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Solvable model for pion-pion 8 and P waves derived from noncovariant perturbation theory
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Motivated by Lagrangian field theory, we construct an effective Hamilton operator for P- and S-wave
pion-pion interactions, which can be handled easily by noncovariant perturbation methods. The result is a

factorable T-matrix equation with unambiguous off-shell behavior, which includes the effects of
intermediate states with e(1300), S*(980), and p(770) mesons as well as with KK and XX pairs and

describes the influence of inelastic pair effects on elastic scattering. The numerical calculations are in good
agreement with the experimental Spo and P» amplitudes up to a scattering energy of 2.5 GeV; a range of
fundamental importance for nuclear physics.

NUCLEAR REACTIONS Pion-pion scattering; theory, S and P waves, field
theoretical model, noncovariant perturbation theory.

I. INTRODUCTION

For a long time field theoretic approaches to
pion-pion interactions were aImost wholly aban-
doned in favor of the S-matrix approach. The
realization that the fields involved were not
fundamental entities and that disper sion relations
should give the right equations served as a justi-
fication for this development. I.ater, however,
Lagrangian field theories came back with a new
point of view: They were regarded as heuristic
devices, without the claim of fundamental status
for the fields, but nonetheless useful in elucida-
ting those properties of pion-pion dynamics which
cannot be understood by dispersion relation tech-
nics, e.g. , questions of renormalization or off-
shell processes.

The "classical" Lagrangian approaches to pion-
pion interactions are the g' theory' and the o and

p models. ' These single-channel calculations
gave some very encouraging results, especially
in understanding the fundamental technics. A
systematic study of multichannel effects has been
made by Iagolnitzer et a/. ' His rather successful
calculations were based on a Lagrangian which
contains the fields associated with the octets of
vector and pseudoscalar mesons with SU(3) sym-
metric masses. In all these models the scattering
phase shifts were calculated in Pade approxima-
tion. A different procedure was used by Ecker
and Honerkamp'. Based on a chiral invariant
pion-nucleon Lagrangian —which includes four-
vertices —they evaluated the pion-pion phase shifts
using covariant perturbation theory and super-
propagator methods. Their results are in good
agreement with the data. In comparison with the
above theories we start from a somewhat dif-
ferent point of view. Qur fundamental Lagrangian

only serves as suitable basis for an effective Ha-
miltonian which has to fulfill the following criteria:

(1) The T-m atri xequation should be soluble up
to all orders of perturbation expansion.

(2) The experimental S- and I'-wave data, which
are very important for nuclear physics, should be
well reproduced in the low and intermediate
energy region.

(3) The T matrix should show definite off-shell
behavior and should be factorable in order that it
can, e.g. , be used for three-body calculations.

This was achieved by the following procedure.
In Sec. II of this paper we present a rather com-
plicated Lagrangian density combining the o and

p models with pion-nucleon and pion-kaon four-
vertices. From this Lagrangian we extract an
effective Hamilton operator by allowing only a
certain class of suitable and physically domi-
nant diagrams. Via noncovariant perturbation
theory we arrive at a T-matrix integral equation
with definite off-shell behavior which can be sum-
med up directly because of the separable struc-
ture of the Born term. This will be done in Sec.
III resulting in a factorable structure of the T
matrix itself. Section IV is devoted to the deter-
mination of the coupling constants and to the de-
finition of the form factors. In Sec. V we make
a short remark about numerical questions, and
Sec. VI presents the numerical results of our
calculations.

Before beginning with our model, a short com-
ment about using noncovariant perturba'ion theory
in problems with relativistic particles involved:
It is well known that covariant and noncovariant
perturbation theories would yield the same results
if both series were completely summed. But na-
ture is not kind, and we must neglect most of the
possible diagrams in either case in order to get
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soluble problems. Even if we perform such a
restriction under formally equivalent principles
(like one-boson exchange for NN scattering), the
two methods may now lead to different results
since there is no one-to-one correspondence be-
tween single diagrams or even between classes
of.diagrams of both perturbation series. It is
by no means clear that the reduced covariant
problem is a Pro~i more relativistic than the
reduced noncovariant one. Therefore, the best
one can do is to adopt a pragmatic standpoint and
decide which method works a Posteriori. It is in
this spirit that we use noncovariant perturbation
theory for the subject of this paper.

Another motivation for the use of noncovariant
perturbation theory is that only in this way can
one hope to get insight into the role of the pion-
pion interaction in intermediate energy phenomena.

