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We derive a form for the seagull terms in the Low equation for m. 'H —«NN which permits a Hamiltonian-
independent evaluation. Our results disagree with previous interpretations of these equal-time commutators.

NUCLEAB REACTIONS 7rNN-XN, study of seagull terms in I.ow equation, role
in antisymmetrization and double counting.

The Low equation provides an attractive, nonperturbative foundation for the investigation of scattering
processes. Within the framework of the Lehmann-Symanzik-Zimmermann (LSZ) formalism, this equation
may be conveniently developed for the reaction

v (q) + 'H (P, )- N(P, ) + N(P, )
I

by first reducing the incident pion and one of the final state nucleons out of the 8-matrix element. The
saturation of the resulting time-ordered product with a compl. ete set of physical intermediate states then
leads to the Low equation of interest,

T."-..=- &P. IS, I'H)

-(2v)'g ' '
". . &P:i&,(0) l.&... ..,&~ij, (0) I'»

n 10+ 20 llO+

+(2~)'g ',' '". &P. Ij.(0) i~&... ..,&ni~, (0) I'»,
n lo do+ nO

where

J,(x) =~„g(x),

&.=~(P,)[-fy 8.+~l,

dXe"1 "S, X,

S,(x) = -f[u(P, )y'g(x), j,(0)]5(xo) .

In the above, |)t(x) is the interpolating nucleon
field operator, j, (0) is the pion current operator,
and u(P, ) is a four-component Dirac spinor. In
the following, we delete the "in" and "out" l.abels
on physical states.

The matrix elements of the currents in the Low
equation are readily interpretable in terms of off-
mass-shell scattering processes and give the
couplings of the reaction to other communicating
channels. By way of contrast, the role of the
equal-time commutators (seagull terms) which
arise from taking the time derivatives of time-
ordered products, is more subtle, and specific
dynamical. assumptions or reference to a particu-
lar interaction Lagrangian may be required for
their evat. uation.

Two previous sets of authors have applied this
equation to the m'H- NN reaction, each in a differ-
ent context. Banerjee, Levinson, Shuster, and
Zollman' (BLSZ) use soft-pion techniques in con-
juction with the Low equation to determine the
form of the transition operator to be used in a
nonrelativistic distorted-wave Born approxima-
tion (DWBA) calculation. Alberg, Henley, Miiler,
and Walker' (AHMW), on the other hand, solve the
Low equation (in some approximate sense), and
obtain predictions for the differential and total
cross sections. In the present paper, we show
that in neither the AHM% nor the BLSZ work has
the seagull term in Eq. (I) been properly evalu-
ated. As a result, there have been a number of
misconceptions regarding the role of the off-mass-
shell amplitudes and the origin of the pion rescat-
terings in Eq. (I).

Since it turns out that the central. issue is the
manner in which the antisymmetry of the two-
nucleon system is embedded in the Low equation,
it is useful to begin with a manifestly antisymme-
tric expression and relate that result to Eq. (I).
To that end we modify the development of Eq. (I)
by reducing out both final state nucleons, obtain-
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ing for the off-the-pion-mass-shell reaction ma-
trix the expression

(P,P, jI„(O) I'H) = —J dedy e""*e'"'O),y),

x &0 IT[4(x)4(3)j.(o)] I'»
(2)

To.develop the relationship between Eqs. (1) and

(2) as straightforwardly as possible, we first act
upon the T product in Eq. (2) with u„being care-
ful to retain all nonvanishing equal-time commu-

tators and anticommutators which result from the
yp differentiation

S„S,, T[g(x)p(3))j, (0)] =X)„[T[g(x)$,(3))]

+r[y(x)z, (3)j,(0)]].
(2)

Next, we rewrite the second time-ordered pro-
duct in Eq. (2) in a more convenient form. Using
the identity 8(x,) = 1 —8(-xo) and discarding super-
fluous theta functions when appropriate, we expand
a part of this term in the form

&.[4(x)~ (3)j (o) 8(».—3.) 8(3.) —~.(3)P(x)j.(o) 8(3.—«.) 8(3.) 8(«.) —J (3)j.(o) 4(«) 8(3.) 8(-x.)]
=S„Q(x)J, (3))j,(0)[1—8(3', —x )]8(3'&)) —J, (3))j„(0)f(«)8(3},)8(-x(})

-~ (3)4(x)j.(o) I.l —8(». —3.)]8(«.) 8(3'A

= -[&.T[4(x)Z, (3)]]8(3.)j.(0) —Z, (3)8(3,)(&,x[0(x)j.(0)]]+Z,(x)Z, (3)j„(0)8(3,), (4)

where T denotes the anti-time-ordered product. ' Proceeding similarly with the remaining terms in this
time-ordered product, we find

