the equations of motion
for pair creation operators leads to a simple theory
which involves iteration only across even nuclei.

In a previous paper, ' hereafter referred to as I,
we presented a new formulation of this theory,
which permits one to treat pairing correlations in
systems of even numbers of identical nucleons with
a limited amount of computational labor. The main
point of I is that the spurious states arising from
the use of an overcomplete set of basis vectors
are identified and removed at each step of the
iteration procedure. Applications of the theory
at various orders of approximation" gave very
accurate energies, occupation numbers, and two-
particle transfer amplitudes in the test case of the
even Ni isotopes.

In this paper we present a treatment of pairing
correlations in odd nuclei, which is a straight-
forward extension of the method described in I.
More precisely, we solve the equations of motion
for an odd particle making use of the solution of
the doubly even problem. The elimination of the
spurious states is carried out through a procedure
similar to that developed in I. The accuracy of
the method, as tested by calculating the energies
and spectroscopic factors of seniority-one states
for the odd Ni isotopes, turns out to be excellent
even at the lowest order of approximation (first-
order theory).

II. FORMULATION OF THE THEORY

A. The equations of motion

We consider the pairing Hamiltonian

H = ~, Nj — Gjj'. A'jA, ,
j j 1'.

'

where

Nj=~a, . aj (2)

a,nd

m&0

( )g+ map

We shall consider, in the following, states of
seniority one in odd nuclei. The wave function for
a system of an odd number ++1) of identical par-
ticles can then be related either to the seniority-
zero states of the system with iV particles or to
the seniority-zero states of the system with (N+2)
particles. We have

(4)

and

tH, at ] = (e, —G, )at —g G,, ~ a, ~, (6)

[H, aq-] =

-&qadi

——~ Gqg aj A; (7)

Inr+1, fjm) = g g„.(V +1)a,—.IX+2, n),

where P and n specify the states containing N and
(N+2) particles, respectively, and P stands for
all the quantum numbers of the seniority-one
states other than (jm). The coefficients c„sQ+1)
and g»„(IV+1) are taken to be real

The equations of motion for g,. and gj —are
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where GJ =—6&, . Taking matrix elements of (6) and

(7) one has" SPPs(y+1) = Z cwe (y+1@~s s(y»
8 P

(16)

Z»(N+1)S,»(y+1) = S»e(N)S» e(y+ I)

+ hj g +2Tp ~ +1

(8)

Tw„(y+I) =-— cp, e(N. +1)Xp„s(N+2), (17)
1

q Pga

where

B,e s(y) =(N, P ia, aJ iN, P) =6ee —Pgs s(N)

(18)

&„(y+1)T„„(N+1)= 8, „(y+2)T».(y+1)

+ ga, .„(y+2)S„.e(N+ I), (9)

with

are the elements of the metric matrix of the
(y+1)-particle states a~& iy, p). From the nor-
malization condition (N +1,pjmiN+1, pjm) =1 it
follows that

S, ,(N) = s, +&,(N) —G, ,

g, (y+2) =E,(y+2) —e, „

a, e(y+2) =-QG„X; s(y+2),
j P

X,«(y+ 2) =(N+2, o. iAtP iy, p).

The spectroscopic amplitudes S»e(N+ I) and

TP, „(y+I) a. re defined as

S„,(y+I) =(y+I pi I a). IN p),

TP, (N+1) = (.N +1,pjm i a& iN +2, o )—.

(10)

(ll)

(12)

(14)

c,»(N+1)S,»(y+1) =1. (19)

c„.,(y+1) = —0, g q, .e(y+2)T„.,(N+I),
t erP]

(20)

where y j &
is the cofactor of X, , &

divided by
detX, and the notation io. 'J indicates a sum res-
tri.cted to n8 values. Substitution of expression
(20) for c»e in (16) yields the following relation
between the amplitudes S~ja and T~,.

Sp~s(y+1)=Z &~ eT» (y+I» (21)

Inverting any set of na linearly independent equa-
tions extracted from the n (n„~ n s) relations (17),
we obtain

Of course, when the sums on o. and P run over
all existing seniority-zero states, either Eq. (8)
or Eq. (9) permits one to solve the problem ex-
actly. It should be noted, however, that different
numbers of core states (n, ns) are involved in

these two equations. As a consequence, when

approximations are made, one should use Eq. (9)
in conjunction with the wave function (4) for
1 «(N+ 1) «0 (where 0 =p&0& is the total pair
degeneracy of the system) and Eq. (8) in conjunc-
tion with (5) for 0 «(y+I) «20 —1. This is not
quite true, however, when the core states are
restricted to only one state. Indeed, this case
requires a special discussion which will be given
in the next section.

