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Electromagnetic properties of the deuteron and the Bethe-Salpeter equation
with one-boson exchange
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The deuteron electromagnetic form factors are studied in a relativistic framework, Using the Bethe-Salpeter
equation in the ladder approximation with a superposition of n. , y, e, b, p, and co exchange as the driving force, we
calculate the deuteron vertex function. The construction of the deuteron current from the vertex function is
described in some detail. In order to obtain numerical results an approximation is introduced in which parts of the
boost eff'ects are neglected and the corrections are discussed, The calculated form factors are compared with the
nonrelativistic results obtained from the Reid soft-core interaction.

NUCLEAR STRUCTURE Deuteron; relativistic calculation electromagnetic
"

from factors; Bethe-Salpeter equation one-boson-exchange model.

I. INTRODUCTION Fig. 1, the amplitude is given by

In the description of nucleon-nucleon scattering
at low energies it is usually assumed that the two-
nucleon system behaves in a good approximation
nonrelativistically. There are, however, indica-
tions that in certain physical situations such as
elastic electron-deuteron scattering relativistic
effects should also be included. In particular, it
is expected that relativistic covariance and me-
sonic degrees of freedom are important. In the
conventional approach these effects are treated as
corrections to the nonrelativistic potential theory.
The consistency of such calculations is„however,
not at all clear. For this reason a genuine rela-
tivistic calculation is of interest.

Recently it was shown that the relativistic co-
variant Bethe-Salpeter equation (BSE) with one-
boson exchanges as the driving force is capable of
giving a reasonable description of the nucleon-nu-
cleon system, ' provided that an axial-vector cou-
pling is used for the pion with the nucleons. In
this paper we study the electromagnetic properties
of the deuteron in this model. A prominent fea-
tures of the BSE is that the so-called relativistic
and meson-exchange effects' are consistently taken
into account. Our results for elastic electron-
deuteron scattering deviate markedly from the
conventional perturbative approach. Using a
quasipotential model this deviation was traced
back to an inconsistent treatment of the dynamical
effects of the mesonic degrees of freedom in the
perturbative approach. ' Here we give a detailed
account of the BSE calculation. We will be con-
cerned with the scattering amplitude for elastic
electron-deuteron scattering. In the one-photon
exchange approximation, shown schematically in

where the electron current is

(a'~' ~q„' ~ux)=fez, ,(k')y u,(k). (l.2)

As is well known, the deuteron current can be ex-
pressed in terms of invariant form factors. The
important relations are summarized in Appendix
A.

In order to determine the matrix elements of the
deuteron current we need to know the deuteron
wave function. Section II is devoted to the calcu-
lation of this wave function, using the homogen-
eous BSE, and its partial wave decomposition. In
Sec. III we describe the deuteron current in the
relativistic impulse approximation. The matrix
elements of the isoscalar deuteron current have
the interesting property that, for a ladder theory
of the BSE, such as the one we are considering in
this paper, gauge invariance holds. In Sec. IV we
describe the results for the electromagnetic form
factors in an approximation in which the negative-
energy spinors and some effects of the boost
transformations are neglected. Corrections to
this so-called static calculation are studied in
Sec. V. We find that the most important contribu-
tion comes from the boost on the one-particle
propagator. Our final results for the form factors
are very similar to the nonrelativistic calculations
such as carried out for the Beid soft-core poten-
tial. This indicates that the relativistic and me-
son-exchange-current contributions to the iso-
scalar part of the electromagnetic current of nu-
clei are less important than is generally accepted.
Some concluding remarks are made in Sec. VI.
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initial and final relative momenta p and p' and the
total momentum P. For the kernel K we take the
one-boson-exchange terms of Ref. 1, consisting
of the exchange of m, g, g, 6, p, and ~ mesons.
The m~ interaction is of the axial-vector type.
For the two-nucleon propagator S we have

-»p&»
S(P, P)= +P' ' -M» -P~~~ -M»

Pl Ml P, M

P ( P
(2.2}

FIG. 1. Schematic representation of the scattering
process; ~ and M are the polarization of the electron
and the deuteron and k and P are their respective mo-
m enta.

II. BOUND STATE WAVE FUNCTION

Our starting point is the BSE in the ladder ap-
proximation' for the two-nucleon system. It has
the form

&& S(p", P)y(p", p; P),
(2.1)

where p is the T matrix, which depends on the

where the superscripts refer to the particles and

M„ is the nucleon mass. The deuteron vertex
function, ' needed for the calculation of the matrix
elements of the electromagnetic current, can in
principle be constructed from the residue of the
two-nucleon T matrix at the bound state pole P'
=MD'. Since the deuteron is a spin one particle
characterized by a polarization M, the T matrix
in the neighborhood of this pole takes the follow-
ing form:

g g'"'(p', P)g'"'(p; P)
P -M~

+ terms regular at P'=MD'. (2.3)

The vertex functions g and g satisfy the homogen-
eous BSE with the normalization condition'.