Q,[)Ij(«)j (0)J,(3))8(x ) 8(-3) ) +j„(0)g(x)J, (3') 8(-«) 8(-3) ) 8(x —3' ) —j (0)J,(3))p(x) 8(—3} ) 8(3) —
«&))]

= -[&.7[4(x)j.(o)]]&, (3))8(-3,) +j.(0)[&.TI 4(»)~, (3)l] 8(-3.) +~.( )j.(0)~,(y) 8(-3.) (5)

This completes the rearrangement of the second term in Eq. (3).
The relationship between Eqs. (1) and (2) is now readily established. Consider first the contribution of

the T and 7 products in Eq. (4) to Eq. (2). Inserting intermediate states and using translation invariance,
this contribution takes the form

(7)

I& 5(s) p(2»)'Ql,
p p,'"„&0l~, (0) I.) &~,j.lj.(0) I'»

1p Np

+(p,p
' p, ",, de ""'*&oI&eyylo(e)d, (o&I& le&&e Ij.(o) I' s&) (o)

10+ 2p
-

np

The first few contributing states for each term are depicted in Figs. 1(a), 1(b), and 1(c). The first term
in this expression is simply the contribution from the disconnected piece of &(t), lZ, (0) ln), „& in Eq. (1), while
the second term is the contribution from the connected piece. In a completely analogous fashion, the con-
tribution of the T and T products in Eq. (5) to Eq. (2),[see Figs. 1(d), l(e), and 1(f)]

'., &0 lj„(O) ls) &s,P, IZ, (0) l'H)

-i. ' ' " ", dye"'*&o I&s,7 I&(e&j,(o)I & In& (e le, (o) I's&),
lp dp np

may be identified with the contributions from the .

connected and disconnected pieces of (P, lj„(0) ln), „,
in the crossed term in Eq. (1). The remaining
terms in Eqs. (4) and (5) do not contribute to Eq.
(2) due to the unrestricted x, integrations. ' It
follows that

i(P, Iy, I'S}——j dedy e ~'* e' '"

x &0 I(&.T[t(x)$,(y)]) I'» (8)

This is just the expression which would have re-
sulted from the formal application of reduction
techniques to N(P, ) in the matrix elements of $,.

Before proceeding, it is instructive to consider
the lowest order contributions to Eq. (1) in view
of the manifest antisymmetry of Eq. (2) and in
light of the above developments. We note first
that the direct absorption of the pion by nucleon
N(P, ) follows from the n =N intermediate state
contribution to the second term in Eq. (7) [see
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Fig. 1(e)]. We further note that, since to
lowest order (in pion rescatterings)
„((s(Q )N(p )N(p, ) Ij, (0) I'H& involves the elastic
scattering of the pion from N(p ) and N(p, ), the
n =nN contribution to the first intermediate state
sum in Eq. (6) provides for the elastic scattering
of the pion by N(P, ) followed by absorption by

N(P, ) [see Fig. 1(a)]. And similarly, the n=mN

contribution to the second term in Eq. (7) [Fig.
1(f)] involves the backwards (in time) elastic scat-
tering of the pion by N(P, ) with absorption by

V(P,). Now, however, we have a dilemma: Where

are the graphs involving the direct absorption of
the pion by N(P, ) and the elastic rescattering of
the pion by N(P, ) with absorption by Ã(P, ), whose
presence necessarily follows from the antisymme-
try of Eq. (2)? While it may be tempting to inter-
pret the matrix element of 1 in terms of the di-
rect absorption by N(P, ), ' this would not resolve
the issue of the "missing" rescattering graphs.

The simplest way to proceed is with a direct
evaluation of Eq. (8). If we assume that the equal-
time anticommutator [$„S)]„vanishes, ' we obtain

6(s) p p
(&s, ls, )'H&=-((2~)' Q "'

". (a le&0) l~& (~ Is, I'H& + ' "". (0 Is, l~& &~ le(0))l'e&) . ()))
n 20 no+ up+&no

Consider the matrix elements of S, appearing on the right hand side of Eq. (9). Let n and P be two arbi-
trary states. Using compl. eteness in the commutator

i xe 'P'" a O, x,j, 0

= (2)3') i g [5 '
(p + p „—p ) &u I p(0) Im& &m Ij, (0) I

I'3& —5 ' (p+ p —p 8) (o' Ij, (0) Im& &m I (})(0) I)3& ] . (lo)

these matrix elements may be written in the form

(12)

f&&IS, IP&=&(3',p, lj, (o) lp&'+(2v)'g "
p

. &&Iz, (0) l~&&~ lj„(0) lp&
Nt lp A p Ntp

6(s)
~p ',, (t|' I), &0) l~& &~ I& (0) I)))); (»)

