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Direct fragmentation and hard-scattering processes in relativistic heavy-ion reactions
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In a relativistic heavy-ion reaction, there are many processes which contribute to fragmentation phenomenon. Here
we examine two: the direct fragmentation process in which the detected subsystem is emitted from a parent nucleus
without additional scattering, and the hard-scattering process in which a subsystem from one nucleus makes a
collision with a subsystem from the other nucleus. In terms of a combination of these two processes, the proton
inclusive data of Anderson et al. for the reaction a + "C~p +X at different bombarding energies can be
successfully analyzed. We find that the direct fragmentation process dominates the cross section at 0' and 180'. On
the other hand, the hard-scattering process dominates the cross section at the quasi-elastic peak when the transverse
momentum far exceeds 0.1 GeV/c. Our model leads naturally to a new scaling variable which is the generalization
of the Feynman scaling variable for situations when the rest masses are not negligible. As the nuclear momentum
distribution enters into the model in a very important way, our analysis constitutes in essence a semi-empirical
determination of the nuclear momentum distribution. Furthermore, since a single nucleon can carry a large fraction
of the momentum of the parent nucleus in a cooperative manner, relativistic heavy-ion reactions may be utilized to
provide valuable iriformation on the high momentum tail of the nuclear momentum distribution when the effects of
final-state interactions are better understood.

NUCLEAR REACTIONS Theoretical analysis of relativistic heavy-ion reactions.
Direct fragmentation and hard-scattering processes. Applied to e (' C,px).
Scaling variable. Nuclear momentum distribution and nuclear structure function.

I. INTRODUCTION

Recent experiments using very energetic heavy-
ion beams have created considerable theoretical
interest. ' Along with several other models, a
simple relativistic hard-scattering (RHS) model
was put forth for this type of reaction, ' based on
the constituent interchange model originally pro-
posed for high energy hadron scattering. ' In this
model, the constituent structure of the scattering
systems and the forces due to the interchange of
the constituents are taken into account. The theory
can be applied to meson production as well as to
the yields of light nuclei. Counting rules involving
the Feynman scaling variable x~ were derived to
characterize the behavior of the reaction cross
section in terms of the short range behavior of the
nucleon-nucleon force. This remarkably simple
model was found to work quite well in explaining
certain experimental data. A similar model using

. a different kinematic representation' was also
proposed and found to be useful in analyzing the
meson and proton production cross sections in

- heavy-ion reactions.
In deriving the couriting rules for heavy-ion re-

actions, one considered' the case in which the en-
ergies of the colliding systems are so large that
the rest masses of the nuclei can be neglected.
Great simplification of the structure function, the

basic reaction cross section, and the six-dimen-
sional hard-scattering integral then follows.
Counting rules are obtained as the index function
of the power of (1 —x~). While these counting
rules are useful results for eery energetic heavy-
ion collisions, their application directly to heavy
ion collisions at an energy of only 1 to 2 GeV per
nucleon may be subject to question. It is perhaps
not surprising that after the initial success of
these counting rules for forward pion production
some discrepancies for backward pion produc-
tion' ' were then found. In the face of such dis-
crepancies, it is important to analyze carefully
any error arising from the use of asymptotic
functional behavior so as to separate out true
physical effects such as constituent clustering'
and shadowing from simple errors of kinematics.
For this reason, one may wish to study the BHS
model using exact relativistic kinematics and di-
rect Monte Carlo integration of the sixfold integral.
Indeed, when this was carried out for the pion
production case, ' the experimental p+ "C-n'+X
data of Baldin et al.' at the backward angle of
180' could be explained well by the HHS model.
Furthermore, the results of a direct numerical
integration indicate that the RHS cross section as
a function of the Feynman scaling variables be-
haves differently for the forward and the backward
directions. For pion production at 8= 0, the HHS
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cross sections is insensitive to the bombarding en-
ergy and scales well with respect to x~. It obeys
approximately the counting rule of Schmidt and
Blankenbecler. ' However, for 8=180', the kine-
matics is such that the RHS cross sections ob-
tained from the sixfold RHS integr'al depend on the
energy of the projectile and do not scale well with
respect to the Feynman scaling variable x~. In
view of these results, the discrepancies between
the data and the counting rules arise simply from
using an asymptotic result in a kinematic situation
where the conditions for asymptotic behavior are
not met. The success of simple scaling for the
forward angles may. be due to a kinematic effect
as was discussed previously. '

We undertake to examine another application of
the relativistic hard-scattering model for the
analysis of the proton inclusive data" in the col-
lision of a+ "C. Previously, these data were
analyzed by Chemtob' using the RHS model. It was
concluded that the RHS model could not explain the
experimental data. In particular, the decrease in
the theoretical cross section in the transverse di-
rection was far too slow. One knows, however,
that in the discussion of proton production the
hard-scattering process is not the only one pre-
sent. Since the proton is already a constituent of
the projectile and the target, there is a very im-
portant peripheral process in which the detected
proton is fragmented from the parent nucleus with-
out suffering further scattering while the comple-
mentary remnant of the parent nucleus interacts
with the other nucleus [Fig. 1(a)]. This process,
which we call the direct fragmentation process,
is in fact the dominanting process for the very
forward and the very backward angles. One ex-
pects therefore from the width of the longitudinal
momentum distribution' that the direct fragmenta-
tion peak also has a transverse momentum width
of about 0. 1 GeV/c, roughly characteristic of the
nuclear size. To analyze the experimental data
at 0', 180', and pr & 0. 1 GeV/c, it is necessary to
consider a combination of both processes. We
shall see later that when both the direct fragmen-
tation and the hard-scattering processes are taken
into account, theoretical results agree well with
the experimental data of Anderson et a$. for the
reaction n+ "C—p+X.

Another related objective of the present investi-
gation is to study the scaling phenomena in proton
production. Our understanding of the scaling
phenomena here may shed some light on the analy-
sis of scaling phenomena in other reactions such
as in pion production and may supplement other
studies of different parametrizations of the cross
section. " We shall see later that our model leads
naturally to a new scaling variable which is in es-
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FIG. 1. (a) Diagrams for the direct fragmentation
process leading toA+B C+X. (b) Diagrams for the
hard-scattering process leading to A+ B—C+X.

sence a generalization of the Feynman scaling var-
iable to an energy region where the rest masses
of the interacting systems are not small compared
to the colliding energies. Along with the success
of finding a new scaling variable for proton pro-
duction, a corresponding scaling variable for pion
production has also been uncovered. "

In the present analysis (as well as elsewhere in
nuclear physics) a very important quantity is the
momentum distribution or the related structure
function of a nucleon in a nucleus. Although the
nuclear momentum distribution is a basic nuclear
property which is important in understanding the
correlation between nucleons and the behavior of
many intermediate energy phenomena involving
large momentum transfers, '""not much is
known experimentally about the general features
of this momentum distribution. In the relativistic
direct fragmentation process, since the detected
proton is emitted by one of the colliding nuclei
without additional collision with the other nucleus,
it carries much information about the nulcear mo-
mentum distribution. Additional final state inter-
actions may distort this distribution but the mo-
mentum distribution obtained thereby still provides
valuable information which may not be obtained by
other means. For example, because the detected
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proton can carry a large fraction of the momen-
tum of the parent nucleus, it may provide informa-
tion on the high momentum tail of the nuclear mo-
mentum distribution. Indeed, as was emphasized
not the least by Anderson et a$. ,

"and Schmidt and
Blankenbecler, relativistic heavy-ion reaction
may prove to be a useful tool for the extraction of
some basic nuclear parameters which are still
unknown.