II. OUTLINE OF THE FORMALISM

The aim of this section is the construction of a
noncovariant T-matrix integral equation for pion-
pion S and I' waves with unambiguous off-shell
behavior. We start from the following interaction
Lagrangian which couples pions to scalar-iso-
scalar and vector-isovector resonance mesons
[e(1300), S*(980), and p(770)] and likewise —via
four-vertices —to nucleons, antinucleons, kaons,
and antikaons.

g=g, +g +g
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and x=(x„x). Here m, M, and M» are the masses
of pions, nucleons, and kaons, and Fp/y Xp/y and

ap/, are the related coupling constants. The field
operators are pions

1 t
d2k

(2»)2/2 (2~ )1/2

x [b/(k)e '""+b/t(k)e'""]

- (M 2 +p2)1/2 (2.2)

Here b~, ct, at, a ~, d~, and dt are the corres-
ponding creation operator s for pions, re sonance
mesons, nucleons, antinucleons, kaons, and anti-
kaons. 1i, are Pauli spinors for isospin, u„(p) and

v„(p) Dirac spinors for the nucleons, and g,"(k) the
polarization vector for the vector mesons (see
Appendix).

The canonical transition from the Lagrangian
density (2.1) to the Hamiltonian density X is given
by'

X = -8+contact terms. (2 3)
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+et t lertty ts:e terms

Setting

(2.4)

It is surely not possible to handle this equation
in a general way. Therefore, in the spirit of the
Lee model, ' we define a Hamiltonian density by
retaining only. those terms which lead to vertices
with different incoming and outgoing particle
lines:

energies can be identified with the physical ones,
e.g. , E' = E„-=(M'+p'„)' ' for the nucleons. The
calculation of the self-energy corrections for the
resonance mesons is a very difficult task, be-
cause there are, in principle, many intermediate
states. If we confine ourselves to the main pro-
cess, i.e. , the decay of the meson into two pions,
the self-energy is simply 1,„t

H= d xK;„ (2.5)
(2.7)

and using the explicit expansion of the field opera-
tors (2.2), we arrive at a Hamilton operator which
is suitable to noncovariant perturbation theory:

a =T '+T '+T '+r 3+W'+g 2+@ 3
0 0 O. 0

=-H'+ S'

with

Here +.means Cauchy s principal value. , because
real decays are involved. This approximation is
very good, because each resonance meson governs
the whole scattering amplitude in the region of its
pole.

Application of noncovariant perturbation theory
to Hamiltonian (2.6) yields the T-matrix operator
equation

r(z)=w+w . .. T(~),1
(2.8)

y 1 gn n n0

0 0 )
ng Q

E 8 0 +LE 0

(2.6)

where ~ is the scattering energy. For elastic
pion-pion scattering this leads to the integral
equation

yykl
Ukl 1 "k' l'k" l" lk "l"kl

k'l'kl k' l'kl + 2
k l k+ l ~k l"

(2.9)

W'=-' g [V'" 5'5'c" +H c ]I, . .
n, k&q

whose Born term defines an energy dependent and

complex momentum space potential with unam-
biguous off -shell behavior:

nt king
r-Tk luk'l

n.y P

I"ln rr.ln +
l 0 k l" 0

(dk+ COl ~P +

n, kl f)tg

In these equations the index n runs over dif-
ferent resonance mesons and different couplings.
The other indices represent momentum, spin,
and isospin of the corresponding particle, e.g. ,
q =(q, s, , t,). Since we are using continuum nor-
malization for the field operators, the summa-
tion also contains all momentum integrations.
Here vk, 0,", E', and &' are the free and un-
dressed energies of pions, resonance mesons,
nucleons, and kaons. The matrix elements
Vk'", , S'„',"~, and W'",

~ are explicitly given in the
Appendix.

Because of the special structure of our Ha-
milton operator only the energies of the resonance
mesons must be renormalized; the other free

rrr2m rrr2n +
Vv'k~ lI n8 w'k nit~ n8+ k+(, -gn -gs+ie

3m 3n+~'k l nS&k "l n8+
m. . nS +k+ &l —~n —~a+ ~'

(2.10)

or graphl. cally

~ k ~ k

r rkl
k'l'k "l" e S P N, K N, K (2.11)

'k

The matrix elements of this potential in the cen-
ter-of-mass system of the pions are given in the
Appendix.
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III. SOLUTION OF THE SCATTERING EQUATION

Turning to an angular momentum representation we get the following one-dimensional integral equation:

zlzLT ( ) UL T
( ) 1 ~I dE I3g U(t) Z(g )TZ2) (

z -g+ze
(S.l)

Here L and 7 age angular momentum and total isospin; ~', ~, and E are the total energies of the two
pions, and z = ~ for scattering. The individual terms of the pseudopotential are
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In these equations the first subscript refers to the
different intermediate states: 1 for resonance
mesons, 2 for XK, and 3 for KK; the other two
subscripts refer to I. and T.