2PI 6~g, —
3 d p p, P — S p, P

~a

(2.4)

In a ladder theory, such as we are considering
here, the second term on the right hand side of
Eq. (2.4) vanishes since the kernel K is indepen-
dent of the total momentum P. Taking the scalar
product, in the center-of-momentum (c.m. ) frame,
of the vertex functions and a complete set of two-
particle helicity states", we may define

4
' '(P a}= I'l', (p}I",2(p)4' '(P P..},

y'"'(p, )=0'"'(p.P )&"(p)&"(p).
(2.5)

The helicity states are labeled by the relative mo-
mentum p, the helicities g;, andthe energyspins p;
of the particles. They are givenby the positive- and
negative-energy solutions of the Dirac equation
and their explicit form is given for completeness
in Appendix B. In Eq. (2.5) a denotes the helicity
and energy-spin indices. The angular dependence,
for a given angular momentum J, is of the form

y'"'(P, a) = [(2J+ I)/2]'~'D„',*(0;)p( lp l, p„a),

'(p, a}= qb( lp l, p» a)D„~(Q-) [(2J'+ 1)/2]'~'

(2.6)

Owing to rotational invariance the M dependence is
only present in the D functions.

With the decomposition of the propagator, given
in Appendix B, and Eqs. (2), (4), and (6) we find
for the normalization condition in the c.m. frame

4MD= dpod p p p, poa

where we have taken P= (0, 2E}. In the basis we
employ here, the propagator is diagonal and de-
pends only on the p-spin index (p„p,):
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(f atP
p p

xg (2J+ 1}D~*i,(A,)
Jgg

E (
I

p' I,p', a',
I p I,p, a)D i(A;)

(2.8)

to be

I

@( fp f, p„a)=- ', dp,'d fp'I P

!pl

"Q&'( fp f, po, a; fp' f, p,', b)

f4
\

xg(fp f, p, , p, )y(fp f, p, , b)

(2.10)

"26 lp' I»' &)@Ip' I»' »

"&'(lp'I &,, b; Ipf». a).
Due to time-reversal invariance K~ is symmet-
ric

=&'(fpf P. a fp'I Pl, a'), (2»)
so that, in the case of a nondegenerate bound

state, it follows that p and y differ by a phase
factor only. In accordance with the normalization
condition, and regarding the fact that the fermion
field operators satisfy anticommutation relations,
we take

~(...)=[(~-E,)'-p.'] ', S(-, -)=[(~ E,)'-p.'] ',
s(+, -)= [z' —(p, —E,)']-', s(-, +) =[a' —(p, + z,)']-',

(2.8)

where M„', and thus E~=(M»' +p')' ', has a small
negative imaginary part. The equations for g and

P can be found using the partial wave decomposi-
tion of the kernel:

which we denote by P„(lpl, p,), with n=1, . . ., 8.
The first two states correspond to the nonrela-
tivistic states. Due to the symmetry under the
exchange of ihe particles in a state, ' ihe first six
channels are even in the relative energy, while
the last two are odd.

The BSE in the bound state region is solved us-
ing similar techniques as described in Ref. 1.
First a Wick rotation is applied, resulting in a
nonsingular two-dimensional integral equation.
However, since we are, considering the bound
state problem, there are no additional terms
arising from the poles of the two-particle propa-
gator. The Wick rotated equations with an in-
homogeneous term have been solved very close to
the bound state pole, using the scalar Padd ap-
proximant method to construct the solution. Al-
though the [6/6] approximant was already con-
vergent for most values of the argument of the
vertex function, in the calculation a [10/10] ap-
proximant was used. The found solution was nor-
malized using Eq. (2.7). As an additional test the
computed vertex function was inserted, in the
homogeneous BSE and verified to be a correct
solution indeed.

The coupling constants and the masses of the
exchanged mesons are taken to be the same as
in Ref. 1, except for the cutoff parameter A',
which has been changed to j..9 in order to fit the
binding energy of the deuteron at 2.223 MeV. The
phase shifts were recalculated and are given in
Table I for the 'Sj-'D„'S„and 'Po channels at
vari. ous lab energies. We see that the phase shifts
do not deviate significantly from the results for A'
= 1.8 reported in Ref. i. The positive-energy
components of the wave function, i.e. ,
&„(p,&)p„( lp I, p,), can be compared with those ob-
tained from a nonrelativistic calculation. In Figs.
2 and 3 these components are shown for different
values of p, = -ip„ together with the wave func-
tions of the Reid soft-core potential. The behavior
as a function of p, is rather smooth, while the
most pronounced p dependence occurs when p,
vanishes. The structure for p, = 0 is very similar

i(fpf, u. a)= -@(fpl». a) ~ (2.12)

1 S, 2 D' 3: Sj 4 D"

5' j+ 6 3p0 p, jpO 8' 3~j (2.13)

The basis states employed so far are labeled by

J, A.„X„p„andp,. In the discussion of the
deuteron it is more convenient to introduce states
labeled by J, L, S, and p.' Adopting the spec-
troscopic notation 2s'jL~ of Gammel et al. jj we

have, in the deuteron, the following eight coupled
states:

E (MeV) 'S, Sp

25
50

100
150
200
250

80.0
61.1
40.6
27.3
17.3
9.1

-2.96
-6.78

-12.82
-17.07
-20.08-
-22.21

1.60
1.48
1.03
0.59
0.287
0.034

51.9 8.93
41.0 11.43
26.6 8.48
16.2 2.83
7.9 -3.21
0.9 -9.11

TABLE I. Phase shifts with the same coupling param-
etejs as in Ref. 1, except that A has been ch'anged to
1.9.
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FIG. 2. The S& component of the deuteron wave func-
tion is shown for p4-—. 0 ( ), p4—-0.255 (————},
p4

——0.543 ( ~ ~ ~ ), where p4 is in units of nucleon mass.
For comparison we also plotted the corresponding; Reid
wave function (—~ ~ —~ ~ ).

to that obtained for the Reid interaction, except
that the d-wave component is smaller. Consider-
ing the relativistic components, the wave function
is localized in p space around 0.3 like the d-wave
component. This is shown in Figs. 4 and 5. Note
that the wave function in the channels '7 and 8 van-
ishes for p4 ——0, being an odd function of p4.

Other interesting quantities are the probabilities
of the various components. They cannot be de-
fined in the basis (2.13) because the propagator is
not diagonal, and we have to go back to the p-spin
basis labeled by (p„p,), which means that we
diagonalize the propagator in the channels 5
through 8. The propagator is then the same as in
(2.8). In view of the normalization condition (2.'I),
we define the n-state probability as

1
dP «PP' S,p4, ~& z=~ .p~p4

'

FIG. 3. The same as in Fig. 2 for the D& component
of the wave function.

ities for the relativistic components, which can
be attributed to the use.of axial-vector coupling
for the mN system. The d-state probability of the
BSE wave function is lower than for the Reid wave
function, but essentially in agreement with some
recent quasipotential one-boson-exchange model
calculations. " The calculation of the quadrupole
moment yields essentially the same value for the
Reid wave function and for the BSE, being too
small as compared with experiment, while the
magnetic moment is substantially higher for the BSE.

.15

.10

dP4, dP p'w„Eq S p, p4, n „p,P4.

(2.14)

.05

where the weight function ~„depends only on the

p spin and the energy E~:

&u„=E~ —E; &u = E~ —E; ~, = &u, =—-E. (2.15)

It is clear that the "probabilities" for the states
containing negative-energy components are nega-
tive, which is readily understood if we realize that
these numbers measure the effective charge of
the state. As we will see in Sec. III, the, normal-
ization condition coincides with the matrix element
of the charge operator at zero momentum trans-
fer. The numerical values are given in Table II,
together with the corresponding Reid results and
experimental data. We find very small probabil-

-.05
0.0 0.5 1.0 1.5

FIG. 4. The relativistic components of the deuteron
wave function for p4=0: 38& ( ), D& (——), ~P&

(———~, and P& (—- —~). The P& and Pf coDl-
ponents are odd functions of p4 so that they vanish in
this case.



22 EI ECTROMAG1VETIC PROPERTIES OF THE DEUTERON AND. . .

PD f42{P4PP) 41(P4&P)~ sp=&((&/2, &I@=o I

i.e. , the ratio of the 'D,' over the 'S, component of

(2.16)

We have also determined the asymptotic D/S state
ratio, 3 defined by

the vertex function with both nucleons on the mass
shell. We have to extrapolate this ratio to the un-
physical point p'/M„'= -1+M~'/4M~2 =—-0.00237.
The calculated value is in good agreement with
the recently obtained experimental value.

III. THE DEUTERON CURRENT

Having determined the bound state wave functions in the c.m. frame, we can in principle calculate the
deuteron current matrix elements and as a result the electromagnetic (e.m. ) form factors. In the impulse
approximation, shown in Fig. 6, we have

p

(P'M' (d„(PM)=, d P P™l(P', ') P'S(—+ P') I'„"(d)S(P,P)P'"'(P; P)
D

I

IWt+P'"'(P" P')S'*' —'-P") P'*'(d)S(P P)P'"'(P P) (3.1)

where p' =p+ q/2, p" = p —q/2, P' = P+ q. The
photon-nucleon vertex function T', is assumed to
be of the on-shell form:

I',(q) = y „P,{q') — (x„q"P,{q') . (3 2)

.10

Since the deuteron is an I = 0 object, we only
need the isoscalar part of the nucleon form fac-
tors. In the numerical calculations we have used
the phenomenological dipole fit for the charge
form factor, '4 and the fit by Iachello, Jackson,
and Lande" to the magnetic form factor. Using
the normalization condition for the deuteron ver-

tex function, and the identity

~(P, P)=s(f,P), ' 3(P, P)
s (&S-'(p, p)

= —S('& —+P y' S(P, P)p (1)
2. 2

+S(" —-p yM S(p, P),P (2)

{3.3)

we find that, for q-0, the current is normalized
as in E(I. (A4).