This paper is organized as follows. In Sec. II,
we review the hard-scattering model and pave the
way for the introductioh of the direct fragmentation
process in Sec. III. An intrinsic scaling variable
is then introduced and utilized to correlate dif-
ferent sets of experimental data. In Sec. IV, we
study the form of the structure function and para-
metrize it as a sum of a single-particle part and a
correlated part. A detailed analysis of the proton
inclusive data of Anderson et a/. for the n+ "C
—p+X reaction at various energies and trans-
verse momenta was carried out in Sec. V. The
nuclear momentum distribution obtained thereby
is compared with the theoretical results of Zabol-
itzky and Ey" in Sec. VI. Section VII concludes
the present discussion.

II. RELATIVISTIC HARD-SCATTERING {RHS)MODEL

We shall briefly summarize the main results of
the relativistic hard-scattering model, both to in-
troduce the notation and also to pave a way for
subsequent discussions of the direct fragmentation
process. W'e consider a target nucleus A with a
mass m„and a projectile nucleus B (B stands for
beam) with a mass ms. Using the infinite mo-
mentum frame, we write the target four-momenta
A. and the projectile four-momenta B as'"

(Xgk Xnd X3) X] + X2 + X3

-2(x,x, + x~, + x,x,) . (2. 6)

where

u' = [x(I -x)A' -xo' —a, ']/(I -x),
t'= [y(1-y)B' yP' --I ']/(1 -y),

(2. 11)

(2. 12)

and n' (or J3') is the square of the invariant on-
shell mass complementary to a (or b) in nucleus
A (or B). If nuclear binding energies are neg-
lected, they become simply

a'= (m„-m, )' (2. 13)

P'=(m, -m, )',
where m, and m„are the rest masses of a and b,
respectively. With this parametrization of the
off-shell momenta, we get the "momentum frac-
tion x" of the subsystem a in the nucleus A given
from Eq. (2.9) by

The hard-scattering contribution to the inclusive
process A+B- C+X is represented by the dia-
gram in Fig. 1(b). The nuclei A and B interact
through the emission of a virtual subsystem a
from A and a subsystem b from B. The subsys-
tems are the ones that scatter through the basic
process a+ b- C+d, where C is the detected
particle. They have off-shell momenta given by

k'+k ' - k'+k '

)2+) 2 )2+) 2

b= yP, + ', l„yP, — „

(2.1}
ao+ a,x=
A +A.

(2. 15)

B2 B2
B—P~+4, 0, P2 —

42 2

(2.2)

/.

and the momentum fraction y of the subsystem b

in the nucleus B as

P, = [s + A' —B'+ A. (s,A', B')]/4v s (2. 3)

where the letter labels also denote the correspond-
ing momentum four -vectors, and the quantities P,
and P, depend on the frame of reference. In par-
ticular, in the center of mass frame, we have

bo —bg

Bo -Bg ' (2. 16)

The relativistic hard-scattering (RHS) contribu-
tion to the inclusive process A+B- C+X repre-
sented in Fig. 1(b) can be shown to lead to an in-
variant cross section given by2

P, = [s + B' —A' + X(s, A', B')]/4~s,
where

s = (A + B)',
2 2A =m~')
2 2B =m~

(2.4)

(2.5)

(2.6)

(2.7)

cEZx, =Z fdxd k dkd'1 G, i„(x,k„j
RHS e, Q

x G, )s(y, l r)r(s ', s, x, y)

d3
x Zc,- (ab —Cd; s 't 'u ') .

(2. 17)



CHEUK- YIW %0ÃG AID R. BLAWKENBECLER

Here, x=A(s', O', I')/xyA(s, A', B') with s'= (a+ b)'.
The structure function G, &„(x,kr) is the probabili-
ty of finding a constituent of type a in nucleus A
with fractional momentum x and transverse mo-
mentum k~. It is defined in terms of the Bethe-
Salpeter bound state wave functions g(p, ) with one

leg (o.) on shell by

cess.
Following the same steps as in deriving the

RHS integral, ' we can write (see Appendix 8) the
direct fragmentation (DF) cross section repre-
sented by Fig. 1(b) as follows:

Q'3Ec, xsG-c) s(x~, Cr)
DF

x
G, )„(x,kr) =

2(2 ), -1 ((Px) (2. 18) 3 ~ d 3d d
(P A, X)

i
The quantity Ec(d'o/dC')(ab- Cd; s'f'u') is the in-
variant cross section for the basic process a+ b
—C+d written in terms of the basic Mandelstam
variables s', t', and u'. The above result, which
has simple probabilistic interpretation, was de-
rived by using the Feynman rules and by integrat-
ing over the final state phase space. '

To carry out the integration of Eq. (2. 17), one
selects the dominant channel of subsystems a and

b, which in the case of pion and proton productions
are the nucleons. The six-dimensional integral
can be performed- with properly parametrized
structure functions and the knowledge of experi-
mental basic cross section, the only complication
being the relativistic kinematics. We summarize
the necessary procedures in Appendix A for the
evaluation of the HHS integral.