In this section we shall present the formulation
of the theory which is based on the use of Eqs.
(4) and (9). In other words, we shall consider ex-
plicitly systems in which the number of particles
outside closed shells is not larger than half of
the total number of available states. The formalism
for systems with holes inside closed shells can
be readily derived along the same lines.

The one-particle transfer amplitudes S» e(N + I)
and T» (y+I) are related to the coefficients
cP, s(N+1) of (4) through

with

- j~'8 j Xje'8' jB'8 + (22)

QM, ,„.TP, ~.(N.+1) =EP, (N+1)TP, (y.+1),
(a ']

with

MPan =&~a(N+2)~~~ +Z&P~s(N+2)&~~ s.
8

(24)

The single-particle occupation probabilities
n». '(y+1), defined by

v»'(N 1) =+- (N+1, pjm IN, IN+1, pram), (25)
2Aj

are obtained from the relation

v~, '(N+1) = + c». e(y+I)
1

Bi

x S . s (N + 1)p, s, s (N), (26)

Inserting now (22) into (9), we obtain the eigen-
value equation
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which can be readily derived by making use of the
expansion (4}.

From the above it is clear that the solution for
the odd nuclei can be found in a very simple way
using as input the results for the doubly even
problem. '

B. Elimination of the spurious states

The use of an overcomplete set of basis vectors
a, IN, P) in (4) gives rise to spurious states in the
problem of odd nuclei. Here we present a pro-
cedure to resolve the above difficulty, which is
quite close to that developed in I for the case of
doubly even nuclei. We start by diagonalizing the
n s xns metric matrix (18}for each value of the
angular momentum j (for simplicity we neglect the
possibility of changes in the principal quantum
number). The overcompleteness of the set of
basis vectors implies that some eigenvalues must
vanish. This entails (we employ the abbreviation

where

ct)si(N+1) =icy s»(N+1)(gs»si
8/P

(33)

Elimination of the coefficients c»s, from (31) and

(32) yields

S» s(N + 1) = Q K, „sT(,i „~(N + 1),
fn'J

(34)

M,. Tq,. +1 =Fq, +1 gq, &+1
(n'&

(35)

where M is the ~, xyg, matrix

I'..., = g, .(N+ 2)6.„,

where K, , s is defined in Eq. (22}, and the notation
fo. 'j indicates a sum restricted to n, values.

Finally, the eigenvalue problem (23) can be re-
formulated as follows:

gf,",)ljp&=0, i=1 ton, ,
8

(27)
+ Aj 8/& ++2 g ' IBtl/ 'Hlt8tll ~

8ll Bitt

(36)

where the b,'. 8'are the coefficients of the decompo-
sition of ith eigenvector of vanishing norm in
terms of the overcomplete set I jP&, and n, is the
number of spurious states. Making use of the n,
relations (27}, it is a simple matter to determine
the coefficients of the expansion of the n, spurious
vectors I( jP),) in terms of the n, good vectors
l(jp),&,

l(jp).&= Z &(gs),(;s), I(jp),&. (28)
(/8)

Then each of the ns vectors I jP) may be written as

S» s r(N + 1) = g $) sii si iS» s» (N +1)' (37)

III. FIRST-ORDER THEORY AND ITS APPLICATION
TO Ni ISOTOPES

Although M is not symmetric, it can be shown'
that all solutions of Eq. (35) have real energies.

It should be noted that once the coefficients
c»s, (N+1) have been determined, Eq. (31) gives
only n, amplitudes S„s(N+1). The remaining
(ns n, } a—mplitudes can be obtained from the rela-
tion

Ij p&
= g &y s s' IN'& i

where the n s x n s matrix $ is defined by

5 s s if I jP) is nons pur ious,

I
k~ s, s, if

I jp) is spurious and I jp')
&~ss =&

nonspur ious,

&0 if both
I jp) and

I
jp') are spurious.

(29)

(30)

I
N + 1, jm) = c, (N + 1}ay~~ I N& ~ (38)

We now turn our attention to the first-order
theory, wherein the cores states are restricted
to one state. In this case the procedure described
in Sec. II is greatly simplified and the equations of
motion are trivially solvable.