Due to the invariance of the Bethe-Salpeter equa-
tion for the exchange of particle one and particle
two, ' the two terms on the right hand side of Eq.
(3.1) are identical, so that

&P M'~J„~PM)

d'p I&'"'(p', P')S"' —~ p')Bm'M 2

x r(„'&(q)S(P, P)q("&(P P) . (3.4)

.05

It should be noted that the isoscalar current de-
fined in this way is gauge invariant:

q'(P'M' ~Z'„~PM) = 0. (3.5)

The proof is given in Appendix C.
From Eq. (3.4) it is clear that we need the deu-

teron vertex function in a general moving frame.
The relation between vertex functions in different
frames is given by'

-05
0.0 0.5 1.0

q'"'U, P) = A"'(~)A"'(~)y'"&(~ 'P, ~ 'P), (3.6)

FIG. 5. The same as Fig. 4 for p4-—0.255, the Pf,
(—~ ~ —~ ~ ) and P& (- ~ ~ ~ ) components are no~ different
from zero.

where A is the operator for spin —' particles cor-
responding to the Lorentz transformation g. In
practice we only need boost transformations along
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(

TABLE II. Static properties of the deuteron in this model, compared with experiment and

the results for the Beid interaction.

Q (mb)

exp
BSK
P eid

4.8
6.4

0.0263 (13)
—6x 10+ —8.6x 10 6 -2.5 x 10 2 0.0258

0.0260

2.86
2.76
2.77

0.857 406
0.865 5
0.838 0

the z axis, with momentum P. I',(q}= A '(Z'}I („'&(q)A(Z) . (3.1o)

E,= (M, '+ P')'~2 (3.'I)

Together with the transformation properties of
the kernel and the propagators:

x(p', p) = ~(z)~(z-'p', z 'p) J -'(2),

s(p, I ) = ~(z)s(z-'p, s 'P)~-'(z),

~(s) = ~&'&(z)~"&(z),

(3 8)

it is straightforward to show that the BSE is co-
v�a).ant.

The matrix elements of the deuteron current are
calculated in the Breit frame, i.e., P'+ P = 0.
This means that we have P'= -P = (I/2, and q, = 0.
We choose (I along the (positive) z axis and use
Eqs. (3.6) through (3.8) to rewrite the current in

terms of c.m. quantitj. es:

(3.11)

In the Breit frame g' equals g ' and g can be
written as

(I+q)'~' o o -vq

1 0

0 0 1 0

o o (I+q)'~'

(3.12)

w&th &l = (I'/4MD'= -q'/4M~'. From this we find

k,'=(1+ 2q)k, -2[q(I+ ~)]'&'k, ~~q/2,

k~=k, , (3.13)

k,'= (1+ 2')k, —2[&i(1+&i)]' 'k, + (1+&i)' 'q/2.

In E(l. (3.9) we have introduced k'= 2' 'p', k = g 'p
and changed the integration variable to k, using
~detZ

~

= l. 2' and 2 are defined by

'I =-(M„o)=z,

where

k

d kit""'(k'k' )S"' ' '+k')
8~'m Go ms 2D

~ I „(q)S(k,P, )y'"&(k; P, .),
(3.9)

We proceed by performing the partial-wave re-
duction of (3.9). This is straightforward but tedi-
ous algebra, and is performed using the algebraic
program SCHOONSCHIP. " Details are given in Ap-
pendix D. The resulting expression, in terms of
the eight states introduced in the previous sec-
tion, has the form

k&0 a

(I 'I' ~Z'„~ PM) =, g dk, dk k' d cose[y„(k', k,')S('& (k, k,)
Dnn -~ 0j. 2

a] ny ~ 2 0 0

n3 n4 x«, „„(k',k, q)S (k, k,)y (k, k,)), (3.14)

P', M' P—-p
2

P,M

' M'
k + p

P
2

P,M

where I' is given by E(I. (D4). Due to the fact that
k' is a function of cosa, the integration over cose
cannot be carried out analytically, and as a con-
sequence we have to evaluate numerically a
three-dimensional integral. The remaining sec-
tions are concerned with the evaluation of Eq.
(3.14).

IV. STATIC APPROXIMATION

FIG. 6. The impulse approximation to the deuteron
current.

Solving the Bethe-Salpeter equation we per-
formed a Wick rotation in the relative-energy
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plane. This implies that we obtain a vertex func-
tion along the imaginary relative energy axis.
Now we can proceed in various ways. For exam-
ple, one can calculate the vertex function along
the real pp axis, but this is a rather tedious pro-
cedure to carry out numerically because the ver-
tex function has an infinite number of branch
points along the real axis. From the BSE it can
readily be seen that the branch points of the c.m.
vertex function are located in the intervals

(-~,M, /2 —[(M,+ p,)'+ p']"']

singularities. This can be seen in the following
.way. The lowest right hand singularity that
crosses the imaginary axis is the pole in the one-
particle propagator. If this does not pinch with
the highest left hand singularity the pole at kp

=MD/2 —(M„'+ k')'~" of the two-particle propaga-
tor, there are no further possibilities for pinch-
ing. The condition for the poles to coincide is

(1+ 2q)M, -(M „'+k')"'
—(M„'+k + 2c(MDk~+ aPMD') i'=0. (4.4)

and

(-MD/2+ [(M~+ p,)'+ p']'~', ~],

However, since

(M~'+k')' '+ (M~'+ k'. + 2oMDk3+ ().' MD }'

where p. is the pion mass and p the relative mo-
mentum. Another possibility is to perform a Wick
rotation in the expression for the deuteron current.
To see whether this is feasible or not, we have to
analyze the singularities in the integrand of Eq.
(3.14}. These singularities occur in the propaga-
tors and the deuteron vertex function. For real
~k