III. DIRECT FRAGMENTATION PROCESS

In a relativistic heavy-ion reaction, there are
many different processes which contribute to
"fragmentation' phenomenon, the experimental
characteristics of which are quite well known.
One such process is the hard-scattering process
represented by Fig. 1(b) and discussed in the last
section. We can envisage another peripheral pro-
cess in which a subsystem C (proton, in this case)
comes out of the nucleus without additional scat-
tering while its compl. ementary remnants interact
with the other nucleus. This process, which we
call the direct fragmentation process, "is repre-
sented by the diagram in Fig. 1(a). Since the
proton does not suffer additional scattering, they
are likely to emerge near 0' and 180 . All the
evidence' points to the fact that direct fragmenta-
tion dominates the cross section at the very for-
ward and backward angles with a characteristic
momentum width of about 0. 1 GeV/c. When the
transverse momentum of the proton increases
much beyond this value, the importance of the di-
rect fragmentation is expected to decrease and
other processes will become important. In any
case, to understand the proton inclusive data for
small values of p~ and to determine the relative
importance of the processes, we need a quantita-
tive investigation of the direct fragmentation pro-

(3.1)

Here, instead of the momentum variables C„we
used the momentum fraction x~ introduced in the
last section. For projectile fragmentation, xD is
the momentum fraction of the particle C out of the
parent nucleus B (of the beam). It is related to
C, by

Cp+ Cx
xD B B o (3.2)

The momentum fraction xa is a longitudinally in-
variant quantity. It does not depend on the coor-
dinate frame of reference. The structure function

Gc&s(x~, 0r) is the probability of finding a con-
stituent of type C in the nucleus B with fractional
momentum x~ and transverse momentum Vr. It
is defined in terms of the Bethe-Salpeter bound
state wave function with the leg C on shell. The
bar symbol on top of G«~ indicates that they are,
in principle, different from the structure function

Gc&s given in Eq. (2. 18), the latter quantity being
calculated with particle C off shell. The basic in-
variant cross section E&d'c/di' is for the reaction
P+ A -i +X'. As the measurement of C is inclu-
sive, it is necessary to sum over all distinct chan-
nels i and for each channel integrate over all the
phase space.

With B representing the beam particles, the ex-
pressions in Eqs. (3.1) and (3.2) are the direct
fragmentation cross section for the projectile di-
rect fragmentation process. We can w'rite a simi-
lar expression for the target fragmentation pro-
cess:

Cp —C,
gp-A, ' (3.4)

The differences in the signs in Eqs. (3.2) and
(3, 4) arise from the differences in the definition

d 0'
EcdC3 -xnG c&„(x»Vr)

D&

cf i d 0'
E, d, . (a+B-i+X'), -

E] di
(3.3)

where the momentum fraction x~ is given by
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of x and y [see Eqs. (2. 15) and (2. 16)].
Since projectile fragmentation is mainly asso-

ciated with C„B,& 0 and target fragmentation with
C„A., & 0, we can often use a common definition
for events in this restricted kinematic regime:

IO

t

-(o) p =0
T

Co+ I ~» I

N, +IN, I
' (3.5) io&—~gg~A

cl 0'
E,

Z DF

xg) G c)~ (xD ~ Vr ) t.ar get.
fragmentation .

(3.6)

(3.7)

where N stands for the parent nucleus out of which
the particle C is extracted. The less likely
events, with C, &0 when B,& 0 for projectile frag-
mentation and C, & 0 when A, & 0 for target frag-
mentation, require the more general definitions of
Eqs. (3.2) and (3.4).

One expects that the sum of all the total cross
sections for all possible channels P, f (d'i/
E,)E,(d'cr/di')( PA- iX') depends mostly on the
geometrical dimensions of the colliding systems
and is therefore rather insensitive to the collision
conditions when the collision energy is high enough
(above 1 or 2 GeV per nucleon). When this hap-
pens, it is reasonable to approximate it by a con-
stant to obtain the result:

r
xg G c(s(xg, Cr) projectile

fragmentation

FO

C3

L
Eh

O
(9

E

I02

IO = o
v

102 —(b) pT
rw

IO

= O. I 5 GeV/c ~

IO 2

IO I

:(c) pT= 0.5

o,

GeV/c

oy

C)

IOO

O. l 0.2
xo

0.3 0.4

2.88 GeV/c N

l.74 GeV/c N

0.93 GeV/c N

I I I

In this case, in terms of xD, the cross section
should be a universal function, depending only
very weakly on s. Thus, when the direct frag-
mentation process is the dominant process, the
fractional momentum x„can serve as a scaling
vari. able. The subscript D is introduced to denote
this direct fragmentation scaling variable and to
differentiate it from the Feynman scaling variable
x~ given by"

x~= C,/C „, (3.6)

evaluated in the center-of-mass system.
How good a scaling variable is xD? We can plot

the experimental invariant cross section as a func-
tions for large values of x~ for the data points of
in Fig. 2 the data of Anderson et aE. for n + "C
—p+X. For each value of the transverse momen-
tum of the proton p~, the data points appear to fit
in the same curve for different bombarding mo-
mentum p . There are, however, some devia-
tions for large values of xD for the data points of

p = 0.93 GeV/c which may be too small for scal-
ing. Data points at higher energies do not seem
to suffer this defect. We note also;that the data

FIG. 2. Experimental invariant cross section of An-
derson et g$. (Ref. 10) for the n+ C —p+X reaction
plotted as a function of the scaling variable xD. Different
types of data points are used for different projectile
momentum per nucleon, as indicated: (a) is for a proton
transverse momentum p&--- 0, (b) is for pz, == 0.15 GeV/c,
and (c) is for pz:= 0.3 GeV/c.

points for small values of xD (xn ~ 0.2) at pz ——0
depend on projectile momentum. This region of
the proton spectrum contains important contribu-
tions from the hard-scattering process and from
multiple scattering. It should not be given much
weight in assessing the direct fragmentation pro-
cess. Figure 2 indicates that scaling with respect
to the intrinsic scaling variable xD occurs for
a+ "C—p+X at x~ ~ 0. 2 and p ~1.74 GeV/c 1V.

We note in passing that although we mere led to
the introduction of xD as a scaling variable by con-
sidering the direct fragmentation process, the re-
sults in Figs. 2, 3, and 5 indicate that x~ scaling
persists even for pr = 0.3 GeV/c for which the
hard-scattering process becomes important. We
can nom understand this phenomena as due to the
fact that xD is also approximately equal to the
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proper scaling variable for the hard-scattering
process. ' Thus, scaling with respect to x~ per-
sists even though there has been a change of the
unde rlying me chanism.

The scaling variable x& provide a natural way to
link the forward projectile fragmentation data with
the target fragmentation data pertinent to the same
nucleus. For example, we can consider the reac-
tion o.' (projectile)+ "C (target)-p+X. The tar-
get fragmentation proton spectrum provides in-
formation about G~)12c(xv, Cr). Next we consider
the inverse reaction "C (projectile) + n (target)
—p +X. The projectile fragmentation proton
spectrum provides information about the same
structure function Gp)12((xv Vr) but at a different
region of x~. The structure function extracted
from forward and backward direction in the two
reactions should join on smoothly with respect to
each other, Indeed, using the data of "C+"C
-p+X to approximate the reaction "C (projectile)
+ n (target) —p+ X (allowing for A, „,'~' depen-
dence), it appears possible to link the forward
data of Papp et al."with the 180' data of Geaga
et al." One notes furthermore that the 180' data
of Geaga et al. pertains more to the structure
function at large values of x~ and hence is very
valuable in extracting information on the high mo-
mentum tail of the momentum distribution.