The unrenormalized masses of the scalar (s)
and vector (v) mesons are

0m, ] = g„- 5m, ]„
with

E 2 6m' ""
A, -&m

43 Tm, 2„(u(m, —(u)

In these equations E and ~ are the total intermed-
iate energies of the KK and NÃ pairs, 8(x) is the
usual Heaviside unit step function, and the I'~
functions are form factors which are necessary to
guarantee convergence of the T-matrix equation
(see Sec. IV). P, means the momentum corre-
sponding to energy z.

Integral equations like (3.1) can numerically be
solved by the well-known method of matrix in-
version. But if we choose separable form fac-
tors, the total potential remains factorable:

UL T
(g ) = gLT (Z )fLT (R )fLT(R) (3.4)

(3.3)

+ ""
111 " —1} E"(m„im„) .m„2m

E'
5m„= " - d(u "" J'"((u (u)

4m Snm„~, (u(m„- (u)

This structure allows the algebraic summation of
the 7 matrix. ' '7he result is also factorable:

f"(~' )f"(~)
T (z) 1 f I) (3 5)
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Turning to on-shell values and multiplying with the
kinematic factor —nk u&/6, we get the usual nor-
malized scattering amplitude

(2.6)

with

p LT(~) p ~f lT(~)2
Q)

is easily established since the experimental am-
plitudes show typical Breit-Wigner behavior in the
regions of the resonances. This means for our
theory that it should be a good approximation to
determine the coupling constants from the Breit-
Wigner equation for the corresponding resonance
meson alone. The procedure is as follows. If we
write Eq. (3.6) for a single resonance meson, it
shows —after some simple algebraic manipula-
tions —a sort of Breit-Wigner form:

IV. COUPLING CONSTANTS AND FORM FACTORS
A~r((o) =

&yLP

Because there are vector mesons and pair terms
in our theory, we cannot hope to get well-defined
scattering amplitudes without form factors even
with renormalized coupling constants. Therefore,
we prefer to regard the coupling constants of the
pair terms as free parameters and to relate the
others to the experimental widths. This relation

(u -m, y„+ 5m, ~„-h~r(&o)+ —y~r(&u)

where y r(m, ~„) is the width and proportional to
the coupling constant.

For the three- and four-vertices we use the
following phenomenological and factorable form
factors:

A~ + 9R~fy for

0
SIV

A, +g'

E
NK NK

TT r i 1Tr Q

The cutoff masses A, and A, have to be fitted to
the scattering data.

V. NUMERICAL REMARK

The numerical integrations were performed by
taking 48 Gauss points F-, and weights dF; accord-
ing to

E, = 500 tan(-,'zE,')+ 2M,
(5.1)

where E',- and dE,'. are taken from the interval
(0, 1); 2M is the threshold of the corresponding
particle pair.

VI. RESULTS

For our parameter fit we tried to fix the input
data as close as possible to experimental values
contained in the particle tables. " The best fit
parameters and their experimental equivalents
are given in Tables I and II. Figures 1 and 2

show our S- and P-wave amplitudes compared to
the results of the partial wave analysis of Fi"og-
gatt and Petersen. ' We see that our results are
in good agreement with the experimental data.

(1) S» wave. The main structure of the S„
amplitude up to an energy of about 1400 MeV is
dominated by the c meson with a mass of 1300
MeV and a resonance width of 300 MeV. The S~

meson with a mass of 980 MeV and a width of 40
MeV causes a characteristic cut at nearly 1000
MeV, which is strongly damped above KR thresh-
old by the creation of real kaon pai, rs. Above
1400 MeV the real and imaginary parts of the
amplitude are rapidly raised by intermediate NR
pairs, resulting in a resonance-like structure at
2200 MeV, which is too high in comparison with
experiment. The influence of virtual A.K and ER
pairs can also be seen in the low energy region,
especially in the scattering'length

a&» = lim ReA "(cu) —=- 0.26, ur = 2(m'+ p')'l'
0~0

(6.1)
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Particle I~(J ) Theory

TABLE I. Parameters of particles. I (J ): Isospin " (Spin" ' ).

Mass (MeV) Width (Me V)
Exp. (Ref. 11) Theory Exp. (Ref. 11)

x (|+)
~(~')

z' ~2(0 )

z' $(o-)

1(0)
1(o)
1'(1-)

s* o'{o')
p+ (p+)

938.28

939.57

493.67

497.67

139.57

134.96

776 +3

980 + 10

-1300

938.9

938.9

497.7

497.7

138

776

980

1300

0.0

(7.95+0.55) eV

155+3

40+10

200- 400

155

40

300

a» =lim Re&"(~) —= p.p38
o P

(6.2)

which agrees with experiment: 0.038 ~0.002."

which corresponds the experimental result at
0.26 ~0.05.' "

(2) P» wave. The P» amplitude is governed by
the p meson with a mass of 776 MeV and a width
of 155 MeV. EK and 1VN pairs cause some struc-
ture in the p' region, but cannot reproduce the
whole experimental resonance at about 1600 MeV.
The introduction of a particular p'-resonance
meson would lead to difficulties in our theory.
The experimental p' decays into four pions with a
probability of about 75% and into two pions with
only a 25% probability, "from which one can esti-
mate an absorption parameter of roughly 0.25 for
elastic ~~ scattering.