~

values the propagators have poles on the real
kp axis. The position of the poles in the two-par-
ticle propagator S(k, P, ) are given by

ko= + MD/2+ (M„'+ k')'~ ' iE— Q VkP(k}V,'(k) = 1 (4.6)

- (4M „'+ n'M, ')" '& (1+ 2q)M, , (4.5)

this condition is never fulfilled.
At first sight it might seem that there are also

singularities in cos8'= k,'/ ~k'
~

and E„,
=(M„'+k")' ', which arise when k,' and k' become
complex. These singularities are spurious, how-
ever, since they arise from the introduction of a
complete set of helicity spinors. In particular,
in view of

and

ko= +MD/2 —(M„'+ k'}'~'+is
(4 1)

while the one-particle pr'opagator S"'(P, /2+ k')
has poles at

k, = -(1+4g) —
2

+ [(M„'+k'+2o[M~k, + c('MD')'~'-ie] (4.2)

with n= 2[q(1+q)]"'.
Taking the boost transformation in the argu-

ments of the outgoing vertex functions into ac-
count, we have additional branch points in the kp

variable occurring in the intervals

—[(M„+k ) '+ k'] ' i '
I

and

10

10

10

104

—()+4k) +[(M„+k)*+K'+2|kk +n' k]'",I
2

(4.3)

From the location of the singularities we see
that the right hand pole of the one-particle propa-
gator and the right hand cut of the outgoing ver-
tex function can cross the imaginary kp axis for
certain values of q'. All other singularities are
always on the same side of the imaginary axis.

First of all we note that there are no pinching

10

10
20 4030 50

q (fm ~)

FIG. 7. &(q ), Eq. (A8), in the static approximation
( ~ ~ ~ ~ ) and the corrections included ( ). For com-
parison also the Beid result is shown (——). The data
labeled by o, a, and+ are from Befs. 18, 19, and 20,
respectively.
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10=

.01

.01

.001

.0001
0

I I

10
I I

30
I

40
q~(fm ~)

FIG. 8. Ec(q~), the same as in Fig. 7.

0001
0 10 20 30

q (fm )

40 50

FIG. 10. I"~(q ) in units of 1/MN, the same as in Fig.

.001

I

10
I I

30
I

40
q~(fr'n ~)

FK. 9. &q(q )/~D in fm, the same as in Fig. 7.

all these singularities cancel when the summation
over all channels is carried out, and as a result
we do not have to consider them.

From the above discussion we conclude that as
far as the singularities are concerned the Wick
rotation can be carried out. Rotating the integra-

FqFo+ —qFq
&(q') = n 2+8 q2P 2

C g Q

(4.7)

The behavior in the static approximation is sim-

tion contour to the imaginary k, axis gives rise to
additional contributions from the poles and branch
cuts crossing the imaginary axis. As a first ap-
proximation we neglect the effect of the boost
transformation on the arguments k' given by Eq.
(3.13). In so doing, no singularities cross the
imaginary axis anymore and we may simply re-
place k, by ik~ in Eg. (3.14), with k, real. The
so-called "static approximation" is obtained by

neglecting the negative-energy-spin states, i.e. ,
keeping only the 'S, and 'D,' channels. Our re-
sults, calculated in this approximation, can be
compared with a nonrelativistic calculation, such
as for the Reid potential. As can be seen from
Figs. 7-10 our results for the various form fac-
tors are very similar to the nonrelativistic ones.

It should be noted that not all effects of the Lo-
rentz transformations have been neglected, since
the boost operators A are still included in the
e.m. vertex. This is done because we find a
strong interference effect between the corrections
from the negative-energy states and the boost op-
erators, "which can be understood by noting that
the boost operator mixes the different states.

Figure 11 shows the tensor polarization ' for
electron-deuteron scattering:



22 ELECTROMAGNETIC PROPERTIES OF THE DEUTERON AND. . . 2377

1.0

ilar to the result for the Beid potential, and the
corrections to the static approximation, which are
discussed in the next section, do not alter this for
momentum transfers up to 20 fm '.

V. CORRECTIONS TO THE STATIC
APPROXIM ATION

0.5
U

Q

0Q

I

10,

q (frn )

20, 30.

FIG. 11. The tensor polarization &(q ~), the same as
in Fig. 7.

In this section we investigate the effects of the
approximations made in the previous section.
Three kinds of corrections to the static approxi-
mation can be distinguished: (i) contributions
from the negative-energy spinor states, (ii) cor-
rections to the arguments of the e.m. and deuteron
vertex functions due to the boost transformation,
and (iii) boost effects on the one-particle propa-
gator.