The scaling variable as defined by Eqs. (3.2),
(3.4), or (3.5) is just the generalization of the
Feynman scaling variable for situations where the
rest masses of the colliding systems are not neg-
ligible. Consider, for example, the projectile
fragmentation case. In the very high energy limit,
we have

IV. PARAMETRIZATION OF THE STRUCTURE
FUNCTION

We shall consider first the structure function

G, &„(x,kr) andexamine the limiting case of x ap-
proaching unity for which simple vertex functions
have been written down. ' For a renormalizable
interaction between the constituents, including
vector exchange, the falloff of the vertex function
arises solely from the constituent propagators.
One finds'

2 (k2 2) 2T(s~ 'NN)+1—Qg g (4. 1)

where a, is a function of the masses of the ex-
changed mesons and constituent form factors and

is chosen to be a constant for simplicity. The
quantity 7.

' depends on the interaction' and is about
three. The numbers N„and N, are the nucleon
numbers of nucleus A and a, respectively. From
Eqs. (4. 1) and (2. 18), the structure function can
be written in the form

x
1 x t

k2-k2" ~"' (4.2)

where the counting index appearing in the counting .

rules is given by

g=2 T(N„-N, ) —1, (4.3)

D'= (a,' —k')m„'. (4.4)

In Eq. (4. 2), k' is a function of x and kr as given

by Eq. (2. 11):

k'=[x(1-x)m„'-xm„'-k, ']/(I -x), (2. 11')
2Cg Cg

xp
g max

(3.8) which has an extremum at

since 8, and C,„both approach ~s/2. Thus xD

approaches x~ in the very high energy limit. In

the other extreme, for the nonrelativistic ease,
and

x, =m, /m„

k =0. (4. 8)
mc(1+vc/c) mc vc —vsl~f+J lhasa 1 +
ms(I + vs/c) ms c j (3.10) The quantity k' in Eq. (4. 2) is the value of k' at

the extremum. It is given by the constant
We have k'=m„'(1 —m /m„)' = m, '. (4.7)

5g
xg) xp

ms c
(3.11) Around the extremum, we can expand k' in the

form
where k'= k' —(m„/m )[m„'(x —x,}'+kr'j. (4.8)

mc
xp 0

mg
(3.12}

Hence, xv -x, is just the velocity difference (from
the beam velocity). It is a measure of the intrin-
sic velocity when the nucleus is at rest and is
therefore a good scaling variable for fragmenta-
tion.

Therefore, the square-bracketed factor in the
denominator of Eq. (4. 2) near the extremum is
given by

1+ 2 = 1+
k' —k' ' ~" m~ (x —xo)'+k '/m 2 ~"

T A

(Dm„)' g m D'

(4.9)
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As mA/m is not far from unity, the parameter D
is a good measure of the width of the falloff, in
units of x and in the direction of x and kT.

Near the region of x -1, the denominator in Eq.
(4. 2) controls the behavior of G and we have

llm G(x, k ) - (1 —Y)',
x~1

(4. 10)

x gg g2
a/A( t T) 1 + k2 k2 12 ~ k2 k2-2

1+ 2 1+
(omA)'

~ g (DmA)'

1.
u'-u' "~+"'
(Dm„)'

1+
(4. 12)

while its large kT behavior ls

lim G(x, k ) -(k ') '
~ (4. 11)

kT

These are the desired properties of the structure
function as discussed previously. '

Since the experimental data cover a large region
of x values, we are interested in the structure
function not only in the region of large momentum
x-1 but also in the region of zero intrinsic mo-
mentum x,. In order to avoid the introduction of
additional parameters" so that the structure func-
tion peaks at the desired location of x„we find it
more convenient to work with the form (4. 2) in-
stead of extracting a factor of (1 -x)' explicitly
as was done previously. "' We note that the ex-
tremum of the probability distribution

~ P~
'

[= (1 -x)G(x, kr)/x] is located at the same point as
the extremum of k, that is, at x, = m, /mA and kr
=0.

The structure function given in Eq. (4. 2) with a
relatively large width parameter D (of the order of
0. 5) is the structure function for the high-momen-
tum tai:l. It corresponds to the component of the
structure function resulting from the correlation
of alE of the constituent nucleons. The large value
of D also implies a large mass parameter or
equivalently a small cor relation length. Although
the structure function so obtained shows a peak at
the point x -x„ it cannot represent well the struc-
ture function near that region of small intrinsic
momentum. We know as a matter of fact that near
the region of small intrinsic momentum the nu-
cleon motion is governed by the independent parti-
cle model where the nucleons are completely un-
correlated and the length parameter is about the
size of the nucleus. There is an additional com-
ponent of the structure function which arises from
the single-particle motion of nucleons. We can
parametrize this component with a different index

P and a small width parameter 5 where 5«D.
The total structure function is then the sum of
these two components which we write in the form

where the first term inside the curly bracket rep-
resents the single-particle contribution while the
second term represents the multiparticle correla-
tion. Since there is a range of values of p and 5
which fits the data, we choose p to have the value
six (corresponding to the counting index for the
constituent in a two-body system). The parame-
ters g„g„5, and D are then determined by com-
paring with experiment. Of course, more compli-
cated wave functions based on the above type of
reasoning can be written down and more accurate
data may require their use.

The above discussion deals with the structure
function G, &A(x, Vr) which appears in the sixfold
relativistic hard-scattering integral. The struc-
ture function G, &A(x, Cr) which enters in the direct
fragmentation process is in principle different
from G, &A(x, Cr). We have chosen to define
G, &A(x, Cr) (see Appendix B) in such a way that
G, &„and G, &„differ only by the vertex function 4.
In fact, the vertex function p, (pA) for G, &A(x, Cr)
and QA(pA) have the same structure but differ only
in the on-shell or off-shell properties of the ex-
ternal connecting lines. To the extent that it does
not matter which external line is off shell (this is
rigorously correct in the nonrelativistic limit),
the vertex functions P and P can be set (approxi-
mately) equal. Hence the structure function G
and G can be taken to be the same.

V. ANALYSlS OF THE n+ ~2C-+p+X DATA

Combining both the direct fragmentation and the
hard-scattering contributions, we can write the
total invariant cross section for the inclusive A
+ B—Q+ X process as

g 0'

cdc3 D c/N D& T
RHS

where the subscript & in the structure function
stands for the beam nucleus B in the case of pro-
jectile fragmentation and nucleus A in the case of
target fragmentation. The quantity Ec d2o/O2&~„„2
is the relativistic hard-scattering cross section
given by Eq. (2. 17). As our theory cannot (yet)
predict absolute cross sections, the constant w is
introduced to adjust the relative importance of the
two different processes. It will be determined by
comparing with experimental data at different
pr (=—Cr) values.