The wave function IN+1, jm& can be written in

two ways, either as

Assuming now that the pairs of indices ( jP), ( jP )
refer to nonspurious states and using Eqs. (16),
(17), and (29), we obtain

or as

IN+1, jm& =g, (N+1)a IN+2), (39)

$»s(N + 1) Q c»s (N+ 1)Rg l (ss)N
gl

1T„(N+1)=-— c„,(N+1)x, „s,(N+2),g

(31)

(32)

where IN) and IN+2) are the ground states of the
N- and (N +2}-particle systems, respectively
(from now on we drop the quantum numbers n, p,
and j)}. Since the two vectors aJ IN) and a, IN+2)—
correspond (approximately) to only a single state,
it follows that one eigenvalue of the metric ma-
trix,
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X~ +2

6t =/

+2
0;

(40)

Making use of the normalization condition,

c,.(N+ I)S,(N+ i) = i,
we immediately find that

S,'(N + i) = i —p, (N), (48)
is =0. Thus, in a good approximation, we have

b, aJ ~N)+f, a; (N+2)=0,

from which we obtain

S,(N+1) = k, (N +1)T,(N+1),

where

(4i)

(42)

(49)

Note that Eqs. (45) and (46) imply a relation be-
tween the S&(N+I) and T,(N+1) which is just
the same as (42). The occupation probabilities are
obtained by using Eq. (26) which reduces to

~f 6lii f~;I.1 —p, (N) l (43) c,'(N+I) =p~(N)+
1

20; (50)

Then, by use of the relation (42), the eigenvalue
equation (23) reduces to

E,(N+1) = b, (N+2) + k, (N + I)a, (N+ 2) . (44)

S,(N+ I) = c,(N+1)II —p, (N)1,

T, (N+1) =-c,(N+1) i „X +2)

(45)

(46)

Now the question arises as to which one of the
two wave functions (38) and (39) represents a
better approximation to the low-lying states of the
(N+1)-particle system. Clearly, neither of them
takes account of the blocking effect of the pairing
force. It is, however, easy to see that the spec-
troscopic amplitudes S,.(N+I), T,(N+I) and the
occupation probabilities v~ (N+1) are not insensi-
tive to the choice (38) or (39). Therefore we give
a simple criterion of how to choose the wave func-
tion ~N+1, jm) which leads to the best results for
the above quantities. One chooses as core basis
state the vector which has the smaller weight in
(41), ~meiy a&' IN) if Ikpl)1, and a&mlN+2) if
~k~ ~& 1. The reason is that this vector is the one
which is less affected by the ]ack of antisymmetri-
zation between the core and the extra particle.

We first consider the case ~k~ j) 1. Then from
Eq. (38) it follows that

We turn next to the case
~ k~]& 1. Then the

choice of the wave function (39) leads to

T,(N+I) =g, (N+I)p, (N+2),

S,(N+ I) = -g,.(N+ 1)

(5i)

and the normalization condition becomes

g, (N+ I)T,.(N+ I) =1.

From Eqs. (51), (52), and (53) we obtain

(53)

T,'(N+ I) = p, (N+2),

X~'(N +2)
n' (N 2)

(54)

(55)

Using Eq. (39), we find for the occupation prob-
abilities

v, '(N+1) = p, (N+2)— 1

2Q~
(56)

in contrast to the previous case, Eqs. (51) and
(52) yield a relation between the amplitudes
S&(N+ I) and T&(N+I) which is different from (42).
This is because the choice of the wave function
(38) or (39) implies a different approximation for
these quantities. Actually, it can be easily verified

TABLE I. Values of the energies &~ (N +1) of the various seniority-one states for the Ni isotopes (MeV). The
columns labeled P.W. are the results of the present work.

3 5 7 9 11
Exact BCS PW. Exact BCS PW. Exact BCS PW. Exact BCS PW. Exact BCS PW.

-093 -048 -086 -0 74 -021 -068 034 090 037 234 314 232 555 619 557
-0.47 -0.14 -0.50 -0.83 -0.20 -0.83 -0.07 0.63 -0.11 1.69 2'.62 1.62 4.80 5.50 4.71
0.23 0.48 0.22 -0.23 0.23 -0.20 0.30 0.83 0.32 1.73 2.47 1.65 4.07 4.96 4.22

3.10 3.28 3.10 2.55 2.90 2.60 2.95 3.33 3.01 4.23 4.69 4.29 6.43 6.70 6.48
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TABLE II. Values of the spectroscopic factors S~2(N+1) for the odd Ni isotopes.