First we consider the negative-energy states.
For the electric form factor A(q') the relative
correction is less than 5/o up to q' = 50 fm ' as is
shown in Fig. 12. The contributions from the neg-
ative-energy states can also be determined by
constructing the effective two-body e.m. operator
using a lowest order perturbation calculation for
the case of axial-vector mN coupling. The effective
two-body charge operator due to the NN states,
has the following form in the static limit:

2 I 2 k

(&)
(g.&l)

~ l (o.k )&2&~&&&. ~&2&

N

20
/

I

30 40
q (frn )

50

FIG. 12. The relative corrections to &(q ) in the static
approximation. The correction from the channels con-
taining negative-energy states (— ) is small. The
dominant corrections come from the boost on the one-
particle propagator (————), while for low momen-
tum transfer also the boost on the argument of the wave
function gives a significant contribution (—~ —~ ).

where ~, g, k„and q are, respectively, the pion
energy, the pion-nucleon coupling constant, the
pion momentum, and the momentum transferred
to the two-nucleon system by the electron. This
expression is only valid for isospin zero initial
and final states. In other cases there wi11. also be
a contribution from the contact term which is due
to the use of a derivative pion-nucleon coupling.
The charge operator was calculated using the
prescriptions of Chemtob and Bho."

The results from both calculations are virtually
in agreement, showing that the contributions from
the negative-energy spinors are small in an axial-
vector theory.

To account for the effects of the boost on the
arguments we expand the vertex function and the
matrix elements of the e.m. operator in a Taylor
series around k =k+&l/2and ko =40, which is in
fact an expression in powers of q/2MD. We only cal-
culated the corrections using the 8,'and D,'channels,
because the contributions from the other channels
are already small. For the expansion of the ver-
tex function up to first order we have
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(5 1)

g (ko, k')=P (k„~k+q/2~)+ 2@k, y (k„k)+ 2»ik, + -- ",), q cos ' —y, (k„k)
0 + +»i k= I t+g/ 2 l

9 9
+ —nk3+ 2gE ko, k —ako cos&' — ko, k

0 ~= I|+a/2I

The terms in square brackets are even in k„while the terms in curly brackets are odd. Similarly we
find for the e.m. vertex operator

3 A3=0~+q/ 2
(5.2)

The separation in even and odd parts in k, has
been done because the integration over k, in Eq.
(3.14) can, using Eqs. (5.1) and (5.2) and the de-
composition of the one-particle propagator in even
and odd parts, readily be reduced to an integration
over only positive values of kp'in the two-channel
approximation. In the expressions (5.1}and (5.2)
we need to know the derivatives of I and g. For
I', this is calculated numerically by taking the dif-
ference:

= L'„k+—+ qg, k —X' k+-, k

(5.3}

Since we know the solution p of the BSE only at
diseretized meshpoints, its derivatives have been
calculated by taking the derivatives of the kernel
with respect to the initial momenta and then iterat-
ing the integral equation over; i.e., g' is calcu-
lated using P'=K'Sg rather than by interpolation
of the wave function. In this way the derivatives
could be determined with a much higher accuracy.
Our results were stable for q-—10 ' with a nu-

I

merical error of less than 1% due to the evalua-
tion of the derivatives.

The relative correction from Eqs. (5.1) and
(5.2) to A(q') is shown in Fig. 12. We find that
the contribution is significant for Ji,ow q', but at
higher q- it is much smaller than the additional
contributions from the corrections to the one-
particle propagator. For q'& (2M,» —M~)M~
=0.107 fm ' the latter corrections ean be calcu-
lated simply by taking the correct one-particle
propagator into account in the Wick-rotated inte-
gral for the deuteron current. For higher values
of q' the pole of the one-particle propagator can
cross the imaginary axis in the k, plane. To cal-
culate the residue of the pole, we assume that we
can expand the deuteron vertex function in a Tay-
lor series around k, = 0, and keep only the first
term.

It should be noted that the same pole also causes
an integrable singularity in the Wick-rotated inte-
gral. In order to get numerically stable results
we performed a subtraction of the pole. This is
done by subtracting and adding a term to the Wick-
rotated integrand of Eq. (3.14) of the form

I

(ik, -k,') 'K&-&,}'+k,'] ' g @ 0, k+2
/

Res(k,')I',". lt:+-, k /@ (0, /&/)
LO &Q

2& (5.4)

where k~ and Res(ko~) are the position and residue
of the one-particle propagator pole. The added
term gives rise to an integral over k„which can
be evaluated analytically. It is given by

dk4 ik4 —k~ E —E~ '+k4
&OQ

I

pected to be small since a simple estimate shows
that they occur for k& 4 fm ' so that they are sup-
pressed by the incomcing vertex function. The
pole of the one-particle propagator on the other
hand already begins to contribute for k& 0.3 fm ',
where the vertex function is still appreciable.

VI. CONCLUDING REMARKS

The correction to A(q'} from the full one-particle
propagator is shown in Fig. 12. We see that of
the three corrections it is the dominant one. At
q' —-50 fm ' it is about -50%. In our calculations
we have neglected the corrections arising from
the intersection of the cuts of the outgoing vertex
function with the imaginary k, axis. They are ex-

In the previous sections we have presented the
results of a relativistic covariant calculation of
the e.m. form factors of the deuteron. It was
shown that the boost transformation in the argu-
ments of the final-state vertex function and the
negative-energy spin states give relatively small
corrections to the static calculation. As a result
ihe corrections can in principle be treated in a
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perturbative way. On the other hand, the contri-
bution from the one-particle propagator is not
very small. Hence one should consider more re-
liable possibilities of taking this contribution into
account. In particular, the zeroth order approxi-
mation of the wave function needed to calculate
the pole contribution should be improved on. Also
a good estimate of the contribution from the dis-
placed cuts of the wave function is needed. One
possibility is to carry out the Wick rotation in
such a way that the path of integration in the Qp

plane is shifted with respect to the imaginary ax-
is, so that the singularities are circumvented. It
is clear that such a calculation will be complicated
because of the choice of the integration path is k
dependent and the vertex function will be needed
for complex arguments.