P10+Pyg p
P Bp

where the superscript c on the first term denotes a fully connected matrix element (in g). The discon-
nected-g contribution to Eq. (10) gives the first term in this equation, while the remaining terms follow
from the connected contribution. '

Using Eq. (11) in conjuction with Eq. (9), we have

6(3)
i&p, IS, I'H&=-(2~)'Q '

". « I&2(0) l~& &~p. li. (0) I'»'
N 20 no+

-(2~)'Q ' ' "". ' " &01&(0) l~&&~i&&8» l~&&~ lj. (0) I'H&

6(s)~ - 6{a)(~
+(2v)'Q '"' ". ' '. &0I&.(0) l~&&~lj. (0) l~&&~ l&i(0) I'H)

—(2)))'Q ' ' ". &p& lj. (o) l~&'&))'l~. (0) I'H&

+(2))) Q ' ". ' ". (0 fj (0) fm&(mlJ, (0) fn&(n I J, (0) f'H&

—(2)r) P ". ' . (Ol J, (0) fm&(m fj„(0) In&(n f J, (0) f'H).
N 2p Cp Np 10 fnp

Equation (12) is the foundation for an explicit model-independent evaluation of the seagull term. Several
features of this equation are particularly worthy of comment. First, we note that the n=N contribution to
the fourth term gives the N(P, ) direct absorption graph [the 1 2 analog of Fig. 1(e)] and that the n=wN
contribution from the first and fourth terms [the 1 —2 analog of Figs. 1(a) and 1(f), respectively)] provide
the missing graphs involving pion rescattering from N(P, ) and absorption by N(P, ). Consider next the
second term in Eq. (12). To lowest order, this contribution involves the breakup reaction followed by a
pion exchange [Fig. 1(g)]. Combining this term with the first term in Eq. (6) and neglecting the equal-time
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anticommutator [P„J,]„we obtain

(2n)'g ' ' ". dx(0([ J, (0)J,(x)e' "—J (0)J,(x)e' '*]s(xo) )n&(n(j, (0) ('H&,
n 10+ 20 no

(13)

(b) (c)

(e)

(g)

FIG. 1. intermediate state contributions to Eqs. (6),
(7), and (12). Heavy lines refer to nucleons or anti-
nucleons, double lines to deuterons, and dashed lines to
pions. The heavy dot at the intersection of an external
line vrith an interaction bubble denotes an off-mass-
shell particle. All interaction bubbles are fully con-
nected.

where p, '=p2.'=m'. Thus, the second term in Eq.
(12) antisymmetrizes the final interaction and puts
the nucleon associated with J, (0) back on the mass
shell. In many studies in theoretical nuclear
physics, it is necessary to work with nonrelativis-
tic wave functions. We note in this context that
the matrix element in Eq. (13) appears to be a
more satisfactory object to relate to the nonrela-
tivistic, off-energy-shell, nucleon-nucleon scat-
tering amplitude than does (P, ~ J, (0) ~n&,„,.'

The lowest order graphs contributing to the third
term in Eq. (12) (we note that the sixth term is its
J,—J, analog) are depicted in Figs. 1(h) and 1(i).
For the present, we note that the graph in Fig.
1(h) is included in both the direct absorption graph
and the m'H-mNN-NN intermediate state contri-
bution, and that is possible to show that these
terms are required to prevent double counting
difficulties. ' The remaining term in Eq. (12) in-
volves NN contributions, which we shall neglect
here.

We are now in a position to comment on the
work of AHMW and BLSZ. We consider first the
more recent work. AHMW evaluate the Low
equation in the one meson truncation and, as first
approximation, consider only those processes in
which a pion is produced by one nucleon and scat-
tered by the second nucleon. In this work, the
seagull term is taken to have the form

(14)

where &, is the physical nucleon annihilation
operator and j~ is the pion current operator. The
right-hand side of this equation, after the inser-
tion of intermediate states, just gives the fourth
term in Eq. (12) (in the limit that NN pairs are
neglected). Thus the formalism of AHMW is
missing the graph, which is the 1—2 analog of
Fig. 1(a), which includes forward rescattering by
cV(P,) and absorption by N(P, ). Presumably these
authors have inc1uded this contribution by mis-
takenly attributing to (P, ~

J', (0) ~mNN& a discon-
nected piece wherein a physical nucleon N(p, )
propagates freely and N(P, ) emits a pion. It is
worth noting that if one follows this assumption
through to its conclusion and solves the resulting
integral equations, the graphs depicted in Figs.
1(h) and 1(i) will be double counted. Thus, the
basic formalism of AHMW must be altered in
accordance with Eq. (12).