To apply the present model to a concrete exam-
ple, we focus our attention on the projectile frag-
mentation data of Anderson et a$."for the reac-
tion a+ "C-p +X. Since the direct fragmenta-
tion term dominates for pT -0, one can attempt to
fit the data at pT = 0 with just the first term and
obtain an approximate structure function. Final
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adjustments of the parameters are then made by
comparing the experimental data and Eq. (5. 1)
after evaluating the relativistic hard-scattering
integral of Eq. (2.17). We find the following final
best set of parameters for the structure function

G„.(x, 0,):
g, = 0.288 x 10' [mb c'/sr (GeV)'],

and

g, = 0.234 x 10' [mb c'/sr (GeV)'],

D=0.38,

(5.2)

5= 0.062.

Here, to make the analysis of the experimental
data simple, we shall not attempt to normalize
the structure function but shall let it be calibrated
with the experimental cross sections so that the
structure function gives directly the invariant
cross section. Hence, the coefficients g, and g,
acquire the units as given above. As G is undeter-
mined up to a constant, future use of our structure
function should take into account other possible
ways of normalizing.

We note in passing that the tail of the structure
function G~& (xD,pr) at xD-0. 3 to 0.4 can be ap-
proximated by a function of the form (1 x~)".
The index of 26 is greater than, the value of g=6
x 4 —7= 17 predicted by the counting rule. This
is as it should be because we are quite far from
the asymptotic region of xD -1. Nevertheless, the
counting rule index g gives an order of magnitude
guide to the falloff power index of the structure
function, when the proper variable xD is used in-
stead of x~. In this intermediate x region, one
achieves very good fits by changing the parameter
from the value T = 3 in Ref. 2 to the value T = 4.

We need also the structure function of a proton
out of the "C nucleus in order to evaluate the
hard-scattering integral (2. 17). For this purpose,
we examine the projectile fragmentation data of
Papp et al."in the reaction "0+"C-p+X, and
the target fragmentation data of Geaga et al." in
the reaction o.'(projectile) + "C (target) -p+ X.
To make the comparison quantitative, we need to
convert the data of "C+"0 into an approximate
set of data for "C (projectile)+ o. (target). This
conversion can be done by noting that as a function
of target mass A~, proton inclusive cross section
for x-x, is approximately proportional" to A' '.
We therefore multiply the "C+"C cross sections
of Papp ef al. by a factor of ( —,', )'~' so that we can
treat them as the cross section for the "Q + n
system. The data of Papp et al. is given for a
laboratory angle of 2. 5', while the data of Geaga
et al."is given for a laboratory angle of 180'.
For these angles, the hard-scattering contribu-

tion to the cross section is negligibly small com-
pared to the direct fragmentation process. These
data can be analyzed using only the first direct
.fragmentation term in Eq. (5. 1). After properly
transforming the relevant momentum variables in-
to the scaling variable xD, taking special care that
the transformation for projectile fragmentation is
different from target fragmentation [Eqs. (3.2)
and (3. 5)], we can represent the different sets of
experimental data in terms of a single structure
function. We find the following set of parameters
for the structure function which give a good fit to
the 2. 5' data of Papp et al. "and the 180 data of
.Geaga et al.":

g, = 0. 50 x 10' [mb c'/sr (GeV)'],

g, = 0. 12 x 10' [mb c'/sr (GeV)'],

D=0.30,
5= 0.024.

(5.3)

In this case, the tail of the structure function can
be represented by (1 -xz)'". This index of 107 is
greater than the counting index of g = 6 x 12 —7 = 65
from the counting rule with T= 3, indicating that
we are still quite far from the asymptotic region
of x-1. The value T=4-5 yields a better value
for the index in this region.

Finally, to evaluate the hard-scattering integral,
we need the basic cross section for the process
p+p -p+X. We note that the elastic cross sec-
tion can adequately represent this cross section.
We therefore parametrize the basic cross section
as"

dZ, , (pp-pp)=Se" 5[(a+b —C)2-d'],

(5.4)

where I3 is the slope parameter, S is a constant,
and t' is the Mandelstam variable in the basic
system

f' = (b —C)'. (5.5)

In terms of the other Mandelstam variable for the
basic system

s'= (a+ b)', (5. 8)

(3) B=8 (GeV/c) ' for 5.45 (GeV/c)'cs'.

we parametrized slope parameter B for pp elastic
cross section in the following form:

(1) B= 0 for s' & 4 (GeV/c)',

(2) B=5(s' —4)+0.38(s —4)' (GeV/c) ' (5.7)

for 4 (GeV/c)' ~ s™5.45 (GeV/c)',

and
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The above parametrization is based on the tabula-
tion of the slope parameter of Benary et al."

The magnitude of the coefficient zv which deter-
mines the relative importance of the direct frag-
mentation term and the hard-scattering term is
obtained by fitting the experimental data at p
1.74 GeV/c N for pr-0. 3 GeV/c. There, as the
two different terms become dominant at different
regions of xa, the shape of the total contribution
depends sensitively on this coefficient. The best
value of the product 8zo is

l04—

lO

lO

= l.74GeV/c hl

p =0

Su=0. 318x10 [mb c'/sr (GeV)'] ' (GeV/c') '.
(5.8)

Figure 3 gives the comparison of the experimen-
tal data with the theoretical results for the reac-
tion o. (projectile)+ "C (target)-p+X at a pro-
jectile. momentum of 1.74 GeV/c per projectile
nucleon. This momentum corresponds to a kine-
tic energy of 1.04 GeV per nucleon. The invariant
cross section is plotted as a function of xD for
various values of the transverse momenta of the
detected proton Pr. Figure 3(a) shows the results
for Pr = 0 and Fig. 3(b) for pr= 0. 3 GeV/c. As
one can see, the data points for xD ~ 0.20 can be
well fitted by the theoretical calculations. To
study the results in more detail, we can decom-
pose the sum of the theoretical cross sections in
terms of the direct fragmentation component and
the hard-scattering component. We consider first
the case of p~=0 at 8=0'. We find that the direct
fragmentation dominates for x~ ~ 0.25 but the
hard-scattering cross section becomes greater
than the direct fragmentation cross section for.

xD s 0. 18. It is worth noting that the tail of the
hard-scattering component for large x is similar in
shape to that of the structure function represented by
the direct fragmentation component, as pointed out
previously in Ref. 2. In the region of small xD,
the sum of the direct fragmentation and hard-scat-
tering cross section is still substantially lower
than the experimental cross section, indicating
that other processes need to be further included to
provide a good fit for this region. We note that
the hard-scattering cross section includes a sum
over all channels. What we have taken into ac-
count so far is only the elastic p, p channel. This
is good enough in the region of x~ & 0. 20. How-
ever, for the production of lower energy protons,
the inelastic channels need to be included. In-
deed, it is observed that when the inelastic p, p
cross section is taken into account, the hard-scat-
tering cross section for small xD values is en-
hanced substantially. ' It is expected that the hard-
scattering process (including both elastic and in-
elastic pp reactions) dominates over the direct