This inelasticity cannot be reproduced by our
model, because we do not incorporate 4~ decays.
The result would be a nearly undamped p' re&o-
nance at 1600 MeV, and therefore we prefer to
forget about it and be content with calculating that
small part of the p' structure which stems from
the decay into kaon pairs The sc.attering length
in this partial wave is

VII. CONCLUSION

lrn 4
1,0—

0.5—

-0.5
1

I I
1 I

05 500
I I IR goo

I I I
[

I i I ~ r I 1 I
l

I 1

1000 1500 2000

Total Energy (MeV)

500-

Motivated by Lagrangian field theory, we have
derived an effective Hamilton operator for pion-
pion ~ and P waves which, we believe, contains
only physically relevant processes. Ne showed
that this Hamilton operator can be handled easily
within noncovariant perturbation theory in spite
of relativistic particles being involved. The free
parameters could be fixed by fitting the experi-
mental data without difficulty. The result is a
factorable T matrix with unambiguous off-shell
behavior, which reproduces S- and P-wave scat-
tering well, and which can now be incorporated

TABLE II. Coupling constants and cutoff masses. nnn

Vertex Coupling constant Cutoff masses (Me V)

7rx$

7) 7r&

Ac /4x =3.10
~, /« =1,OO

nc /47) =1.45
e( /4vr =8.00
Zc'/4~ =-O.36 '
Zc2/4& =3 49'
I' ) /4r =2.94

' From experimental width.

1200/1400
18OO/12OO

1200/1400
1SOO/12OO
1200
1200
1800

Total Energy (MeY)

FIG 1 Scc amplitude for elastic pion-pion scattering
(solid lines) compared to the phase-shift analysis (point
lines) of Froggatt and Petersen (Hef. 9).
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2000

where g„ is the usual Pauli spinor.
The vertex functions of our effective interaction

Hmniltonian operator (2.6) are

k l q

@11 yll +
klq klq

F, &"(i)(k.-l„) (-" a(k+l- &~~.=~4'. 4.(, ,ll, )
~" (

v„„(p„)u„B{pB)
~klBa = —

4~ 4~2M(~ ~
—

-)lI 2 6(PI2+ PB —k —1)

--2000

)

Total Energy (MeV)

FIG. 2. Pf f amplitude for elastic pion-pion scattering
(solid lines) compared to the phase-shift analysis (point
lines) of Froggatt and Petersen (Ref. 9).

in problems of nuclear physics, e.g. , in nuclear
matter calculations or three-body reactions.
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APPENDIX

For our calculations we use the following repre-
sentation of the Dirac spinors and the polarization
vector:

2+ M)

X ~«~&8 AA ~

Tv 20 + 0 uI'I2 (P I)2I'B(PB )
477 477'M(07 07 )' '

X~t ~t~j j
7I. ,

2 v„,(p )ly u„OB(pB)(k„—l, )

477 16772MB(07 07 )"'
l

x 6(p~+pB —k —1)r), r77),BE,. .. ,

Z, ' u„„(p„)ly"v„(pBB)(k 010)
klaB

477 16772M2(07 07 )1/ 2
l

x 6(p~+pB —k-l)7), 7'r), t,7, .

Q~30 ~30 2)' 0

477 477 ((d (d t E )a 8

x 6(p„+pB —k —I)7)77 7), 67 .. .

(k, —l, )(p: -p,')
477 3277 M ((d (d E & )k k l 8

x 6(p + pB
—k —1)r777 r77), E,7 „

In the center-of-mass system of the two pions
we get six potential terms:

r ~ m2 1 11710 (+) 0 5, , 5 Elo~k' k&
gl g . 4~ ~2~ ~ ~0 ~ ~ j l Jl % 7 I

s s

1 1 k'k cos8Ul'-(B) =
o (67' 67'7 6 '767'J)F (k k 8

1 1 "" p'
V--- (B)= ', , J

dP „., 6, , 6» F"(k,k,P),4~ ~ ~ (dk +k 0 +~ ~~ 2E~+

0

47T 7T 1Vlg (dk B Kk 0 EP Z 26P+ lE 2P

n, 2 2 1 k'kcose f" P
dp -2, , x B(67,767, 7

—67,767,)F '(k', k, p, 8).
4w 47 ~z (dk'+k 0 E& ~z 2&&+ s6
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