In the second-mentioned work, BLSZ make the
identification

&P. Is, I'H&= (x.l[v. , c] I'H) (15)

at the physical pion production threshold, where
X is a plane-wave two-nucleon state, V, is the
pion production potential, and C is the pion anni-
hilation operator. At the physical threshold, as
noted above, the seagull term not only antisym-
metrizes the final state interaction, but is in-
volved in the pion rescatterings as well. The
discussion in the BLSZ work of the two-nucleon
singularity of Eq. (1) may easily be generalized to
allow for the antisymmetrization of the final state
interaction by the seagull term. However, it must
be remembered that the soft pion result of these
authors lacks the basic antisymmetry appropriate
to the physical m'H —NN process [i.e. , nucleon
N, (p~+q -p, ) goes off the mass shell as q-0 in the
BLSZ work]. Thus the correctness of their pro-
cedure of indentifying T(q, = 0) with the nonrela-
tivistic production amplitude is questionable.
Furthermore, when pion scattering is considered,
these authors are missing the 1 —2 analogs of
Figs. 1(a) and 1(f). Consequently the connection
that these authors make between Eq. (1) and the
nonrelativistic corrections to the DWBA is mis-
leading, as they do not have the full complement
of rescattering graphs, nor do they have the
double-counting corrections of Figs. 1(h) and
1 (i) 10

In summary, our formalism provides the basis



for a Hamiltonian-independent evaluation of the
seagull terms in the Low equation for n'H- NN.

These equal-time commutators play a more com-
plicated and important role in the description of
this reaction than has been previously appreciated.
We emphasize that the present theory does not
have a double-counting problem. However, it is
precisely the correct treatment of the seagull

term which alleviates this difficulty. The results
of this paper are consistent with the generalization
of the Low equation obtained by the present author
in a previous paper, " although the role of Figs.
l(h) and 1(i) was overlooked in that publication.
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For example, consider the contribution of the last term
of Eq. (4) to Eq. (2). With an appropriate use of com-
pleteness, we have

dxdye" 2" i'~' (0 ~ J2(x)&$(y)jg(0)~(yp) ~ H)

=(2 )'Z„0"'V„-p,) (0I ~, (0) i.&

&&(r
~ dy e'~'~g{y)j, (0) (y ) II).

Due to the energy-momentum delta function, only the
single-nucleon state contributes to the iritermediate
state sum; however, this vanishes, since (0 ~ 42(0)
x jN(P„))=0.

SThis is the procedure followed in the preprint version
of Ref. 2.

6In this paper, we neglect the equal-time anticommuta-
tors ($(x, 0), J$,0)), and [tt(x, 0), S(y, 0)),. This is
equivalent to assuming that there are no dinucleon
couplings in the interaction Lagrangian and does not
affect any of the conclusions of this article.

YThe separation of the matrix elements of g into con.-
nected and disconnected parts is most easily effected
by noting that

+ (m / a(p)(+ / n)

dxe '~'" (m ~ u(p)pptt) &,0) &)

d"'"( ~~()i )~( ).

[a(p)q+ is the asymptotic nucleon annihilation opera-
tor. J Thus, the sign of 6 in the denominator of Eq.

(11) depends upon, the asymptotic nature of the states
involved.

To identify the nonrelativistic limit of a field theoretic
amplitude with an off-energy-shell, quantum-mechani-
cal amplitude & ~, one must show that in some suit-
able approximation, they satisfy the same equation.
We note that in this instance (n= two-nucleon state),
X & satisfies the manifestly antisymmetric, nonlinear
integral equation

t~p= V~s+Q~ X„~(Ep -E~+ i )) Kp~* .
[See M. L. Goldberger and K. M. Watson, Collision

Theory {Krleger, New York, 1975)], where V g
=((H —E )y, )(p), y is a plane wave state, and B is
the HamQtonian. Both the matrix element defined
in Eq. (13) {Tpg) and the matrix element

Kps=s(pt) (pp I (-&0' '0+ m)('(0) I && „t

satisfy nonlinear Low equations, but only the Low equation
for Tpg share s the manife st anti symmetry of the above
equation. Thus it is a straightforward matter to relate
Tpg and W through a suitable def inition of V, but Tpy ha s a
basic asymmetry which is untenable in a potential
theory. This identifjcation of TpE as an off-energy-
shell amplitude is quite natural since in Eq. (13), p„
= p&+ p2, while in general E„«&+E2. We note that in

pz, the "missing momentum" to be associated with
is defined through translation invariance, i.e., p&

= p„
—p2, hence both energy and three-momentum are auto-
matically conserved fp~ should not be confused with the
momentum p~ of a final state nucleon which appears in
u(p~) J, however (p„-p&) & m in general.

This point will be discussed more thoroughly in a man-
uscript currently in preparation.

~pWe note that there are some subtleties involved in the
direct application of Eq. (12) to BLSZ, as these
authors study the pion production amplitude with a
nucleon off the mass shell. However, these comments
are still appropriate at the physical threshold.
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