E
lOO

t

r
] DF

/

5 GeV/c

lo 2

lO I

/

/
/DF

/
lOO

0.2
xo

0.3 0.4

fragmentation process for small values of xD.
The separation of the. forward proton spectrum

into a direct fragmentation region (xn ~ 0. 20) and
a hard-scattering region (xD a 0.20) is consistent
with other pieces of experimental data. It is
known that the cross section in the region xa
&0.2 increases with the target mass as A.~' ', in-
dicating a peripheral nature of the encounter, as
would be expected of a direct fragmentation pro-
cess. Qn the other hand, the cross section in the

FIG. 3. Comparison of experimental data of Anderson
et gl. (Ref. 10) with the theoretical results for the reac-
tion n+ C p+X at a projectile momentum of 1.74
GeV/c per nucleon: (a) is for proton transverse momen-
tum p&=0, and (b) is for pz, =0.3 GeV/c. 'She solid curve
is the theoretical cross section which is the sum of the
direct fragmentation component represented by the
dashed curve and the hard-scattering component repre-
sented by the dashed-dot curve.
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region of x~ -0.10 increases with the target mass
as A~' ', indicating a geometrically more central
nature of the encounter, as would be expected of
a hard-scattering process. Also, in a hard-scat-
tering event, . since the angular distribution of the
basic process becomes more and more isotropic
as energy decreases, it is easier for slow protons
to come out in the forward direction, even though
the constituent particles a and 5 may not be initial-
ly aligned in that direction. Therefore, the hard-
scattering cross section for small values of xD

should increase with decreasing energy. Experi-
mentally, the cross section for x~ -0.10 indeed
increases when the bombarding energy decreases.

We examine now the forward proton inclusive
spectrum for the reaction of n + "C—p +X at the
same projectile momentum (1.74 GeV/cN) and a
transverse momentum of 0. 3 GeV/c for the de-
tected proton. Figure 3(b) shows that the experi-
mental data points can be well fitted by the theo-
retical calculations. We can study the two dif-
ferent components in some detail. One finds that
the direct fragmentation dominates when xD ~ 0.30
whereas hard-scattering dominates for xD s 0.28.
It is clear from the shape of the experimental
spectra that a combination of the two processes is
necessary to explain the experimental data.

gee note that in the case of p„=0. 3 GeV/c, the
peak of the cross section is-given mainly by the
hard-scattering process. This is in contrast to
the P~=0 case where the peak of the cross section
is given mainly by the direct fragmentation pro-
cess. Such a change in roles may not be surpris-
ing because the direct fragmentation peak has a
momentum width v~ of the order of 0. 10 GeV/c. '

So, at p~ »0~ the direct fragmentation peak drops
'down much below the hard-scattering peak. The
increasing importance of the hard-scattering com-
ponent also explains the peculiar phenomenon"
that the observed momentum width is different in
the transverse and in the longitudinal direction.
In the transverse direction, the additional contri-
bution and later the dominance of the hard-scatter-
ing process give a larger width to the transverse
momentum distribution, as compared to the width
of the longitudinal momentum distribution at P~
=0.

The interplay between the direct fragmentation
and hard -scatter ing processes can be further dis-
played by considering the proton transverse mo-
mentum distribution for a fixed value of momen-
tum 1.75 GeV/c in the bombardment of "C with
alpha particles at p = 1.74 GeV/c per nucleon.
The experimental data and the theoretical results
are shown in Fig. 4. As one observes, the ex-
perimental data are quite well reproduced. One
can further compare the contributions from the di-

I I

p = l.74 GeV/c N

OJ

O
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FIG. 4. Comparison of the transverse momentum dis-
tribution of Anderson et al. (Ref. 10) with the theoretical
results for 0.'+ C p+X at a projectile momentum of
1.74 GeV/c per nucleon and the detected proton at a
momentum of 1.75 GeV/c. The solid curve is the theo-
retical cross section which is the sum of the direct
fragmentation cross section (the dashed curve) and the
hard-scattering cross section (the dashed-dot curve).

rect fragmentation process and the hard-scatter-
ing process. For this momentum, the direct frag-
mentation process dominates the cross section at
p~ = 0 whereas the hard-scattering process domi-
nates the cross section at pr» 0. 1 GeV/c. The
cross over of the two processes occurs at p~ -0.2

GeV/c. It is clear that the direct fragmentation
process by itself or the hard-scattering process
by itself cannot explain the data. A combination
of these two different processes is necessary.

Figure 5 gives the comparison of the experi-
mental data with theoretical results for the reac-
tion of n + "C—p +X at a momentum of 2. 88
GeV/c per projectile nucleon. This momentum
corresponds to a kinetic energy of 2. 09 GeV per
nucleon. Figure 5(a) shows the results for pr =0
and Fig. 5(b) for pr =0.3 GeV/c. Again, the ex-
perimental data points, with the exception of the
low momentum region xD s 0.20, can be well ac-
counted for. The region of small x~, as we men-
tioned before, may involve more complex proces-

- ses and is not expected to be given just by the di-
rect fragmentation process and a hard-scattering
process involving only the elastic pp channel. The
decomposition of the theoretical cross section into
the two underlying components gives features
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ward direction as compared to the case of a lower
energy collision. This decrease of cross section
in this region of small x~ with increasing energy
cannot go on without limit. We know that the slope
parameter for the basic cross section, which de-
termines the angular anisotropy of the basic reac-
tion, becomes a constant when s' exceeds about
5. 5 (GeV/c)'. One therefore expects that as a
function of bombarding energy of the heavy ion,
the hard-scattering cross section due to the

P,p channel in the region of small x„reaches
an approximately constant value when the bom-
barding energy goes beyond 3 to 4 GeV/nucleon.

Figure 5(b) shows the inclusive proton spectra
for p =2. 88 GeV/cÃand pr=0. 3 GeV/c. As one
can see, the theoretical results agree well with
experiment for xL, ~ 0.2. Again, the region of
small values of x~ may have contributions from
other processes and has therefore a larger cross
section than the calculated r esults. The peak
cross section is due to the hard-scattering pro-
cess. The cross section at large values of xD
comes mainly from the direct fragmentation pro-
cess, the hard-scattering process nevertheless
gives a substantial contribution to the sum.