Concerning the deuteron e.m. form factors, we
find that our results are analogous to the nonrela-
tivistic results. Although in our calculations we
have included the relativistic effects and pair-ex-
citation contributions, our results are distinct dif-
ferent from the lowest order perturbation analysis
of the isoscalar exchange-current effects. In a
previous paper' it was argued, in a relativistic
quasipotential model, that these differences can
be ascribed to the neglect of the consistent treat-
ment of the dynamics of the two-particle system
and the e.m. properties, in the conventional ap-
proach, using the nonrelativistic situation as a
starting point. Also the shift of the dip of the mag-
netic form factor is opposite to the result of Gari
and Hyuga, ~ who find that the dip at 40'-45 fm '
disappears completely, due to mesonic correc-
tions. In this connection it would be interesting to
determine the magnetic form factor in the region
of 35-60 fm ', since exchange effects seem to be
significant in this momentum transfer region.

Although in our calculations of the parameters
of the nucleon-nucleon interaction we have not
performed a detailed X' fit to the scattering data,
we believe that this does not invalidate our con-
clusion that the pair-excitation term is not as im-
portant as generally accepted. To find agreement
between, for example, the theoretically deter-
mined value of A(q') and experiment, especially
at higher momentum transfer, rather different
mechanisms are needed than the ones considered
here.

The work of M. J. Z. was supported by de

Stichting voor Fundamenteel Onderzoek der
Mate rie (FOM).

APPENDIX A. -THE MATRIX ELEMENTS OF THE
DEUTERON CURRENT

The procedure to relate the deuteron-current
matrix elements to the invariant form factors is

g e*.(P, M)e„(P,M) = -g„„+

P,e (P,M)=0.

From I orentz covariance and time-reversal in-
variance we get

+ f',„q'G,(q')

where E„E„and G, are invariant functions of
the momentum transfer q, and I„„is the infinites-'

imal generator of the I orentz transformations.
For q-0 the current matrix elements are nor-
malized as

(P, M' ~J'„~P,M)= e ~ 5~e.
D

(A4)

Instead of the form factors I",„F„and G, used
in Eq. (A3), one often introduces the charge,
quadrupole, and magnetic form factors, given by

Ec = E, + —',q(E, + (1+q)F, + G,),
Eo ——Ei+ (1+q)E2+ Gi,

+M 1 r

(A5)

where q= -q'/4MD'. They have the property that

Fc(0) = 1, Eo(0) =MD'Q, F~(0) = p~ — — (A6)C s Q D t N D~

where Q and p~ are the quadrupole and magnetic
moments of the deuteron. For the scattering pro-
cess of unpolarized electrons on deuterons only
some combinations of these form factors enter.
In the limit of vanishing electron mass, the cross
section is given by the well-known Rosenbluth
formula

87
da = doM, «A(q')+ B(q') tan'-

with

&(q') = Ec'+ ,' n'Fo'+ ,'—nFu'—
B(q') = -' q(1+ q) E„'. (A8)

The deuteron-current matrix elements are most

well known. From covariance considerations one
immediately infers that the current should have
the following form:

(P', M' ~Z, ~P, M)= — '
e,*(P',M')Z„e.(P, M),

D

(A1)

where MD is the deuteron mass and the spin 1 po-
larization vectors are defined by the relations

e*(P,M) e~(P, M') = -5„„,,
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conveniently evaluated in the Breit frame, which
is defined by

P+P'= 0. (A 9)

APPENMX B. TYCHO-PARTICLE HELICITY STATES

A complete basis of two-particle helicity states
can be constructed from the positive- and nega-
tive-energy solutions Mx(p} and &)x(p} of the Dirac
equation following the conventions of Jacob and

%ick, ' as described by Kubis' and by Fleischer. "
The convention for y matrices is that of Bj@rken
and Drell. ~6

%e define for particle 1:

U, (p) = (m/E, )'~'u, (p),
W (p)=(-I)'~ "&(m/E )'"A (»)v (p)

and for particle 2:

U„(p) = (-1)' ' '~(m/E~)'~'A„(7r)u„(p),

W, (p) = (m/E, )""~,(p)

for particles moving along the z axis. For parti-
cles moving in a direction (8, q&}, we employ a ro-
tation:

ft(~, q&) = A,.(q )A„(S)A, ',(q ), (B2)

where A, ~ is a rotation from the a axis to the 6 axis:

A„(n) = coen/2+ y'y' sinn/2. (BS)

Using the p-spin notation V,'(p), with Vx(p) = U,(p)
and V (p) = IV (p), the normalization of the helicity
states can be written as

V (p)V;:(p)=~„.~„..