3
Exact P.W.

5
Exact P.W.

7 9
P.W. Exact P.W.

11
Exact P.W.

0.644 0.657 0.366 0.339 0.229 0.197 0.132 0.120 0.057 0.041

0.917 0.918 0.795 0.787 0.589 0.666 0.356 0.397 0.132 0.099

0.964 0.964 0.916 0.910 0.845 0.831 0.745 0.722 0.584 0.402

0.993 0.993 0.986 0.984 0.979 0.973 0.972 0.960 0.968 0.943

that the difference

Su, (v+1) = x, (@+2) n, [I p, (pr}—].
n, p,.(pal+2) x,~+2)

which is exactly equal to zero when & =0, tends
to increase with N. Clearly the first-order theory
is exact for N+1 =1, since in this case there is
only one core state, i.e. , the va, cuum ~0).

At this point it is worth mentioning that a wave
function for the low-lying states of an odd nucleus
constructed by adding a particle and a hole to the
ground states of the adjacent doubly even nuclei
has been proposed in Ref. 1. The above discussion,
however, makes it clear that the explicit use of
such a wave function is neither necessary nor use-
ful, as it would only give rise to spurious effects
which are not inherent in our equations-of-motion
approach.

As an illustration and application of our theory,
we calculate the energies, spectroscopic factors,
and occupation probabilities for the odd Ni iso-
topes using as input data the results of I for the
even isotopes (the single-particle energies and the
coupling strength G are the same as those used in

Ref. 9). In Tables I-IV we compare the results
obtained from the first-order theory with the ex-
act ones; in Table I we also give the Bardeen-
Cooper-Schrieffer (BCS) energies. ' It appears
that our first-order energies are remarkably
close to the exact ones and much better than those
obtained by the usual quasiparticle approxima-

tion. From Tables II and III, we see that very good
results are also achieved in first order for the
one-particle transfer intensities S&'($7+I) and

T&'(N+ I). It can be easily verified that they are
superior to the BCS ones.

Concerning the occupation probabilities, Table
IV shows that they are not overall as good as the
energies and spectroscopic factors. This is not
surprising, as these quantities are most sensitive
to the blocking effect. It should be noted, however,
that this effect is minimized by our choice of the
wave function ~%+ I, jm). Better results are
easily obtained from higher-order applications
of the theory. '

IV. CONCLUSIONS

We have presented an equations--of-motion
method to treat pairing correlations in odd-A,
nuclei conserving the number of particles. This
method takes full advantage of the possibility of
finding solutions to the pairing problem completely
within the subspace of even nuclei. ' The results
obtained from the first-order theory show that
our procedure provides a numerically simple and
remarkably accurate treatment of states of
seniority one.

Some of the advantages of the equations-of-
motion method over the usual BCS treatment have
been stressed in I. Here we want to remark that
our first-order theory leads consistently to results
which are vastly improved over the BCS ones for

TABLE III. Values of the spectroscopic factors T& (N +1) for the odd Ni isotopes.

3 5
Exact P.W. Exact P.W.

7 9 11
Exact P.W. , Exact P.W, Exact P.W.

0.624 0.591 0.763 0.729 0.858 0.812 0.932 0.876 0.981 0.922

0.198 0.220 0.397 0.471 0.627 0.632 0.850 0.832 0.972 0.947

0.081 0.086 0.150 0.161 0.249 0.252 0.405 0.432 0.953 0.919

0.013 0.014 0.020 0.021 0.027 0.026 0.030 0.029 0.030 0.019
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, TABLE IV. Values of the single-particle occupation probabilities v~ (N +1) for the odd Ni

isotopes.

3 5
Exact P.W. Exact P.W.

7 9 11
Exact P.W. Exact P.W. Exact P.W.

0.579 0.593 0.641 0.479 0.685 0.562 0.721 0.626 0.742 0.671

0.218 0.248 0.294 0.380 0.514 0.465 0.747 0.666 0.818 0.780

0.500 0.536 0.500 0.590 0.500 0.669 0.500 0.778 0.500 0.419

0.105 0.107 0.110 0.116 0.116 0.127 0.120 0.141 0.].22 0.157

both even and odd nuclei. The results of higher-
order calculations will be included in a next
paper. '

Finally, we wish to point out that our use" "
of the equations-of-motion method in pairing-

force theory indicates its usefulness in treating
more complicated problems of nuclear structure.
An extension of the theory described in I to include
states of angular momentum different from zero is
in progress.
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