In Fig. 6, we show the transverse momentum
distribution for the case of p =2. 88 GeV/cN for
a proton momentum of 2. 88 GeV/c. The direct
fragmentation component again dominates at p~
= 0 while the hard-scattering process dominates
at pr» 0. 1 GeV/c.

IO~
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FIG. 5. Comparison of experimental data of Anderson
et gg. (Ref. 10) with the theoretical results for G'+ C

p+X at a projectile momentum of 2.88 GeV/e per
nucleon: (a) is for p&= 0, and (b) is for p&= 0.3 GeV/c.
The solid curve is the theoretical cross section which
is the sum of the direct fragmentation component (the
dashed curve) and the hard-scattering component (the
dashed-dot curve).

which are the same as in the case of 1.74 GeV/c.
They need not be discussed again.

It is worth noting that the theoretical hard-scat-
tering cross section at 2. 88 GeV/c is smaller than
that at 1.74 GeV/c for small values of xD. As we
explained previously, this is due to the fact that
the basic p, p cross section becomes more forward
peaked as energy increases. So, in order to come
out in the forward direction, the colliding con-
stituent nucleons need to align well in the forward
direction and hence only a more restricted region
of phase space leads to a slow proton in the for-

I04

p =2.98GeV/c

8 GeV/c
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0 O. I 0.2 0.5 0.4 0.5 0.6 0.7
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FIG. 6. Same as in Fig. 4, but for a projectile momen-
tum of 2.88 GeV/eN.
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VI. NUCLEAR MOMENTUM DISTRIBUTION

In the model we have presented, the nuclear
structure function enters in a very important way.
It arises in the direct fragmentation term and also
in the hard-scattering term. The structure func-
tion obtained thereby may have already been sub-
ject to distortion due to additional final state in-
teractions. It may also need other corrections be-
cause of the various approximations introduced to
lead to the simplified result of Eq. (5. 1). Never-
theless, an analysis of the experimental data in
terms of these structure functions is in essence
a semiempirical determination of 'the structure
function as defined in the present model. A com-
parison of the semiempirical and theoretical re-
sults will reveal much information about the un-
derlying physics of the structure function and/or
final state interactions.

Rather than comparing the structure function, it
is more convenient. to compare the momentum dis-
tribution ~, /„(x, Vr) which is related to G,»(x, Vr)
by

is a discontinuity in the slope of logn at p,-1 (5 fm ~) which mimics the change in slope at
P - 2 (5 fm ') in the theoretical calculation. The
theoretical calculation demonstrates that the
abrupt change in the slope of the momentum dis-
tribution originates from the presence of correla-
tions between nucleons. Final state interactions
may distort the momentum distribution but are not

I I I

/~(x Vr) — Gg/Q(x Cr)

Recently, momentum distr ibution for the ground
state of 'He has been calculated using various two-
body interactions. It was pointed out that a mea-
surement of the momentum distribution, particu-
larly the region at high momentum, will be of
great value in understanding the correlation of nu-
cleons in nuclei. This is in line with the sugges-
tion of Ref. 2 that experimental data of large val-
ues of x reveal the degree of many-particle cor-
relations of a composite system. The momentum
distribution has been calculated by Zabolitzky and
Ey" in a nonrelativistic coupled-cluster form of
the many-body theory. To make the comparison
possible, we go to the projectile frame in which
the center of mass of the projectile is at rest.
This is achieved by transforming xD to p,'"' in the
projectile frame by

CL

O

y RSC

Scg X

P& '=m (x —m, /m )(1+m,/m x )/2,

(6.2)

2

p/t (fm ')
where

m, =(m '+ C ')'/'.cj. c

Vfhen the momentum distribution of a nucleon in
'He obtained in the present model is compared di-
rectly with theoretical calculations of Zabolitzky
et al. , one observes that the semiempirical dis-
tribution obtained is too narrow compared with the
theoretical momentum distribution. The general
shape is, however, similar. In particular, there

F16. 7. The semi-empirical momentum distribution
of a nucleon in the He nucleus as determined by the
present analysis (solid curve) is compared with theoret-
ical distributions (labeled curves) calculated by Zabolit-
zky and Ey (Ref. 13). The labeled curves are the theo-
retical momentum distributions obtained by using differ-
ent interactions: SSCB for de Tourreil-Sprung super-
soft core potential, RSC for Reid soft core potential, and
HJ for Hamada-Johnston potential. All are obtained by
including nucleon correlations. The uncorrelated result
is given by the curve labeled UNC.
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expected to introduce such abrupt slope changes.
Thus, the observed discontinuity in slope may be
tentatively taken as possible evidence for the pres-.
ence of nuclear correlation of nucleons in the
ground state of He. More definite conclusions
must await further studies of the effects of final
state interactions.

VII. CONCLUSIONS AND DISCUSSION

Vfith the introduction of the direct fragmentation
process to supplement the hard-scattering pro-
cess, the experimental data of Anderson et al. "
can be well explained. %e find that direct frag-
mentation dominates the cross section at 8= 0'
and 180 and also the production of very energetic
protons for 8 0. On the other hand, the hard-
scattering process dominates near the quasi-
elastic peak when pr» 0. l GeV/c.

Our model leads naturally to a new scaling var-
iable xD which measures the fractional momentum
of the detected fragment relative to the parent nu-
cleus. goshen plotted in terms of this scaling vari-
able, the invariant cross sections show little en-
ergy dependence, except for the region of small
x&. Such a scaling behavior can be understood
within the context of our present model. In the
region where direct fragmentation dominates, only
one structure function is necessary to describe
the behavior of the cross section at all energies
when the energy is high enough. As the structure
function depends only on xa and p~, we have seal-
ing in terms of x~ for different values of p~. In
the quasi-elastic peak when p~w 0, the hard-scat-
tering model has a scaling variable which is ap-
proximately equal to x~ even for moderate values
of p~. '

The analysis of this experimental data provides
us with some insight into the momentum distribu-
tion of a nucleon in a nucleus. Heavy-ion r.eac-
tions thus may be a unique tool in probing the high
momentum tail of the nuclear momentum distribu-
tion. This is possible because a single nucleon
can be emitted in a cooperative manner with a
large fraction of the total momentum of the nu-
cleus. Our analysis indicates the possible pre-
sence of nuclear correlations in «He and/or final
state interactions. A similar conclusion was also
reached by Geaga et al."from their work in back-
ward proton productions.