Taking &I along the z-axis, E&ls. (Al}-(AS) yield

&~s' ~z,
'

~~&

= e(1+ q)'~'(F, &&&&&$.+2&}[F,+(1+q)F, +G, ]5&&. ,5&&,) $

G,(~„.„„„,„,),D 9' 1. +

2MB 2
(A10)

(M'($;(M) -(e $={:-x) $,($„.„., +$„.„,),
&m' ~Z,

'
~m&= 0.

The Dirac spinors, in a direct-product repre-
sentation, are simply found by applying a boost
transformation along the z direction to the rest
frame spinors:

u, (p) = A(p)ux(0), &)„(p) = A(p)v, (0),

u, (())= {$)x,, v,(())= {)(X.„ (BS)

where y, is the usual Pauli spinor and A(p} is giv
en by Eq. (S.v).

APPENDIX C. GAUGE INVARIANCE OF THE
DEUTERON CURRENT

In principle it is not trivial that the e.m. deu-
teron current, in the ladder approximation, will
be conserved. %e will give the proof for the iso-
scalar case; for the isovector case the proof
goes along similar lines but one finds then, as ex-
pected, that it is necessary to include additional
terms into the current to preserve gauge invari-
ance. These terms are the ybb current (f& is an
isospin 1 boson) and seagull terms due to deriva-
tive couplings of the bosons and due to the use of
strong meson-nucleon form factors. They arise
because the y, of the electromagnetic vertex op-
erator does not commute with the isospin operator
on the bNN vertex.

In the isoscalar case the proof is simple. %e
define

)((xP) —$1 ) $
y& $t ) $ $)$|lf)($.P)

2 2
(cl)

and analogous for (P&"&. The homogeneous Bethe-
Salpeter equation is then written as

p pq~r =F,g=F, S&'& —+p+q -S&'& —+p
2

(cs)

0'"'(P; I') = —, d'O'E(P -P')y'"'(O', I'), (c2)4m'

where we used the fact that, in the ladder approx-
imation, the kernel is a function of p -p' only.
The inclusion of strong form factors used in our
actual calculations does not alter this dependence.
We note that

They form a complete set:

g V;(p) V„"(p)=1.
p, X

One readily verifies the following identity:

s&'&(p)=(p'&'& -M +i~)-'

Z„U„(p)U„(p) Z,,IV„(p)iV„(p)

p() —E~+ fe p()+ E&, —le

A similar relation holds for particle two.

(B5)
Inserting (S.4} into (3.5) and using (CS) we find

$'$ i)™'$+- $+q)$'"'($ $)

-y&"'& P+q I+q y&"&(P F) F

(c4)
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In the second term we insert (C2) and use

q q
q'" ' q+ —;p+ q )q(q —q') = — „q q q'" '( qp+ q)qq(q -q' ——

)
(C5)

which proves Eq. (3.5).

APPENDIX D

In this appendix we present some details of the derivation of Eq. (3.14) for the deuteron-current matr1x
elements. We start from the equation for the current (3.4), use the decomposition of the propagator(86),
and insert the unit operator (B5}for particle two between g and I".

(Dl)

where

I'
~ (k', k, q) = V 1(k') V, (k')1 (q) V 1(k) V 2(k ) . (D2)

Next we replace p and p by the expressions (2.6} and change to the new basis states (2.13), using the
unitary transformation matrix'.

21.+y ~~2(~ y ( JI g) CI S j'Cl/2ql/2S
2 l 2J+ y 0)t)t (D3)

We define

r, (q, q, )=((' "' '—'")"-'I: fq (c„. (c )c";c~ (*.-. .
X~)t2

1 2
&q,'f' (k) k q)CLSZC1/2, 1/2SD14 (Q )] (D4)

Here we also have included the linear combinations

p for the negative energy states (labeled by p, and

The y integration can then be carried out im-
mediately. For this purpose we note

V,'1(k ) = A„(q))A„(8)e"1'V,'1(/2),

V; (k ) = /i„(q )/i„(e)e *"2'V; (a),
and analogous for the corrugate spinors; further-
more,

D„, ,(Q)=e ""d,, (8)e"" (D6)
t

Collecting all exponentials we find exp[i(M -M ')q)].
The other y-dependent factors can be written as

&,.'(q)1'„(q)/~„(q) =/~ '(&')&,',(q&)l'.(q)/i, .(q)&(&)

(DV)

since the boosts along the z axis commute with the
rotation over q&. Using Eq. (3.2) we obtain

/i„-'(q)r, (q)/i„(q) = r.(q), IL = 0, 3

-J1„'(q&)r,(q)A„(9&)= r „(q)/&.„'(q&), p, = 1, 2
DS)

A»'(I/& ) = cos I/&+ y'y' s in'& .
So that the y integration results in

27T5~q ~~ for p = 0~ 3
qq'

O', 4+1+ N', 4-1 ~ y 2 N', 4+1 + eN-1 (

7t
2

lg P 2 )
for p, = 1, 2. (D9)

The SCHOONSCHIP programs are organized as fol-
lows. First we calculate (D2}, and perform the
cp integration of (D4}. Next we introduce the states
~J, L, S, p)= ~n) as in (D4) and finally we specify

M' and M'to get the matrix elements needed in
Eq. (3.4). In view of (D9) the expressions for the
invariant functions I',. and G, can then immediately
be obtained using the general form (A10) for the
deuteron-current matrix elements.
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