Since knowledge of the nuclear momentum dis-
tribution can be very useful in nuclear structure
and nuclear reaction studies, it is important to
develop further both theoretical and experimental
tools for its exploitation. As far as experimen-
tal investigations are concerned, what is desirable
is a systematic inclusive proton and composite

particle production for various nuclei at 0 and
180 where only the direct fragmentation is impor-
tant. The 0 data give the structure function close
to the region of zero intrinsic momentum while the
180' data give the structure function in the region
of large intrinsic momentum. To allow the two
structure functions to join on smoothly, one wishes
to push the 0' measurement to as large a momen-
tum as possible and to push the 180 measurement
to as low a momentum as possible. To subtract
away the contributions due to the hard-scattering
process, it is desirable to have measurements
around p~ &0 so that the hard-scattering contribu-
tions can be well identified. Furthermore, it is
desirable to perform experiments at different en-
ergies to check whether or not scaling is achieved.
Once scaling is achieved, the use of different pro-
jectile and target nuclei will aid in determining
the counting rules for the dependence of the cross
section on the constituent numbers. These scal-
ing laws are the minimal systematics against
which new degrees of freedom may appear as
peculiar deviations.

Theoretically, much more work remains to be
done to examine the corrections to the present
model and the energy dependence of the neglected
factor in the direct fragmentation term. Future
work should also be directed towards a more care-
ful examination of the structure function and its
momentum dependence. It is particularly impor-
tant to study the effects of final state interaction. "
By improving both the theoretical and experimen-
tal tools we can expect to enlarge our knowledge
of some basic and important properties of the nu-
cleus which up to now is still very rundimentary.
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APPENDIX A: EVALUATION OF THE HARD-
SCATTERING INTEGRAL

We present here the detailed steps and relativis-
tic kinematics which allow one to evaluate the
hard-scattering integral. For a given projectile
kinetic energy per nucleon e we have the invariant
scalar variable s =(4+8)' given by



CHEUK- YIX %0NG AXD R. BLANKENBECLER

s =A'+ B'+2m„(Nse+ ms) . (A1)

The maximum value of 0 can be determined by
assuming a minimum missing mass D „

c =x(s, c', D )/2~s,

where

X'(x„x„x,) =x,'+ x,'+ x,'
—2 (xgx2 + x2x3 + xgxg), (As)

and

+ mB +mc (A4)

The knowledge of C,„allows one to convert the
proton momentum into Feynman's scaling variable
and vice versa. In terms of the momentum C, and

C~ of the detected proton in the center-of-mass
frame, the other invariant variables t = (B —C)'
and u =(A —C)' are

t = -2[C,(P, + B'/4P, ) —C (P, —B'/4P, )]

6[(a+1-C)'-m, ']= '
6(y -y, )

1 —y2+~
) (

~(y -y ),

(A»)

where y, and y, are the two solutions of y for Eq.
(A6). An integration over y reduces the six-fold
integral into a five-fold integral. In each of the
five-dimensional points, there are two contribu-
tions from two values of y. Because of the rapid
falloff of the structure function the point closest
to yo=, m~/ma gives the greatest contribution to the
integral.

The knowledge of x, y, k» and 1~now allows us
to evaluate the Mandelstam variable s' = (a+ b)',
t' = (5 —C)', and u'= (a —C)' in the basic system.
They are given by

s ' =xys + m„'m»'/xy s —2kr lr + 0'+ 1', (A14)

u = -2[C,(P, +A'/4P, )+Cx(P, —A'/4P, )]

+ m„'+ mc', (As)

t' = -2(CO —Cx)P, y —2(C, + Cz)m„'/4P, y

+ 21r ' 6'r + 1 + C2, (A15)

Here the coefficients A„A„and A, are

X,= -[xs —2(C, —C, )P,],
2A, = -A .+mB -m~'

—ms'[m„'/xs —2(C, + Cx)/4P, ] —X,
A, = (ms' —m, ' —1,')

x [m„' -2(C, + C )/4P, ] - l '+ X,
and

(As)

(A9)

X= -2(C, + Cz)P,x —2(CO —C x)m,~'/4P, x

+ y'+ c2 —mq2 —2kr '1r+ 21r 'Vr+2kr 'Vr,
(A10)

where

s = —', [s -A' —B'+X(s,A', B')],
and

where P, and P, are given by Eqs. (2.3) and (2.4).
Our task is to evaluate the six-dimensional inte-

gral for a given set of values of s, t, and u. The
integration variables are x, y, k~, and l~, but
they are restricted in the elastic channel by the
delta function 5[(a+ b+ C)' —d']. We can convert
this energy conservation condition into an equation
for y:

(u+1 —C)' -d'=(X, y'+&, y+&,)/(1-y) = o.
(As)

and

u' = ~2(c, + Cx)P,x —2(C, —Cx)m„'/4P, x

+2k, .V, +k'+ C', (A16)

where

ma.
2 = ~2+ ~r'. (A1'1)

The function y(s, s', x, y) and do/dt'(pp) which are
given in terms of s' and t', can now be deter-
mined. With the structure functions already given
in the variables of x, y, k~, and l~, the complete
integrand can now be evaluated. The hard-scat-
tering integral can be evaluated by a Monte Carlo
sampling of the five dimensional integration points
in x, k~, and l~, with convenient changes of var-
iables to put more weights to the regions of large
contributions.

APPENDIX B: DIRECT FRAGMENTATION CROSS
SECTION

Following Ref. 3, we write down the differential
cross section for the process AB- CiX' depicted
in Fig. 1(a) as

do(AB-CxX')=2
2B ( (

Zl~~s cm I'&P-
A B VA-VB

m ' —A'+k ' (A12) with the assumed decomposition

Therefore, the delta function in the basic cross
section becomes

2

!
B I )1~~as-c&x' I (

a 2)2 I'"'sx-&x'
mg
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d'C 4 ~

Noting that the baryon propagations of b and P
(when they are off shell) are related by

Here, the function Ps is the covariant vertex func-
tion for the particle C on shell and P off shell.
We have therefore

Pa —mo X2 2

2 2
Pa —ms

we can rewrite the following factor in (B6) as

(B7)

2d'i
X

~
M~~„]x (B4)

We assume that the off-shell continuation of the
matrix element is smooth so that we can identify

(1 x) AB (P~) x 4B(P8) '(B8)
(p, '-m, ')' 1-x (p„' —m, ')' '

The result of. (B8) suggests the usefulness of in-
troducing

1 0'

(1-x)2E 2E (n —~ )
~ " ' 'di'

As'(P/)
Gc/B(xs r)

1 / 2 2)2
'L Py —my

(B9)

where x is the fractional momentum of C out of B.
The inclusive cross section for AB- CX is ob-
tained from (B4) by integrating over ( di //E&):

d g 2

E, , (&a- CX) =(1 —x),

which differs with Gc/~(x, Cr) only in the vertex
function: The vertex function is evaluated when
the particle C is on shell for G«~(x, Cr) and is
evaluated when C is off shell for Gc/s(x, Cr). In
terms of G, the invariant cross section for AB

'CX is

"gf x, „., (i!A —~x').
Z
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